summaryrefslogtreecommitdiff
path: root/absl/meta/type_traits.h
blob: 231e08db78b0a41d56f40a02fd81019e5bee1341 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// type_traits.h
// -----------------------------------------------------------------------------
//
// This file contains C++11-compatible versions of standard <type_traits> API
// functions for determining the characteristics of types. Such traits can
// support type inference, classification, and transformation, as well as
// make it easier to write templates based on generic type behavior.
//
// See http://en.cppreference.com/w/cpp/header/type_traits
//
// WARNING: use of many of the constructs in this header will count as "complex
// template metaprogramming", so before proceeding, please carefully consider
// https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
//
// WARNING: using template metaprogramming to detect or depend on API
// features is brittle and not guaranteed. Neither the standard library nor
// Abseil provides any guarantee that APIs are stable in the face of template
// metaprogramming. Use with caution.
#ifndef ABSL_META_TYPE_TRAITS_H_
#define ABSL_META_TYPE_TRAITS_H_

#include <stddef.h>
#include <functional>
#include <type_traits>

#include "absl/base/config.h"

namespace absl {
inline namespace lts_2018_12_18 {

namespace type_traits_internal {

template <typename... Ts>
struct VoidTImpl {
  using type = void;
};

// This trick to retrieve a default alignment is necessary for our
// implementation of aligned_storage_t to be consistent with any implementation
// of std::aligned_storage.
template <size_t Len, typename T = std::aligned_storage<Len>>
struct default_alignment_of_aligned_storage;

template <size_t Len, size_t Align>
struct default_alignment_of_aligned_storage<Len,
                                            std::aligned_storage<Len, Align>> {
  static constexpr size_t value = Align;
};

////////////////////////////////
// Library Fundamentals V2 TS //
////////////////////////////////

// NOTE: The `is_detected` family of templates here differ from the library
// fundamentals specification in that for library fundamentals, `Op<Args...>` is
// evaluated as soon as the type `is_detected<Op, Args...>` undergoes
// substitution, regardless of whether or not the `::value` is accessed. That
// is inconsistent with all other standard traits and prevents lazy evaluation
// in larger contexts (such as if the `is_detected` check is a trailing argument
// of a `conjunction`. This implementation opts to instead be lazy in the same
// way that the standard traits are (this "defect" of the detection idiom
// specifications has been reported).

template <class Enabler, template <class...> class Op, class... Args>
struct is_detected_impl {
  using type = std::false_type;
};

template <template <class...> class Op, class... Args>
struct is_detected_impl<typename VoidTImpl<Op<Args...>>::type, Op, Args...> {
  using type = std::true_type;
};

template <template <class...> class Op, class... Args>
struct is_detected : is_detected_impl<void, Op, Args...>::type {};

template <class Enabler, class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl {
  using type = std::false_type;
};

template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible_impl<
    typename std::enable_if<std::is_convertible<Op<Args...>, To>::value>::type,
    To, Op, Args...> {
  using type = std::true_type;
};

template <class To, template <class...> class Op, class... Args>
struct is_detected_convertible
    : is_detected_convertible_impl<void, To, Op, Args...>::type {};

template <typename T>
using IsCopyAssignableImpl =
    decltype(std::declval<T&>() = std::declval<const T&>());

template <typename T>
using IsMoveAssignableImpl = decltype(std::declval<T&>() = std::declval<T&&>());

}  // namespace type_traits_internal

template <typename T>
struct is_copy_assignable : type_traits_internal::is_detected<
                                type_traits_internal::IsCopyAssignableImpl, T> {
};

template <typename T>
struct is_move_assignable : type_traits_internal::is_detected<
                                type_traits_internal::IsMoveAssignableImpl, T> {
};

// void_t()
//
// Ignores the type of any its arguments and returns `void`. In general, this
// metafunction allows you to create a general case that maps to `void` while
// allowing specializations that map to specific types.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::void_t` metafunction.
//
// NOTE: `absl::void_t` does not use the standard-specified implementation so
// that it can remain compatible with gcc < 5.1. This can introduce slightly
// different behavior, such as when ordering partial specializations.
template <typename... Ts>
using void_t = typename type_traits_internal::VoidTImpl<Ts...>::type;

// conjunction
//
// Performs a compile-time logical AND operation on the passed types (which
// must have  `::value` members convertible to `bool`. Short-circuits if it
// encounters any `false` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::conjunction` metafunction.
template <typename... Ts>
struct conjunction;

template <typename T, typename... Ts>
struct conjunction<T, Ts...>
    : std::conditional<T::value, conjunction<Ts...>, T>::type {};

template <typename T>
struct conjunction<T> : T {};

template <>
struct conjunction<> : std::true_type {};

// disjunction
//
// Performs a compile-time logical OR operation on the passed types (which
// must have  `::value` members convertible to `bool`. Short-circuits if it
// encounters any `true` members (and does not compare the `::value` members
// of any remaining arguments).
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::disjunction` metafunction.
template <typename... Ts>
struct disjunction;

template <typename T, typename... Ts>
struct disjunction<T, Ts...> :
      std::conditional<T::value, T, disjunction<Ts...>>::type {};

template <typename T>
struct disjunction<T> : T {};

template <>
struct disjunction<> : std::false_type {};

// negation
//
// Performs a compile-time logical NOT operation on the passed type (which
// must have  `::value` members convertible to `bool`.
//
// This metafunction is designed to be a drop-in replacement for the C++17
// `std::negation` metafunction.
template <typename T>
struct negation : std::integral_constant<bool, !T::value> {};

// is_trivially_destructible()
//
// Determines whether the passed type `T` is trivially destructable.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_trivially_destructible()` metafunction for platforms that have
// incomplete C++11 support (such as libstdc++ 4.x). On any platforms that do
// fully support C++11, we check whether this yields the same result as the std
// implementation.
//
// NOTE: the extensions (__has_trivial_xxx) are implemented in gcc (version >=
// 4.3) and clang. Since we are supporting libstdc++ > 4.7, they should always
// be present. These  extensions are documented at
// https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html#Type-Traits.
template <typename T>
struct is_trivially_destructible
    : std::integral_constant<bool, __has_trivial_destructor(T) &&
                                   std::is_destructible<T>::value> {
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE
 private:
  static constexpr bool compliant = std::is_trivially_destructible<T>::value ==
                                    is_trivially_destructible::value;
  static_assert(compliant || std::is_trivially_destructible<T>::value,
                "Not compliant with std::is_trivially_destructible; "
                "Standard: false, Implementation: true");
  static_assert(compliant || !std::is_trivially_destructible<T>::value,
                "Not compliant with std::is_trivially_destructible; "
                "Standard: true, Implementation: false");
#endif  // ABSL_HAVE_STD_IS_TRIVIALLY_DESTRUCTIBLE
};

// is_trivially_default_constructible()
//
// Determines whether the passed type `T` is trivially default constructible.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_trivially_default_constructible()` metafunction for platforms that
// have incomplete C++11 support (such as libstdc++ 4.x). On any platforms that
// do fully support C++11, we check whether this yields the same result as the
// std implementation.
//
// NOTE: according to the C++ standard, Section: 20.15.4.3 [meta.unary.prop]
// "The predicate condition for a template specialization is_constructible<T,
// Args...> shall be satisfied if and only if the following variable
// definition would be well-formed for some invented variable t:
//
// T t(declval<Args>()...);
//
// is_trivially_constructible<T, Args...> additionally requires that the
// variable definition does not call any operation that is not trivial.
// For the purposes of this check, the call to std::declval is considered
// trivial."
//
// Notes from http://en.cppreference.com/w/cpp/types/is_constructible:
// In many implementations, is_nothrow_constructible also checks if the
// destructor throws because it is effectively noexcept(T(arg)). Same
// applies to is_trivially_constructible, which, in these implementations, also
// requires that the destructor is trivial.
// GCC bug 51452: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51452
// LWG issue 2116: http://cplusplus.github.io/LWG/lwg-active.html#2116.
//
// "T obj();" need to be well-formed and not call any nontrivial operation.
// Nontrivially destructible types will cause the expression to be nontrivial.
template <typename T>
struct is_trivially_default_constructible
    : std::integral_constant<bool, __has_trivial_constructor(T) &&
                                   std::is_default_constructible<T>::value &&
                                   is_trivially_destructible<T>::value> {
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE
 private:
  static constexpr bool compliant =
      std::is_trivially_default_constructible<T>::value ==
      is_trivially_default_constructible::value;
  static_assert(compliant || std::is_trivially_default_constructible<T>::value,
                "Not compliant with std::is_trivially_default_constructible; "
                "Standard: false, Implementation: true");
  static_assert(compliant || !std::is_trivially_default_constructible<T>::value,
                "Not compliant with std::is_trivially_default_constructible; "
                "Standard: true, Implementation: false");
#endif  // ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE
};

// is_trivially_copy_constructible()
//
// Determines whether the passed type `T` is trivially copy constructible.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_trivially_copy_constructible()` metafunction for platforms that have
// incomplete C++11 support (such as libstdc++ 4.x). On any platforms that do
// fully support C++11, we check whether this yields the same result as the std
// implementation.
//
// NOTE: `T obj(declval<const T&>());` needs to be well-formed and not call any
// nontrivial operation.  Nontrivially destructible types will cause the
// expression to be nontrivial.
template <typename T>
struct is_trivially_copy_constructible
    : std::integral_constant<bool, __has_trivial_copy(T) &&
                                   std::is_copy_constructible<T>::value &&
                                   is_trivially_destructible<T>::value> {
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE
 private:
  static constexpr bool compliant =
      std::is_trivially_copy_constructible<T>::value ==
      is_trivially_copy_constructible::value;
  static_assert(compliant || std::is_trivially_copy_constructible<T>::value,
                "Not compliant with std::is_trivially_copy_constructible; "
                "Standard: false, Implementation: true");
  static_assert(compliant || !std::is_trivially_copy_constructible<T>::value,
                "Not compliant with std::is_trivially_copy_constructible; "
                "Standard: true, Implementation: false");
#endif  // ABSL_HAVE_STD_IS_TRIVIALLY_CONSTRUCTIBLE
};

// is_trivially_copy_assignable()
//
// Determines whether the passed type `T` is trivially copy assignable.
//
// This metafunction is designed to be a drop-in replacement for the C++11
// `std::is_trivially_copy_assignable()` metafunction for platforms that have
// incomplete C++11 support (such as libstdc++ 4.x). On any platforms that do
// fully support C++11, we check whether this yields the same result as the std
// implementation.
//
// NOTE: `is_assignable<T, U>::value` is `true` if the expression
// `declval<T>() = declval<U>()` is well-formed when treated as an unevaluated
// operand. `is_trivially_assignable<T, U>` requires the assignment to call no
// operation that is not trivial. `is_trivially_copy_assignable<T>` is simply
// `is_trivially_assignable<T&, const T&>`.
template <typename T>
struct is_trivially_copy_assignable
    : std::integral_constant<
          bool, __has_trivial_assign(typename std::remove_reference<T>::type) &&
                    absl::is_copy_assignable<T>::value> {
#ifdef ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE
 private:
  static constexpr bool compliant =
      std::is_trivially_copy_assignable<T>::value ==
      is_trivially_copy_assignable::value;
  static_assert(compliant || std::is_trivially_copy_assignable<T>::value,
                "Not compliant with std::is_trivially_copy_assignable; "
                "Standard: false, Implementation: true");
  static_assert(compliant || !std::is_trivially_copy_assignable<T>::value,
                "Not compliant with std::is_trivially_copy_assignable; "
                "Standard: true, Implementation: false");
#endif  // ABSL_HAVE_STD_IS_TRIVIALLY_ASSIGNABLE
};

// -----------------------------------------------------------------------------
// C++14 "_t" trait aliases
// -----------------------------------------------------------------------------

template <typename T>
using remove_cv_t = typename std::remove_cv<T>::type;

template <typename T>
using remove_const_t = typename std::remove_const<T>::type;

template <typename T>
using remove_volatile_t = typename std::remove_volatile<T>::type;

template <typename T>
using add_cv_t = typename std::add_cv<T>::type;

template <typename T>
using add_const_t = typename std::add_const<T>::type;

template <typename T>
using add_volatile_t = typename std::add_volatile<T>::type;

template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;

template <typename T>
using add_lvalue_reference_t = typename std::add_lvalue_reference<T>::type;

template <typename T>
using add_rvalue_reference_t = typename std::add_rvalue_reference<T>::type;

template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;

template <typename T>
using add_pointer_t = typename std::add_pointer<T>::type;

template <typename T>
using make_signed_t = typename std::make_signed<T>::type;

template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;

template <typename T>
using remove_extent_t = typename std::remove_extent<T>::type;

template <typename T>
using remove_all_extents_t = typename std::remove_all_extents<T>::type;

template <size_t Len, size_t Align = type_traits_internal::
                          default_alignment_of_aligned_storage<Len>::value>
using aligned_storage_t = typename std::aligned_storage<Len, Align>::type;

template <typename T>
using decay_t = typename std::decay<T>::type;

template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;

template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;

template <typename... T>
using common_type_t = typename std::common_type<T...>::type;

template <typename T>
using underlying_type_t = typename std::underlying_type<T>::type;

template <typename T>
using result_of_t = typename std::result_of<T>::type;

namespace type_traits_internal {
template <typename Key, typename = size_t>
struct IsHashable : std::false_type {};

template <typename Key>
struct IsHashable<Key,
                  decltype(std::declval<std::hash<Key>>()(std::declval<Key>()))>
    : std::true_type {};

template <typename Key>
struct IsHashEnabled
    : absl::conjunction<std::is_default_constructible<std::hash<Key>>,
                        std::is_copy_constructible<std::hash<Key>>,
                        std::is_destructible<std::hash<Key>>,
                        absl::is_copy_assignable<std::hash<Key>>,
                        IsHashable<Key>> {};

}  // namespace type_traits_internal

}  // inline namespace lts_2018_12_18
}  // namespace absl

#endif  // ABSL_META_TYPE_TRAITS_H_