summaryrefslogtreecommitdiff
path: root/absl/random/gaussian_distribution_test.cc
blob: c0bac2b0dbef106a23158c1b4f2a94e4aa098d43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/gaussian_distribution.h"

#include <algorithm>
#include <cmath>
#include <cstddef>
#include <ios>
#include <iterator>
#include <random>
#include <string>
#include <type_traits>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/numeric/internal/representation.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"

namespace {

using absl::random_internal::kChiSquared;

template <typename RealType>
class GaussianDistributionInterfaceTest : public ::testing::Test {};

// double-double arithmetic is not supported well by either GCC or Clang; see
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
// https://bugs.llvm.org/show_bug.cgi?id=49131, and
// https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
// with double doubles until compiler support is better.
using RealTypes =
    std::conditional<absl::numeric_internal::IsDoubleDouble(),
                     ::testing::Types<float, double>,
                     ::testing::Types<float, double, long double>>::type;
TYPED_TEST_CASE(GaussianDistributionInterfaceTest, RealTypes);

TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
  using param_type =
      typename absl::gaussian_distribution<TypeParam>::param_type;

  const TypeParam kParams[] = {
      // Cases around 1.
      1,                                           //
      std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
      std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
      // Arbitrary values.
      TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
      TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
      // Boundary cases.
      std::numeric_limits<TypeParam>::infinity(),
      std::numeric_limits<TypeParam>::max(),
      std::numeric_limits<TypeParam>::epsilon(),
      std::nextafter(std::numeric_limits<TypeParam>::min(),
                     TypeParam(1)),           // min + epsilon
      std::numeric_limits<TypeParam>::min(),  // smallest normal
      // There are some errors dealing with denorms on apple platforms.
      std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
      std::numeric_limits<TypeParam>::min() / 2,
      std::nextafter(std::numeric_limits<TypeParam>::min(),
                     TypeParam(0)),  // denorm_max
  };

  constexpr int kCount = 1000;
  absl::InsecureBitGen gen;

  // Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to
  // all values in kParams,
  for (const auto mod : {0, 1, 2, 3}) {
    for (const auto x : kParams) {
      if (!std::isfinite(x)) continue;
      for (const auto y : kParams) {
        const TypeParam mean = (mod & 0x1) ? -x : x;
        const TypeParam stddev = (mod & 0x2) ? -y : y;
        const param_type param(mean, stddev);

        absl::gaussian_distribution<TypeParam> before(mean, stddev);
        EXPECT_EQ(before.mean(), param.mean());
        EXPECT_EQ(before.stddev(), param.stddev());

        {
          absl::gaussian_distribution<TypeParam> via_param(param);
          EXPECT_EQ(via_param, before);
          EXPECT_EQ(via_param.param(), before.param());
        }

        // Smoke test.
        auto sample_min = before.max();
        auto sample_max = before.min();
        for (int i = 0; i < kCount; i++) {
          auto sample = before(gen);
          if (sample > sample_max) sample_max = sample;
          if (sample < sample_min) sample_min = sample;
          EXPECT_GE(sample, before.min()) << before;
          EXPECT_LE(sample, before.max()) << before;
        }
        if (!std::is_same<TypeParam, long double>::value) {
          ABSL_INTERNAL_LOG(
              INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev,
                                    sample_min, sample_max));
        }

        std::stringstream ss;
        ss << before;

        if (!std::isfinite(mean) || !std::isfinite(stddev)) {
          // Streams do not parse inf/nan.
          continue;
        }

        // Validate stream serialization.
        absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);

        EXPECT_NE(before.mean(), after.mean());
        EXPECT_NE(before.stddev(), after.stddev());
        EXPECT_NE(before.param(), after.param());
        EXPECT_NE(before, after);

        ss >> after;

        EXPECT_EQ(before.mean(), after.mean());
        EXPECT_EQ(before.stddev(), after.stddev())  //
            << ss.str() << " "                      //
            << (ss.good() ? "good " : "")           //
            << (ss.bad() ? "bad " : "")             //
            << (ss.eof() ? "eof " : "")             //
            << (ss.fail() ? "fail " : "");
      }
    }
  }
}

// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm

class GaussianModel {
 public:
  GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}

  double mean() const { return mean_; }
  double variance() const { return stddev() * stddev(); }
  double stddev() const { return stddev_; }
  double skew() const { return 0; }
  double kurtosis() const { return 3.0; }

  // The inverse CDF, or PercentPoint function.
  double InverseCDF(double p) {
    ABSL_ASSERT(p >= 0.0);
    ABSL_ASSERT(p < 1.0);
    return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
  }

 private:
  const double mean_;
  const double stddev_;
};

struct Param {
  double mean;
  double stddev;
  double p_fail;  // Z-Test probability of failure.
  int trials;     // Z-Test trials.
};

// GaussianDistributionTests implements a z-test for the gaussian
// distribution.
class GaussianDistributionTests : public testing::TestWithParam<Param>,
                                  public GaussianModel {
 public:
  GaussianDistributionTests()
      : GaussianModel(GetParam().mean, GetParam().stddev) {}

  // SingleZTest provides a basic z-squared test of the mean vs. expected
  // mean for data generated by the poisson distribution.
  template <typename D>
  bool SingleZTest(const double p, const size_t samples);

  // SingleChiSquaredTest provides a basic chi-squared test of the normal
  // distribution.
  template <typename D>
  double SingleChiSquaredTest();

  // We use a fixed bit generator for distribution accuracy tests.  This allows
  // these tests to be deterministic, while still testing the qualify of the
  // implementation.
  absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};

template <typename D>
bool GaussianDistributionTests::SingleZTest(const double p,
                                            const size_t samples) {
  D dis(mean(), stddev());

  std::vector<double> data;
  data.reserve(samples);
  for (size_t i = 0; i < samples; i++) {
    const double x = dis(rng_);
    data.push_back(x);
  }

  const double max_err = absl::random_internal::MaxErrorTolerance(p);
  const auto m = absl::random_internal::ComputeDistributionMoments(data);
  const double z = absl::random_internal::ZScore(mean(), m);
  const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);

  // NOTE: Informational statistical test:
  //
  // Compute the Jarque-Bera test statistic given the excess skewness
  // and kurtosis. The statistic is drawn from a chi-square(2) distribution.
  // https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
  //
  // The null-hypothesis (normal distribution) is rejected when
  // (p = 0.05 => jb > 5.99)
  // (p = 0.01 => jb > 9.21)
  // NOTE: JB has a large type-I error rate, so it will reject the
  // null-hypothesis even when it is true more often than the z-test.
  //
  const double jb =
      static_cast<double>(m.n) / 6.0 *
      (std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);

  if (!pass || jb > 9.21) {
    ABSL_INTERNAL_LOG(
        INFO, absl::StrFormat("p=%f max_err=%f\n"
                              " mean=%f vs. %f\n"
                              " stddev=%f vs. %f\n"
                              " skewness=%f vs. %f\n"
                              " kurtosis=%f vs. %f\n"
                              " z=%f vs. 0\n"
                              " jb=%f vs. 9.21",
                              p, max_err, m.mean, mean(), std::sqrt(m.variance),
                              stddev(), m.skewness, skew(), m.kurtosis,
                              kurtosis(), z, jb));
  }
  return pass;
}

template <typename D>
double GaussianDistributionTests::SingleChiSquaredTest() {
  const size_t kSamples = 10000;
  const int kBuckets = 50;

  // The InverseCDF is the percent point function of the
  // distribution, and can be used to assign buckets
  // roughly uniformly.
  std::vector<double> cutoffs;
  const double kInc = 1.0 / static_cast<double>(kBuckets);
  for (double p = kInc; p < 1.0; p += kInc) {
    cutoffs.push_back(InverseCDF(p));
  }
  if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
    cutoffs.push_back(std::numeric_limits<double>::infinity());
  }

  D dis(mean(), stddev());

  std::vector<int32_t> counts(cutoffs.size(), 0);
  for (int j = 0; j < kSamples; j++) {
    const double x = dis(rng_);
    auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
    counts[std::distance(cutoffs.begin(), it)]++;
  }

  // Null-hypothesis is that the distribution is a gaussian distribution
  // with the provided mean and stddev (not estimated from the data).
  const int dof = static_cast<int>(counts.size()) - 1;

  // Our threshold for logging is 1-in-50.
  const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);

  const double expected =
      static_cast<double>(kSamples) / static_cast<double>(counts.size());

  double chi_square = absl::random_internal::ChiSquareWithExpected(
      std::begin(counts), std::end(counts), expected);
  double p = absl::random_internal::ChiSquarePValue(chi_square, dof);

  // Log if the chi_square value is above the threshold.
  if (chi_square > threshold) {
    for (int i = 0; i < cutoffs.size(); i++) {
      ABSL_INTERNAL_LOG(
          INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
    }

    ABSL_INTERNAL_LOG(
        INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n",   //
                           " expected ", expected, "\n",                  //
                           kChiSquared, " ", chi_square, " (", p, ")\n",  //
                           kChiSquared, " @ 0.98 = ", threshold));
  }
  return p;
}

TEST_P(GaussianDistributionTests, ZTest) {
  // TODO(absl-team): Run these tests against std::normal_distribution<double>
  // to validate outcomes are similar.
  const size_t kSamples = 10000;
  const auto& param = GetParam();
  const int expected_failures =
      std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
  const double p = absl::random_internal::RequiredSuccessProbability(
      param.p_fail, param.trials);

  int failures = 0;
  for (int i = 0; i < param.trials; i++) {
    failures +=
        SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
  }
  EXPECT_LE(failures, expected_failures);
}

TEST_P(GaussianDistributionTests, ChiSquaredTest) {
  const int kTrials = 20;
  int failures = 0;

  for (int i = 0; i < kTrials; i++) {
    double p_value =
        SingleChiSquaredTest<absl::gaussian_distribution<double>>();
    if (p_value < 0.0025) {  // 1/400
      failures++;
    }
  }
  // There is a 0.05% chance of producing at least one failure, so raise the
  // failure threshold high enough to allow for a flake rate of less than one in
  // 10,000.
  EXPECT_LE(failures, 4);
}

std::vector<Param> GenParams() {
  return {
      // Mean around 0.
      Param{0.0, 1.0, 0.01, 100},
      Param{0.0, 1e2, 0.01, 100},
      Param{0.0, 1e4, 0.01, 100},
      Param{0.0, 1e8, 0.01, 100},
      Param{0.0, 1e16, 0.01, 100},
      Param{0.0, 1e-3, 0.01, 100},
      Param{0.0, 1e-5, 0.01, 100},
      Param{0.0, 1e-9, 0.01, 100},
      Param{0.0, 1e-17, 0.01, 100},

      // Mean around 1.
      Param{1.0, 1.0, 0.01, 100},
      Param{1.0, 1e2, 0.01, 100},
      Param{1.0, 1e-2, 0.01, 100},

      // Mean around 100 / -100
      Param{1e2, 1.0, 0.01, 100},
      Param{-1e2, 1.0, 0.01, 100},
      Param{1e2, 1e6, 0.01, 100},
      Param{-1e2, 1e6, 0.01, 100},

      // More extreme
      Param{1e4, 1e4, 0.01, 100},
      Param{1e8, 1e4, 0.01, 100},
      Param{1e12, 1e4, 0.01, 100},
  };
}

std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
  const auto& p = info.param;
  std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
                                  absl::SixDigits(p.stddev));
  return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}

INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
                         ::testing::ValuesIn(GenParams()), ParamName);

// NOTE: absl::gaussian_distribution is not guaranteed to be stable.
TEST(GaussianDistributionTest, StabilityTest) {
  // absl::gaussian_distribution stability relies on the underlying zignor
  // data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and
  // std::abs.
  absl::random_internal::sequence_urbg urbg(
      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});

  std::vector<int> output(11);

  {
    absl::gaussian_distribution<double> dist;
    std::generate(std::begin(output), std::end(output),
                  [&] { return static_cast<int>(10000000.0 * dist(urbg)); });

    EXPECT_EQ(13, urbg.invocations());
    EXPECT_THAT(output,  //
                testing::ElementsAre(1494, 25518841, 9991550, 1351856,
                                     -20373238, 3456682, 333530, -6804981,
                                     -15279580, -16459654, 1494));
  }

  urbg.reset();
  {
    absl::gaussian_distribution<float> dist;
    std::generate(std::begin(output), std::end(output),
                  [&] { return static_cast<int>(1000000.0f * dist(urbg)); });

    EXPECT_EQ(13, urbg.invocations());
    EXPECT_THAT(
        output,  //
        testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
                             33353, -680498, -1527958, -1645965, 149));
  }
}

// This is an implementation-specific test. If any part of the implementation
// changes, then it is likely that this test will change as well.
// Also, if dependencies of the distribution change, such as RandU64ToDouble,
// then this is also likely to change.
TEST(GaussianDistributionTest, AlgorithmBounds) {
  absl::gaussian_distribution<double> dist;

  // In ~95% of cases, a single value is used to generate the output.
  // for all inputs where |x| < 0.750461021389 this should be the case.
  //
  // The exact constraints are based on the ziggurat tables, and any
  // changes to the ziggurat tables may require adjusting these bounds.
  //
  // for i in range(0, len(X)-1):
  //   print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375)
  //
  // 0.125 <= |values| <= 0.75
  const uint64_t kValues[] = {
      0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
      0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
      // negative values
      0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
      0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};

  // 0.875 <= |values| <= 0.984375
  const uint64_t kExtraValues[] = {
      0x7000000000000100ull, 0x7800000000000100ull,  //
      0x7c00000000000100ull, 0x7e00000000000100ull,  //
      // negative values
      0xf000000000000100ull, 0xf800000000000100ull,  //
      0xfc00000000000100ull, 0xfe00000000000100ull};

  auto make_box = [](uint64_t v, uint64_t box) {
    return (v & 0xffffffffffffff80ull) | box;
  };

  // The box is the lower 7 bits of the value. When the box == 0, then
  // the algorithm uses an escape hatch to select the result for large
  // outputs.
  for (uint64_t box = 0; box < 0x7f; box++) {
    for (const uint64_t v : kValues) {
      // Extra values are added to the sequence to attempt to avoid
      // infinite loops from rejection sampling on bugs/errors.
      absl::random_internal::sequence_urbg urbg(
          {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});

      auto a = dist(urbg);
      EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
      if (v & 0x8000000000000000ull) {
        EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
      } else {
        EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
      }
    }
    if (box > 10 && box < 100) {
      // The center boxes use the fast algorithm for more
      // than 98.4375% of values.
      for (const uint64_t v : kExtraValues) {
        absl::random_internal::sequence_urbg urbg(
            {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});

        auto a = dist(urbg);
        EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
        if (v & 0x8000000000000000ull) {
          EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
        } else {
          EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
        }
      }
    }
  }

  // When the box == 0, the fallback algorithm uses a ratio of uniforms,
  // which consumes 2 additional values from the urbg.
  // Fallback also requires that the initial value be > 0.9271586026096681.
  auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };

  double tail[2];
  {
    // 0.9375
    absl::random_internal::sequence_urbg urbg(
        {make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
         0x00000076f6f7f755ull});
    tail[0] = dist(urbg);
    EXPECT_EQ(3, urbg.invocations());
    EXPECT_GT(tail[0], 0);
  }
  {
    // -0.9375
    absl::random_internal::sequence_urbg urbg(
        {make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
         0x00000076f6f7f755ull});
    tail[1] = dist(urbg);
    EXPECT_EQ(3, urbg.invocations());
    EXPECT_LT(tail[1], 0);
  }
  EXPECT_EQ(tail[0], -tail[1]);
  EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));

  // When the box != 0, the fallback algorithm computes a wedge function.
  // Depending on the box, the threshold for varies as high as
  // 0.991522480228.
  {
    // 0.9921875, 0.875
    absl::random_internal::sequence_urbg urbg(
        {make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
         0x13CCA830EB61BD96ull});
    tail[0] = dist(urbg);
    EXPECT_EQ(2, urbg.invocations());
    EXPECT_GT(tail[0], 0);
  }
  {
    // -0.9921875, 0.875
    absl::random_internal::sequence_urbg urbg(
        {make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
         0x13CCA830EB61BD96ull});
    tail[1] = dist(urbg);
    EXPECT_EQ(2, urbg.invocations());
    EXPECT_LT(tail[1], 0);
  }
  EXPECT_EQ(tail[0], -tail[1]);
  EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));

  // Fallback rejected, try again.
  {
    // -0.9921875, 0.0625
    absl::random_internal::sequence_urbg urbg(
        {make_box(0xff00000000000000ull, 120), 0x1000000000000001,
         make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
    dist(urbg);
    EXPECT_EQ(3, urbg.invocations());
  }
}

}  // namespace