summaryrefslogtreecommitdiff
path: root/absl/container/internal/raw_hash_set.cc
blob: 1cae03819d601e3a1387425918f9b8a078cd3a10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/container/internal/raw_hash_set.h"

#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>

#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/endian.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/hash/hash.h"

namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {

// Represents a control byte corresponding to a full slot with arbitrary hash.
constexpr ctrl_t ZeroCtrlT() { return static_cast<ctrl_t>(0); }

// We have space for `growth_info` before a single block of control bytes. A
// single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find(). In order to ensure
// that the control bytes are aligned to 16, we have 16 bytes before the control
// bytes even though growth_info only needs 8.
alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[32] = {
    ZeroCtrlT(),       ZeroCtrlT(),    ZeroCtrlT(),    ZeroCtrlT(),
    ZeroCtrlT(),       ZeroCtrlT(),    ZeroCtrlT(),    ZeroCtrlT(),
    ZeroCtrlT(),       ZeroCtrlT(),    ZeroCtrlT(),    ZeroCtrlT(),
    ZeroCtrlT(),       ZeroCtrlT(),    ZeroCtrlT(),    ZeroCtrlT(),
    ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};

// We need one full byte followed by a sentinel byte for iterator::operator++ to
// work. We have a full group after kSentinel to be safe (in case operator++ is
// changed to read a full group).
ABSL_CONST_INIT ABSL_DLL const ctrl_t kSooControl[17] = {
    ZeroCtrlT(),    ctrl_t::kSentinel, ZeroCtrlT(),    ctrl_t::kEmpty,
    ctrl_t::kEmpty, ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty, ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty, ctrl_t::kEmpty,    ctrl_t::kEmpty, ctrl_t::kEmpty,
    ctrl_t::kEmpty};
static_assert(NumControlBytes(SooCapacity()) <= 17,
              "kSooControl capacity too small");

#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t Group::kWidth;
#endif

namespace {

// Returns "random" seed.
inline size_t RandomSeed() {
#ifdef ABSL_HAVE_THREAD_LOCAL
  static thread_local size_t counter = 0;
  // On Linux kernels >= 5.4 the MSAN runtime has a false-positive when
  // accessing thread local storage data from loaded libraries
  // (https://github.com/google/sanitizers/issues/1265), for this reason counter
  // needs to be annotated as initialized.
  ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&counter, sizeof(size_t));
  size_t value = ++counter;
#else   // ABSL_HAVE_THREAD_LOCAL
  static std::atomic<size_t> counter(0);
  size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif  // ABSL_HAVE_THREAD_LOCAL
  return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}

bool ShouldRehashForBugDetection(const ctrl_t* ctrl, size_t capacity) {
  // Note: we can't use the abseil-random library because abseil-random
  // depends on swisstable. We want to return true with probability
  // `min(1, RehashProbabilityConstant() / capacity())`. In order to do this,
  // we probe based on a random hash and see if the offset is less than
  // RehashProbabilityConstant().
  return probe(ctrl, capacity, absl::HashOf(RandomSeed())).offset() <
         RehashProbabilityConstant();
}

}  // namespace

GenerationType* EmptyGeneration() {
  if (SwisstableGenerationsEnabled()) {
    constexpr size_t kNumEmptyGenerations = 1024;
    static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{};
    return const_cast<GenerationType*>(
        &kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]);
  }
  return nullptr;
}

bool CommonFieldsGenerationInfoEnabled::
    should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
                                              size_t capacity) const {
  if (reserved_growth_ == kReservedGrowthJustRanOut) return true;
  if (reserved_growth_ > 0) return false;
  return ShouldRehashForBugDetection(ctrl, capacity);
}

bool CommonFieldsGenerationInfoEnabled::should_rehash_for_bug_detection_on_move(
    const ctrl_t* ctrl, size_t capacity) const {
  return ShouldRehashForBugDetection(ctrl, capacity);
}

bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash,
                                   const ctrl_t* ctrl) {
  // To avoid problems with weak hashes and single bit tests, we use % 13.
  // TODO(kfm,sbenza): revisit after we do unconditional mixing
  return !is_small(capacity) && (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
}

size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size,
                             CommonFields& common) {
  assert(common.capacity() == NextCapacity(SooCapacity()));
  // After resize from capacity 1 to 3, we always have exactly the slot with
  // index 1 occupied, so we need to insert either at index 0 or index 2.
  assert(HashSetResizeHelper::SooSlotIndex() == 1);
  PrepareInsertCommon(common);
  const size_t offset = H1(hash, common.control()) & 2;
  common.growth_info().OverwriteEmptyAsFull();
  SetCtrlInSingleGroupTable(common, offset, H2(hash), slot_size);
  common.infoz().RecordInsert(hash, /*distance_from_desired=*/0);
  return offset;
}

void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) {
  assert(ctrl[capacity] == ctrl_t::kSentinel);
  assert(IsValidCapacity(capacity));
  for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) {
    Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
  }
  // Copy the cloned ctrl bytes.
  std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes());
  ctrl[capacity] = ctrl_t::kSentinel;
}
// Extern template instantiation for inline function.
template FindInfo find_first_non_full(const CommonFields&, size_t);

FindInfo find_first_non_full_outofline(const CommonFields& common,
                                       size_t hash) {
  return find_first_non_full(common, hash);
}

namespace {

// Returns the address of the slot just after slot assuming each slot has the
// specified size.
static inline void* NextSlot(void* slot, size_t slot_size) {
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) + slot_size);
}

// Returns the address of the slot just before slot assuming each slot has the
// specified size.
static inline void* PrevSlot(void* slot, size_t slot_size) {
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) - slot_size);
}

// Finds guaranteed to exists empty slot from the given position.
// NOTE: this function is almost never triggered inside of the
// DropDeletesWithoutResize, so we keep it simple.
// The table is rather sparse, so empty slot will be found very quickly.
size_t FindEmptySlot(size_t start, size_t end, const ctrl_t* ctrl) {
  for (size_t i = start; i < end; ++i) {
    if (IsEmpty(ctrl[i])) {
      return i;
    }
  }
  assert(false && "no empty slot");
  return ~size_t{};
}

void DropDeletesWithoutResize(CommonFields& common,
                              const PolicyFunctions& policy) {
  void* set = &common;
  void* slot_array = common.slot_array();
  const size_t capacity = common.capacity();
  assert(IsValidCapacity(capacity));
  assert(!is_small(capacity));
  // Algorithm:
  // - mark all DELETED slots as EMPTY
  // - mark all FULL slots as DELETED
  // - for each slot marked as DELETED
  //     hash = Hash(element)
  //     target = find_first_non_full(hash)
  //     if target is in the same group
  //       mark slot as FULL
  //     else if target is EMPTY
  //       transfer element to target
  //       mark slot as EMPTY
  //       mark target as FULL
  //     else if target is DELETED
  //       swap current element with target element
  //       mark target as FULL
  //       repeat procedure for current slot with moved from element (target)
  ctrl_t* ctrl = common.control();
  ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity);
  const void* hash_fn = policy.hash_fn(common);
  auto hasher = policy.hash_slot;
  auto transfer = policy.transfer;
  const size_t slot_size = policy.slot_size;

  size_t total_probe_length = 0;
  void* slot_ptr = SlotAddress(slot_array, 0, slot_size);

  // The index of an empty slot that can be used as temporary memory for
  // the swap operation.
  constexpr size_t kUnknownId = ~size_t{};
  size_t tmp_space_id = kUnknownId;

  for (size_t i = 0; i != capacity;
       ++i, slot_ptr = NextSlot(slot_ptr, slot_size)) {
    assert(slot_ptr == SlotAddress(slot_array, i, slot_size));
    if (IsEmpty(ctrl[i])) {
      tmp_space_id = i;
      continue;
    }
    if (!IsDeleted(ctrl[i])) continue;
    const size_t hash = (*hasher)(hash_fn, slot_ptr);
    const FindInfo target = find_first_non_full(common, hash);
    const size_t new_i = target.offset;
    total_probe_length += target.probe_length;

    // Verify if the old and new i fall within the same group wrt the hash.
    // If they do, we don't need to move the object as it falls already in the
    // best probe we can.
    const size_t probe_offset = probe(common, hash).offset();
    const auto probe_index = [probe_offset, capacity](size_t pos) {
      return ((pos - probe_offset) & capacity) / Group::kWidth;
    };

    // Element doesn't move.
    if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
      SetCtrl(common, i, H2(hash), slot_size);
      continue;
    }

    void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size);
    if (IsEmpty(ctrl[new_i])) {
      // Transfer element to the empty spot.
      // SetCtrl poisons/unpoisons the slots so we have to call it at the
      // right time.
      SetCtrl(common, new_i, H2(hash), slot_size);
      (*transfer)(set, new_slot_ptr, slot_ptr);
      SetCtrl(common, i, ctrl_t::kEmpty, slot_size);
      // Initialize or change empty space id.
      tmp_space_id = i;
    } else {
      assert(IsDeleted(ctrl[new_i]));
      SetCtrl(common, new_i, H2(hash), slot_size);
      // Until we are done rehashing, DELETED marks previously FULL slots.

      if (tmp_space_id == kUnknownId) {
        tmp_space_id = FindEmptySlot(i + 1, capacity, ctrl);
      }
      void* tmp_space = SlotAddress(slot_array, tmp_space_id, slot_size);
      SanitizerUnpoisonMemoryRegion(tmp_space, slot_size);

      // Swap i and new_i elements.
      (*transfer)(set, tmp_space, new_slot_ptr);
      (*transfer)(set, new_slot_ptr, slot_ptr);
      (*transfer)(set, slot_ptr, tmp_space);

      SanitizerPoisonMemoryRegion(tmp_space, slot_size);

      // repeat the processing of the ith slot
      --i;
      slot_ptr = PrevSlot(slot_ptr, slot_size);
    }
  }
  ResetGrowthLeft(common);
  common.infoz().RecordRehash(total_probe_length);
}

static bool WasNeverFull(CommonFields& c, size_t index) {
  if (is_single_group(c.capacity())) {
    return true;
  }
  const size_t index_before = (index - Group::kWidth) & c.capacity();
  const auto empty_after = Group(c.control() + index).MaskEmpty();
  const auto empty_before = Group(c.control() + index_before).MaskEmpty();

  // We count how many consecutive non empties we have to the right and to the
  // left of `it`. If the sum is >= kWidth then there is at least one probe
  // window that might have seen a full group.
  return empty_before && empty_after &&
         static_cast<size_t>(empty_after.TrailingZeros()) +
                 empty_before.LeadingZeros() <
             Group::kWidth;
}

}  // namespace

void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size) {
  assert(IsFull(c.control()[index]) && "erasing a dangling iterator");
  c.decrement_size();
  c.infoz().RecordErase();

  if (WasNeverFull(c, index)) {
    SetCtrl(c, index, ctrl_t::kEmpty, slot_size);
    c.growth_info().OverwriteFullAsEmpty();
    return;
  }

  c.growth_info().OverwriteFullAsDeleted();
  SetCtrl(c, index, ctrl_t::kDeleted, slot_size);
}

void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
                       bool reuse, bool soo_enabled) {
  c.set_size(0);
  if (reuse) {
    assert(!soo_enabled || c.capacity() > SooCapacity());
    ResetCtrl(c, policy.slot_size);
    ResetGrowthLeft(c);
    c.infoz().RecordStorageChanged(0, c.capacity());
  } else {
    // We need to record infoz before calling dealloc, which will unregister
    // infoz.
    c.infoz().RecordClearedReservation();
    c.infoz().RecordStorageChanged(0, soo_enabled ? SooCapacity() : 0);
    (*policy.dealloc)(c, policy);
    c = soo_enabled ? CommonFields{soo_tag_t{}} : CommonFields{};
  }
}

void HashSetResizeHelper::GrowIntoSingleGroupShuffleControlBytes(
    ctrl_t* __restrict new_ctrl, size_t new_capacity) const {
  assert(is_single_group(new_capacity));
  constexpr size_t kHalfWidth = Group::kWidth / 2;
  constexpr size_t kQuarterWidth = Group::kWidth / 4;
  assert(old_capacity_ < kHalfWidth);
  static_assert(sizeof(uint64_t) >= kHalfWidth,
                "Group size is too large. The ctrl bytes for half a group must "
                "fit into a uint64_t for this implementation.");
  static_assert(sizeof(uint64_t) <= Group::kWidth,
                "Group size is too small. The ctrl bytes for a group must "
                "cover a uint64_t for this implementation.");

  const size_t half_old_capacity = old_capacity_ / 2;

  // NOTE: operations are done with compile time known size = kHalfWidth.
  // Compiler optimizes that into single ASM operation.

  // Load the bytes from half_old_capacity + 1. This contains the last half of
  // old_ctrl bytes, followed by the sentinel byte, and then the first half of
  // the cloned bytes. This effectively shuffles the control bytes.
  uint64_t copied_bytes = 0;
  copied_bytes =
      absl::little_endian::Load64(old_ctrl() + half_old_capacity + 1);

  // We change the sentinel byte to kEmpty before storing to both the start of
  // the new_ctrl, and past the end of the new_ctrl later for the new cloned
  // bytes. Note that this is faster than setting the sentinel byte to kEmpty
  // after the copy directly in new_ctrl because we are limited on store
  // bandwidth.
  constexpr uint64_t kEmptyXorSentinel =
      static_cast<uint8_t>(ctrl_t::kEmpty) ^
      static_cast<uint8_t>(ctrl_t::kSentinel);
  const uint64_t mask_convert_old_sentinel_to_empty =
      kEmptyXorSentinel << (half_old_capacity * 8);
  copied_bytes ^= mask_convert_old_sentinel_to_empty;

  // Copy second half of bytes to the beginning. This correctly sets the bytes
  // [0, old_capacity]. We potentially copy more bytes in order to have compile
  // time known size. Mirrored bytes from the old_ctrl() will also be copied. In
  // case of old_capacity_ == 3, we will copy 1st element twice.
  // Examples:
  // (old capacity = 1)
  // old_ctrl = 0S0EEEEEEE...
  // new_ctrl = E0EEEEEE??...
  //
  // (old capacity = 3)
  // old_ctrl = 012S012EEEEE...
  // new_ctrl = 12E012EE????...
  //
  // (old capacity = 7)
  // old_ctrl = 0123456S0123456EE...
  // new_ctrl = 456E0123?????????...
  absl::little_endian::Store64(new_ctrl, copied_bytes);

  // Set the space [old_capacity + 1, new_capacity] to empty as these bytes will
  // not be written again. This is safe because
  // NumControlBytes = new_capacity + kWidth and new_capacity >=
  // old_capacity+1.
  // Examples:
  // (old_capacity = 3, new_capacity = 15)
  // new_ctrl  = 12E012EE?????????????...??
  // *new_ctrl = 12E0EEEEEEEEEEEEEEEE?...??
  // position        /          S
  //
  // (old_capacity = 7, new_capacity = 15)
  // new_ctrl  = 456E0123?????????????????...??
  // *new_ctrl = 456E0123EEEEEEEEEEEEEEEE?...??
  // position            /      S
  std::memset(new_ctrl + old_capacity_ + 1, static_cast<int8_t>(ctrl_t::kEmpty),
              Group::kWidth);

  // Set the last kHalfWidth bytes to empty, to ensure the bytes all the way to
  // the end are initialized.
  // Examples:
  // new_ctrl  = 12E0EEEEEEEEEEEEEEEE?...???????
  // *new_ctrl = 12E0EEEEEEEEEEEEEEEE???EEEEEEEE
  // position                   S       /
  //
  // new_ctrl  = 456E0123EEEEEEEEEEEEEEEE???????
  // *new_ctrl = 456E0123EEEEEEEEEEEEEEEEEEEEEEE
  // position                   S       /
  std::memset(new_ctrl + NumControlBytes(new_capacity) - kHalfWidth,
              static_cast<int8_t>(ctrl_t::kEmpty), kHalfWidth);

  // Copy the first bytes to the end (starting at new_capacity +1) to set the
  // cloned bytes. Note that we use the already copied bytes from old_ctrl here
  // rather than copying from new_ctrl to avoid a Read-after-Write hazard, since
  // new_ctrl was just written to. The first old_capacity-1 bytes are set
  // correctly. Then there may be up to old_capacity bytes that need to be
  // overwritten, and any remaining bytes will be correctly set to empty. This
  // sets [new_capacity + 1, new_capacity +1 + old_capacity] correctly.
  // Examples:
  // new_ctrl  = 12E0EEEEEEEEEEEEEEEE?...???????
  // *new_ctrl = 12E0EEEEEEEEEEEE12E012EEEEEEEEE
  // position                   S/
  //
  // new_ctrl  = 456E0123EEEEEEEE?...???EEEEEEEE
  // *new_ctrl = 456E0123EEEEEEEE456E0123EEEEEEE
  // position                   S/
  absl::little_endian::Store64(new_ctrl + new_capacity + 1, copied_bytes);

  // Set The remaining bytes at the end past the cloned bytes to empty. The
  // incorrectly set bytes are [new_capacity + old_capacity + 2,
  // min(new_capacity + 1 + kHalfWidth, new_capacity + old_capacity + 2 +
  // half_old_capacity)]. Taking the difference, we need to set min(kHalfWidth -
  // (old_capacity + 1), half_old_capacity)]. Since old_capacity < kHalfWidth,
  // half_old_capacity < kQuarterWidth, so we set kQuarterWidth beginning at
  // new_capacity + old_capacity + 2 to kEmpty.
  // Examples:
  // new_ctrl  = 12E0EEEEEEEEEEEE12E012EEEEEEEEE
  // *new_ctrl = 12E0EEEEEEEEEEEE12E0EEEEEEEEEEE
  // position                   S    /
  //
  // new_ctrl  = 456E0123EEEEEEEE456E0123EEEEEEE
  // *new_ctrl = 456E0123EEEEEEEE456E0123EEEEEEE (no change)
  // position                   S        /
  std::memset(new_ctrl + new_capacity + old_capacity_ + 2,
              static_cast<int8_t>(ctrl_t::kEmpty), kQuarterWidth);

  // Finally, we set the new sentinel byte.
  new_ctrl[new_capacity] = ctrl_t::kSentinel;
}

void HashSetResizeHelper::InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2,
                                                   size_t new_capacity) {
  assert(is_single_group(new_capacity));
  std::memset(new_ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
              NumControlBytes(new_capacity));
  assert(HashSetResizeHelper::SooSlotIndex() == 1);
  // This allows us to avoid branching on had_soo_slot_.
  assert(had_soo_slot_ || h2 == ctrl_t::kEmpty);
  new_ctrl[1] = new_ctrl[new_capacity + 2] = h2;
  new_ctrl[new_capacity] = ctrl_t::kSentinel;
}

void HashSetResizeHelper::GrowIntoSingleGroupShuffleTransferableSlots(
    void* new_slots, size_t slot_size) const {
  assert(old_capacity_ > 0);
  const size_t half_old_capacity = old_capacity_ / 2;

  SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_);
  std::memcpy(new_slots,
              SlotAddress(old_slots(), half_old_capacity + 1, slot_size),
              slot_size * half_old_capacity);
  std::memcpy(SlotAddress(new_slots, half_old_capacity + 1, slot_size),
              old_slots(), slot_size * (half_old_capacity + 1));
}

void HashSetResizeHelper::GrowSizeIntoSingleGroupTransferable(
    CommonFields& c, size_t slot_size) {
  assert(old_capacity_ < Group::kWidth / 2);
  assert(is_single_group(c.capacity()));
  assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity()));

  GrowIntoSingleGroupShuffleControlBytes(c.control(), c.capacity());
  GrowIntoSingleGroupShuffleTransferableSlots(c.slot_array(), slot_size);

  // We poison since GrowIntoSingleGroupShuffleTransferableSlots
  // may leave empty slots unpoisoned.
  PoisonSingleGroupEmptySlots(c, slot_size);
}

void HashSetResizeHelper::TransferSlotAfterSoo(CommonFields& c,
                                               size_t slot_size) {
  assert(was_soo_);
  assert(had_soo_slot_);
  assert(is_single_group(c.capacity()));
  std::memcpy(SlotAddress(c.slot_array(), SooSlotIndex(), slot_size),
              old_soo_data(), slot_size);
  PoisonSingleGroupEmptySlots(c, slot_size);
}

namespace {

// Called whenever the table needs to vacate empty slots either by removing
// tombstones via rehash or growth.
ABSL_ATTRIBUTE_NOINLINE
FindInfo FindInsertPositionWithGrowthOrRehash(CommonFields& common, size_t hash,
                                              const PolicyFunctions& policy) {
  const size_t cap = common.capacity();
  if (cap > Group::kWidth &&
      // Do these calculations in 64-bit to avoid overflow.
      common.size() * uint64_t{32} <= cap * uint64_t{25}) {
    // Squash DELETED without growing if there is enough capacity.
    //
    // Rehash in place if the current size is <= 25/32 of capacity.
    // Rationale for such a high factor: 1) DropDeletesWithoutResize() is
    // faster than resize, and 2) it takes quite a bit of work to add
    // tombstones.  In the worst case, seems to take approximately 4
    // insert/erase pairs to create a single tombstone and so if we are
    // rehashing because of tombstones, we can afford to rehash-in-place as
    // long as we are reclaiming at least 1/8 the capacity without doing more
    // than 2X the work.  (Where "work" is defined to be size() for rehashing
    // or rehashing in place, and 1 for an insert or erase.)  But rehashing in
    // place is faster per operation than inserting or even doubling the size
    // of the table, so we actually afford to reclaim even less space from a
    // resize-in-place.  The decision is to rehash in place if we can reclaim
    // at about 1/8th of the usable capacity (specifically 3/28 of the
    // capacity) which means that the total cost of rehashing will be a small
    // fraction of the total work.
    //
    // Here is output of an experiment using the BM_CacheInSteadyState
    // benchmark running the old case (where we rehash-in-place only if we can
    // reclaim at least 7/16*capacity) vs. this code (which rehashes in place
    // if we can recover 3/32*capacity).
    //
    // Note that although in the worst-case number of rehashes jumped up from
    // 15 to 190, but the number of operations per second is almost the same.
    //
    // Abridged output of running BM_CacheInSteadyState benchmark from
    // raw_hash_set_benchmark.   N is the number of insert/erase operations.
    //
    //      | OLD (recover >= 7/16        | NEW (recover >= 3/32)
    // size |    N/s LoadFactor NRehashes |    N/s LoadFactor NRehashes
    //  448 | 145284       0.44        18 | 140118       0.44        19
    //  493 | 152546       0.24        11 | 151417       0.48        28
    //  538 | 151439       0.26        11 | 151152       0.53        38
    //  583 | 151765       0.28        11 | 150572       0.57        50
    //  628 | 150241       0.31        11 | 150853       0.61        66
    //  672 | 149602       0.33        12 | 150110       0.66        90
    //  717 | 149998       0.35        12 | 149531       0.70       129
    //  762 | 149836       0.37        13 | 148559       0.74       190
    //  807 | 149736       0.39        14 | 151107       0.39        14
    //  852 | 150204       0.42        15 | 151019       0.42        15
    DropDeletesWithoutResize(common, policy);
  } else {
    // Otherwise grow the container.
    policy.resize(common, NextCapacity(cap), HashtablezInfoHandle{});
  }
  // This function is typically called with tables containing deleted slots.
  // The table will be big and `FindFirstNonFullAfterResize` will always
  // fallback to `find_first_non_full`. So using `find_first_non_full` directly.
  return find_first_non_full(common, hash);
}

}  // namespace

const void* GetHashRefForEmptyHasher(const CommonFields& common) {
  // Empty base optimization typically make the empty base class address to be
  // the same as the first address of the derived class object.
  // But we generally assume that for empty hasher we can return any valid
  // pointer.
  return &common;
}

size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target,
                           const PolicyFunctions& policy) {
  // When there are no deleted slots in the table
  // and growth_left is positive, we can insert at the first
  // empty slot in the probe sequence (target).
  const bool use_target_hint =
      // Optimization is disabled when generations are enabled.
      // We have to rehash even sparse tables randomly in such mode.
      !SwisstableGenerationsEnabled() &&
      common.growth_info().HasNoDeletedAndGrowthLeft();
  if (ABSL_PREDICT_FALSE(!use_target_hint)) {
    // Notes about optimized mode when generations are disabled:
    // We do not enter this branch if table has no deleted slots
    // and growth_left is positive.
    // We enter this branch in the following cases listed in decreasing
    // frequency:
    // 1. Table without deleted slots (>95% cases) that needs to be resized.
    // 2. Table with deleted slots that has space for the inserting element.
    // 3. Table with deleted slots that needs to be rehashed or resized.
    if (ABSL_PREDICT_TRUE(common.growth_info().HasNoGrowthLeftAndNoDeleted())) {
      const size_t old_capacity = common.capacity();
      policy.resize(common, NextCapacity(old_capacity), HashtablezInfoHandle{});
      target = HashSetResizeHelper::FindFirstNonFullAfterResize(
          common, old_capacity, hash);
    } else {
      // Note: the table may have no deleted slots here when generations
      // are enabled.
      const bool rehash_for_bug_detection =
          common.should_rehash_for_bug_detection_on_insert();
      if (rehash_for_bug_detection) {
        // Move to a different heap allocation in order to detect bugs.
        const size_t cap = common.capacity();
        policy.resize(common,
                      common.growth_left() > 0 ? cap : NextCapacity(cap),
                      HashtablezInfoHandle{});
      }
      if (ABSL_PREDICT_TRUE(common.growth_left() > 0)) {
        target = find_first_non_full(common, hash);
      } else {
        target = FindInsertPositionWithGrowthOrRehash(common, hash, policy);
      }
    }
  }
  PrepareInsertCommon(common);
  common.growth_info().OverwriteControlAsFull(common.control()[target.offset]);
  SetCtrl(common, target.offset, H2(hash), policy.slot_size);
  common.infoz().RecordInsert(hash, target.probe_length);
  return target.offset;
}

}  // namespace container_internal
ABSL_NAMESPACE_END
}  // namespace absl