summaryrefslogtreecommitdiff
path: root/absl/strings
diff options
context:
space:
mode:
Diffstat (limited to 'absl/strings')
-rw-r--r--absl/strings/numbers.cc440
-rw-r--r--absl/strings/numbers.h163
-rw-r--r--absl/strings/numbers_test.cc7
-rw-r--r--absl/strings/str_cat.cc146
-rw-r--r--absl/strings/str_cat.h149
-rw-r--r--absl/strings/str_cat_test.cc46
6 files changed, 196 insertions, 755 deletions
diff --git a/absl/strings/numbers.cc b/absl/strings/numbers.cc
index 882c3a8b..b57d9e82 100644
--- a/absl/strings/numbers.cc
+++ b/absl/strings/numbers.cc
@@ -20,9 +20,7 @@
#include <algorithm>
#include <cassert>
#include <cfloat> // for DBL_DIG and FLT_DIG
-#include <climits>
#include <cmath> // for HUGE_VAL
-#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
@@ -30,7 +28,6 @@
#include <iterator>
#include <limits>
#include <system_error> // NOLINT(build/c++11)
-#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
@@ -159,71 +156,28 @@ constexpr uint32_t kTwoZeroBytes = 0x0101 * '0';
constexpr uint64_t kFourZeroBytes = 0x01010101 * '0';
constexpr uint64_t kEightZeroBytes = 0x0101010101010101ull * '0';
-template <typename T>
-constexpr T Pow(T base, uint32_t n) {
- // Exponentiation by squaring
- return static_cast<T>((n > 1 ? Pow(base * base, n >> 1) : static_cast<T>(1)) *
- ((n & 1) ? base : static_cast<T>(1)));
-}
-
-// Given n, calculates C where the following holds for all 0 <= x < Pow(100, n):
-// x / Pow(10, n) == x * C / Pow(2, n * 10)
-// In other words, it allows us to divide by a power of 10 via a single
-// multiplication and bit shifts, assuming the input will be smaller than the
-// square of that power of 10.
-template <typename T>
-constexpr T ComputePowerOf100DivisionCoefficient(uint32_t n) {
- if (n > 4) {
- // This doesn't work for large powers of 100, due to overflow
- abort();
- }
- T denom = 16 - 1;
- T num = (denom + 1) - 10;
- T gcd = 3; // Greatest common divisor of numerator and denominator
- denom = Pow(denom / gcd, n);
- num = Pow(num / gcd, 9 * n);
- T quotient = num / denom;
- if (num % denom >= denom / 2) {
- // Round up, since the remainder is more than half the denominator
- ++quotient;
- }
- return quotient;
-}
-
-// * kDivisionBy10Mul / kDivisionBy10Div is a division by 10 for values from 0
-// to 99. It's also a division of a structure [k takes 2 bytes][m takes 2
-// bytes], then * kDivisionBy10Mul / kDivisionBy10Div will be [k / 10][m / 10].
-// It allows parallel division.
-constexpr uint64_t kDivisionBy10Mul =
- ComputePowerOf100DivisionCoefficient<uint64_t>(1);
-static_assert(kDivisionBy10Mul == 103,
- "division coefficient for 10 is incorrect");
+// * 103 / 1024 is a division by 10 for values from 0 to 99. It's also a
+// division of a structure [k takes 2 bytes][m takes 2 bytes], then * 103 / 1024
+// will be [k / 10][m / 10]. It allows parallel division.
+constexpr uint64_t kDivisionBy10Mul = 103u;
constexpr uint64_t kDivisionBy10Div = 1 << 10;
-// * kDivisionBy100Mul / kDivisionBy100Div is a division by 100 for values from
-// 0 to 9999.
-constexpr uint64_t kDivisionBy100Mul =
- ComputePowerOf100DivisionCoefficient<uint64_t>(2);
-static_assert(kDivisionBy100Mul == 10486,
- "division coefficient for 100 is incorrect");
+// * 10486 / 1048576 is a division by 100 for values from 0 to 9999.
+constexpr uint64_t kDivisionBy100Mul = 10486u;
constexpr uint64_t kDivisionBy100Div = 1 << 20;
-static_assert(ComputePowerOf100DivisionCoefficient<uint64_t>(3) == 1073742,
- "division coefficient for 1000 is incorrect");
-
-// Same as `PrepareEightDigits`, but produces 2 digits for integers < 100.
-inline uint32_t PrepareTwoDigitsImpl(uint32_t i, bool reversed) {
- assert(i < 100);
- uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div;
- uint32_t mod10 = i - 10u * div10;
- return (div10 << (reversed ? 8 : 0)) + (mod10 << (reversed ? 0 : 8));
-}
-inline uint32_t PrepareTwoDigits(uint32_t i) {
- return PrepareTwoDigitsImpl(i, false);
+// Encode functions write the ASCII output of input `n` to `out_str`.
+inline char* EncodeHundred(uint32_t n, absl::Nonnull<char*> out_str) {
+ int num_digits = static_cast<int>(n - 10) >> 8;
+ uint32_t div10 = (n * kDivisionBy10Mul) / kDivisionBy10Div;
+ uint32_t mod10 = n - 10u * div10;
+ uint32_t base = kTwoZeroBytes + div10 + (mod10 << 8);
+ base >>= num_digits & 8;
+ little_endian::Store16(out_str, static_cast<uint16_t>(base));
+ return out_str + 2 + num_digits;
}
-// Same as `PrepareEightDigits`, but produces 4 digits for integers < 10000.
-inline uint32_t PrepareFourDigitsImpl(uint32_t n, bool reversed) {
+inline char* EncodeTenThousand(uint32_t n, absl::Nonnull<char*> out_str) {
// We split lower 2 digits and upper 2 digits of n into 2 byte consecutive
// blocks. 123 -> [\0\1][\0\23]. We divide by 10 both blocks
// (it's 1 division + zeroing upper bits), and compute modulo 10 as well "in
@@ -231,19 +185,22 @@ inline uint32_t PrepareFourDigitsImpl(uint32_t n, bool reversed) {
// strip trailing zeros, add ASCII '0000' and return.
uint32_t div100 = (n * kDivisionBy100Mul) / kDivisionBy100Div;
uint32_t mod100 = n - 100ull * div100;
- uint32_t hundreds =
- (mod100 << (reversed ? 0 : 16)) + (div100 << (reversed ? 16 : 0));
+ uint32_t hundreds = (mod100 << 16) + div100;
uint32_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 16) | 0xFull;
- tens = (tens << (reversed ? 8 : 0)) +
- static_cast<uint32_t>((hundreds - 10ull * tens) << (reversed ? 0 : 8));
- return tens;
-}
-inline uint32_t PrepareFourDigits(uint32_t n) {
- return PrepareFourDigitsImpl(n, false);
-}
-inline uint32_t PrepareFourDigitsReversed(uint32_t n) {
- return PrepareFourDigitsImpl(n, true);
+ tens += (hundreds - 10ull * tens) << 8;
+ ABSL_ASSUME(tens != 0);
+ // The result can contain trailing zero bits, we need to strip them to a first
+ // significant byte in a final representation. For example, for n = 123, we
+ // have tens to have representation \0\1\2\3. We do `& -8` to round
+ // to a multiple to 8 to strip zero bytes, not all zero bits.
+ // countr_zero to help.
+ // 0 minus 8 to make MSVC happy.
+ uint32_t zeroes = static_cast<uint32_t>(absl::countr_zero(tens)) & (0 - 8u);
+ tens += kFourZeroBytes;
+ tens >>= zeroes;
+ little_endian::Store32(out_str, tens);
+ return out_str + sizeof(tens) - zeroes / 8;
}
// Helper function to produce an ASCII representation of `i`.
@@ -259,309 +216,126 @@ inline uint32_t PrepareFourDigitsReversed(uint32_t n) {
// // Note two leading zeros:
// EXPECT_EQ(absl::string_view(ascii, 8), "00102030");
//
-// If `Reversed` is set to true, the result becomes reversed to "03020100".
-//
// Pre-condition: `i` must be less than 100000000.
-inline uint64_t PrepareEightDigitsImpl(uint32_t i, bool reversed) {
+inline uint64_t PrepareEightDigits(uint32_t i) {
ABSL_ASSUME(i < 10000'0000);
// Prepare 2 blocks of 4 digits "in parallel".
uint32_t hi = i / 10000;
uint32_t lo = i % 10000;
- uint64_t merged = (uint64_t{hi} << (reversed ? 32 : 0)) |
- (uint64_t{lo} << (reversed ? 0 : 32));
+ uint64_t merged = hi | (uint64_t{lo} << 32);
uint64_t div100 = ((merged * kDivisionBy100Mul) / kDivisionBy100Div) &
((0x7Full << 32) | 0x7Full);
uint64_t mod100 = merged - 100ull * div100;
- uint64_t hundreds =
- (mod100 << (reversed ? 0 : 16)) + (div100 << (reversed ? 16 : 0));
+ uint64_t hundreds = (mod100 << 16) + div100;
uint64_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 48) | (0xFull << 32) | (0xFull << 16) | 0xFull;
- tens = (tens << (reversed ? 8 : 0)) +
- ((hundreds - 10ull * tens) << (reversed ? 0 : 8));
+ tens += (hundreds - 10ull * tens) << 8;
return tens;
}
-inline uint64_t PrepareEightDigits(uint32_t i) {
- return PrepareEightDigitsImpl(i, false);
-}
-inline uint64_t PrepareEightDigitsReversed(uint32_t i) {
- return PrepareEightDigitsImpl(i, true);
-}
-template <typename T, typename BackwardIt>
-class FastUIntToStringConverter {
- static_assert(
- std::is_same<T, decltype(+std::declval<T>())>::value,
- "to avoid code bloat, only instantiate this for int and larger types");
- static_assert(std::is_unsigned<T>::value,
- "this class is only for unsigned types");
-
- public:
- // Outputs the given number backward (like with std::copy_backward),
- // starting from the end of the string.
- // The number of digits in the number must have been already measured and
- // passed *exactly*, otherwise the behavior is undefined.
- // (This is an optimization, as calculating the number of digits again would
- // slow down the hot path.)
- // Returns an iterator to the start of the suffix that was appended.
- static BackwardIt FastIntToBufferBackward(T v, BackwardIt end) {
- // THIS IS A HOT FUNCTION with a very deliberate structure to exploit branch
- // prediction and shorten the critical path for smaller numbers.
- // Do not move around the if/else blocks or attempt to simplify it
- // without benchmarking any changes.
-
- if (v < 10) {
- goto AT_LEAST_1 /* NOTE: mandatory for the 0 case */;
- }
- if (v < 1000) {
- goto AT_LEAST_10;
- }
- if (v < 10000000) {
- goto AT_LEAST_1000;
- }
-
- if (v >= 100000000 / 10) {
- if (v >= 10000000000000000 / 10) {
- DoFastIntToBufferBackward<8>(v, end);
- }
- DoFastIntToBufferBackward<8>(v, end);
- }
-
- if (v >= 10000 / 10) {
- AT_LEAST_1000:
- DoFastIntToBufferBackward<4>(v, end);
- }
-
- if (v >= 100 / 10) {
- AT_LEAST_10:
- DoFastIntToBufferBackward<2>(v, end);
- }
-
- if (v >= 10 / 10) {
- AT_LEAST_1:
- end = DoFastIntToBufferBackward(v, end, std::integral_constant<int, 1>());
- }
- return end;
+inline ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<char*> EncodeFullU32(
+ uint32_t n, absl::Nonnull<char*> out_str) {
+ if (n < 10) {
+ *out_str = static_cast<char>('0' + n);
+ return out_str + 1;
}
-
- private:
- // Only assume pointers are contiguous for now. String and vector iterators
- // could be special-cased as well, but there's no need for them here.
- // With C++20 we can probably switch to std::contiguous_iterator_tag.
- static constexpr bool kIsContiguousIterator =
- std::is_pointer<BackwardIt>::value;
-
- template <int Exponent>
- static void DoFastIntToBufferBackward(T& v, BackwardIt& end) {
- constexpr T kModulus = Pow<T>(10, Exponent);
- T remainder = static_cast<T>(v % kModulus);
- v = static_cast<T>(v / kModulus);
- end = DoFastIntToBufferBackward(remainder, end,
- std::integral_constant<int, Exponent>());
- }
-
- static BackwardIt DoFastIntToBufferBackward(const T&, BackwardIt end,
- std::integral_constant<int, 0>) {
- return end;
- }
-
- static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end,
- std::integral_constant<int, 1>) {
- *--end = static_cast<char>('0' + v);
- return DoFastIntToBufferBackward(v, end, std::integral_constant<int, 0>());
- }
-
- static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end,
- std::integral_constant<int, 4>) {
- if (kIsContiguousIterator) {
- const uint32_t digits =
- PrepareFourDigits(static_cast<uint32_t>(v)) + kFourZeroBytes;
- end -= sizeof(digits);
- little_endian::Store32(&*end, digits);
- } else {
- uint32_t digits =
- PrepareFourDigitsReversed(static_cast<uint32_t>(v)) + kFourZeroBytes;
- for (size_t i = 0; i < sizeof(digits); ++i) {
- *--end = static_cast<char>(digits);
- digits >>= CHAR_BIT;
- }
- }
- return end;
+ if (n < 100'000'000) {
+ uint64_t bottom = PrepareEightDigits(n);
+ ABSL_ASSUME(bottom != 0);
+ // 0 minus 8 to make MSVC happy.
+ uint32_t zeroes =
+ static_cast<uint32_t>(absl::countr_zero(bottom)) & (0 - 8u);
+ little_endian::Store64(out_str, (bottom + kEightZeroBytes) >> zeroes);
+ return out_str + sizeof(bottom) - zeroes / 8;
}
-
- static BackwardIt DoFastIntToBufferBackward(T v, BackwardIt end,
- std::integral_constant<int, 8>) {
- if (kIsContiguousIterator) {
- const uint64_t digits =
- PrepareEightDigits(static_cast<uint32_t>(v)) + kEightZeroBytes;
- end -= sizeof(digits);
- little_endian::Store64(&*end, digits);
- } else {
- uint64_t digits = PrepareEightDigitsReversed(static_cast<uint32_t>(v)) +
- kEightZeroBytes;
- for (size_t i = 0; i < sizeof(digits); ++i) {
- *--end = static_cast<char>(digits);
- digits >>= CHAR_BIT;
- }
- }
- return end;
- }
-
- template <int Digits>
- static BackwardIt DoFastIntToBufferBackward(
- T v, BackwardIt end, std::integral_constant<int, Digits>) {
- constexpr int kLogModulus = Digits - Digits / 2;
- constexpr T kModulus = Pow(static_cast<T>(10), kLogModulus);
- bool is_safe_to_use_division_trick = Digits <= 8;
- T quotient, remainder;
- if (is_safe_to_use_division_trick) {
- constexpr uint64_t kCoefficient =
- ComputePowerOf100DivisionCoefficient<uint64_t>(kLogModulus);
- quotient = (v * kCoefficient) >> (10 * kLogModulus);
- remainder = v - quotient * kModulus;
- } else {
- quotient = v / kModulus;
- remainder = v % kModulus;
- }
- end = DoFastIntToBufferBackward(remainder, end,
- std::integral_constant<int, kLogModulus>());
- return DoFastIntToBufferBackward(
- quotient, end, std::integral_constant<int, Digits - kLogModulus>());
- }
-};
-
-// Returns an iterator to the start of the suffix that was appended
-template <typename T, typename BackwardIt>
-std::enable_if_t<std::is_unsigned<T>::value, BackwardIt>
-DoFastIntToBufferBackward(T v, BackwardIt end, uint32_t digits) {
- using PromotedT = std::decay_t<decltype(+v)>;
- using Converter = FastUIntToStringConverter<PromotedT, BackwardIt>;
- (void)digits;
- return Converter().FastIntToBufferBackward(v, end);
+ uint32_t div08 = n / 100'000'000;
+ uint32_t mod08 = n % 100'000'000;
+ uint64_t bottom = PrepareEightDigits(mod08) + kEightZeroBytes;
+ out_str = EncodeHundred(div08, out_str);
+ little_endian::Store64(out_str, bottom);
+ return out_str + sizeof(bottom);
}
-template <typename T, typename BackwardIt>
-std::enable_if_t<std::is_signed<T>::value, BackwardIt>
-DoFastIntToBufferBackward(T v, BackwardIt end, uint32_t digits) {
- if (absl::numbers_internal::IsNegative(v)) {
- // Store the minus sign *before* we produce the number itself, not after.
- // This gets us a tail call.
- end[-static_cast<ptrdiff_t>(digits) - 1] = '-';
+inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* EncodeFullU64(uint64_t i,
+ char* buffer) {
+ if (i <= std::numeric_limits<uint32_t>::max()) {
+ return EncodeFullU32(static_cast<uint32_t>(i), buffer);
}
- return DoFastIntToBufferBackward(
- absl::numbers_internal::UnsignedAbsoluteValue(v), end, digits);
-}
-
-template <class T>
-std::enable_if_t<std::is_integral<T>::value, int>
-GetNumDigitsOrNegativeIfNegativeImpl(T v) {
- const auto /* either bool or std::false_type */ is_negative =
- absl::numbers_internal::IsNegative(v);
- const int digits = static_cast<int>(absl::numbers_internal::Base10Digits(
- absl::numbers_internal::UnsignedAbsoluteValue(v)));
- return is_negative ? ~digits : digits;
+ uint32_t mod08;
+ if (i < 1'0000'0000'0000'0000ull) {
+ uint32_t div08 = static_cast<uint32_t>(i / 100'000'000ull);
+ mod08 = static_cast<uint32_t>(i % 100'000'000ull);
+ buffer = EncodeFullU32(div08, buffer);
+ } else {
+ uint64_t div08 = i / 100'000'000ull;
+ mod08 = static_cast<uint32_t>(i % 100'000'000ull);
+ uint32_t div016 = static_cast<uint32_t>(div08 / 100'000'000ull);
+ uint32_t div08mod08 = static_cast<uint32_t>(div08 % 100'000'000ull);
+ uint64_t mid_result = PrepareEightDigits(div08mod08) + kEightZeroBytes;
+ buffer = EncodeTenThousand(div016, buffer);
+ little_endian::Store64(buffer, mid_result);
+ buffer += sizeof(mid_result);
+ }
+ uint64_t mod_result = PrepareEightDigits(mod08) + kEightZeroBytes;
+ little_endian::Store64(buffer, mod_result);
+ return buffer + sizeof(mod_result);
}
} // namespace
void numbers_internal::PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf) {
- little_endian::Store16(
- buf, static_cast<uint16_t>(PrepareTwoDigits(i) + kTwoZeroBytes));
+ assert(i < 100);
+ uint32_t base = kTwoZeroBytes;
+ uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div;
+ uint32_t mod10 = i - 10u * div10;
+ base += div10 + (mod10 << 8);
+ little_endian::Store16(buf, static_cast<uint16_t>(base));
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
- uint32_t i, absl::Nonnull<char*> buffer) {
- const uint32_t digits = absl::numbers_internal::Base10Digits(i);
- buffer += digits;
- *buffer = '\0'; // We're going backward, so store this first
- FastIntToBufferBackward(i, buffer, digits);
- return buffer;
+ uint32_t n, absl::Nonnull<char*> out_str) {
+ out_str = EncodeFullU32(n, out_str);
+ *out_str = '\0';
+ return out_str;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
int32_t i, absl::Nonnull<char*> buffer) {
- buffer += static_cast<int>(i < 0);
- uint32_t digits = absl::numbers_internal::Base10Digits(
- absl::numbers_internal::UnsignedAbsoluteValue(i));
- buffer += digits;
- *buffer = '\0'; // We're going backward, so store this first
- FastIntToBufferBackward(i, buffer, digits);
+ uint32_t u = static_cast<uint32_t>(i);
+ if (i < 0) {
+ *buffer++ = '-';
+ // We need to do the negation in modular (i.e., "unsigned")
+ // arithmetic; MSVC++ apparently warns for plain "-u", so
+ // we write the equivalent expression "0 - u" instead.
+ u = 0 - u;
+ }
+ buffer = EncodeFullU32(u, buffer);
+ *buffer = '\0';
return buffer;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
uint64_t i, absl::Nonnull<char*> buffer) {
- uint32_t digits = absl::numbers_internal::Base10Digits(i);
- buffer += digits;
- *buffer = '\0'; // We're going backward, so store this first
- FastIntToBufferBackward(i, buffer, digits);
+ buffer = EncodeFullU64(i, buffer);
+ *buffer = '\0';
return buffer;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
int64_t i, absl::Nonnull<char*> buffer) {
- buffer += static_cast<int>(i < 0);
- uint32_t digits = absl::numbers_internal::Base10Digits(
- absl::numbers_internal::UnsignedAbsoluteValue(i));
- buffer += digits;
- *buffer = '\0'; // We're going backward, so store this first
- FastIntToBufferBackward(i, buffer, digits);
+ uint64_t u = static_cast<uint64_t>(i);
+ if (i < 0) {
+ *buffer++ = '-';
+ // We need to do the negation in modular (i.e., "unsigned")
+ // arithmetic; MSVC++ apparently warns for plain "-u", so
+ // we write the equivalent expression "0 - u" instead.
+ u = 0 - u;
+ }
+ buffer = EncodeFullU64(u, buffer);
+ *buffer = '\0';
return buffer;
}
-absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward(
- uint32_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) {
- return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count);
-}
-
-absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward(
- int32_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) {
- return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count);
-}
-
-absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward(
- uint64_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) {
- return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count);
-}
-
-absl::Nonnull<char*> numbers_internal::FastIntToBufferBackward(
- int64_t i, absl::Nonnull<char*> buffer_end, uint32_t exact_digit_count) {
- return DoFastIntToBufferBackward(i, buffer_end, exact_digit_count);
-}
-
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(signed char v) {
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(unsigned char v) {
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(short v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(
- unsigned short v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(int v) {
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(unsigned int v) {
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(long v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(
- unsigned long v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(long long v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-int numbers_internal::GetNumDigitsOrNegativeIfNegative(
- unsigned long long v) { // NOLINT
- return GetNumDigitsOrNegativeIfNegativeImpl(v);
-}
-
// Given a 128-bit number expressed as a pair of uint64_t, high half first,
// return that number multiplied by the given 32-bit value. If the result is
// too large to fit in a 128-bit number, divide it by 2 until it fits.
diff --git a/absl/strings/numbers.h b/absl/strings/numbers.h
index ad4e66b6..739dbb28 100644
--- a/absl/strings/numbers.h
+++ b/absl/strings/numbers.h
@@ -32,7 +32,6 @@
#endif
#include <cstddef>
-#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
@@ -40,12 +39,10 @@
#include <string>
#include <type_traits>
-#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
-#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
@@ -161,96 +158,6 @@ bool safe_strtou128_base(absl::string_view text,
static const int kFastToBufferSize = 32;
static const int kSixDigitsToBufferSize = 16;
-template <class T>
-std::enable_if_t<!std::is_unsigned<T>::value, bool> IsNegative(const T& v) {
- return v < T();
-}
-
-template <class T>
-std::enable_if_t<std::is_unsigned<T>::value, std::false_type> IsNegative(
- const T&) {
- // The integer is unsigned, so return a compile-time constant.
- // This can help the optimizer avoid having to prove bool to be false later.
- return std::false_type();
-}
-
-template <class T>
-std::enable_if_t<std::is_unsigned<std::decay_t<T>>::value, T&&>
-UnsignedAbsoluteValue(T&& v ABSL_ATTRIBUTE_LIFETIME_BOUND) {
- // The value is unsigned; just return the original.
- return std::forward<T>(v);
-}
-
-template <class T>
-ABSL_ATTRIBUTE_CONST_FUNCTION
- std::enable_if_t<!std::is_unsigned<T>::value, std::make_unsigned_t<T>>
- UnsignedAbsoluteValue(T v) {
- using U = std::make_unsigned_t<T>;
- return IsNegative(v) ? U() - static_cast<U>(v) : static_cast<U>(v);
-}
-
-// Returns the number of base-10 digits in the given number.
-// Note that this strictly counts digits. It does not count the sign.
-// The `initial_digits` parameter is the starting point, which is normally equal
-// to 1 because the number of digits in 0 is 1 (a special case).
-// However, callers may e.g. wish to change it to 2 to account for the sign.
-template <typename T>
-std::enable_if_t<std::is_unsigned<T>::value, uint32_t> Base10Digits(
- T v, const uint32_t initial_digits = 1) {
- uint32_t r = initial_digits;
- // If code size becomes an issue, the 'if' stage can be removed for a minor
- // performance loss.
- for (;;) {
- if (ABSL_PREDICT_TRUE(v < 10 * 10)) {
- r += (v >= 10);
- break;
- }
- if (ABSL_PREDICT_TRUE(v < 1000 * 10)) {
- r += (v >= 1000) + 2;
- break;
- }
- if (ABSL_PREDICT_TRUE(v < 100000 * 10)) {
- r += (v >= 100000) + 4;
- break;
- }
- r += 6;
- v = static_cast<T>(v / 1000000);
- }
- return r;
-}
-
-template <typename T>
-std::enable_if_t<std::is_signed<T>::value, uint32_t> Base10Digits(
- T v, uint32_t r = 1) {
- // Branchlessly add 1 to account for a minus sign.
- r += static_cast<uint32_t>(IsNegative(v));
- return Base10Digits(UnsignedAbsoluteValue(v), r);
-}
-
-// These functions return the number of base-10 digits, but multiplied by -1 if
-// the input itself is negative. This is handy and efficient for later usage,
-// since the bitwise complement of the result becomes equal to the number of
-// characters required.
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- signed char v);
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- unsigned char v);
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- short v); // NOLINT
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- unsigned short v); // NOLINT
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(int v);
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- unsigned int v);
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- long v); // NOLINT
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- unsigned long v); // NOLINT
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- long long v); // NOLINT
-ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
- unsigned long long v); // NOLINT
-
// Helper function for fast formatting of floating-point values.
// The result is the same as printf's "%g", a.k.a. "%.6g"; that is, six
// significant digits are returned, trailing zeros are removed, and numbers
@@ -259,18 +166,24 @@ ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
// Required buffer size is `kSixDigitsToBufferSize`.
size_t SixDigitsToBuffer(double d, absl::Nonnull<char*> buffer);
-// All of these functions take an output buffer
+// WARNING: These functions may write more characters than necessary, because
+// they are intended for speed. All functions take an output buffer
// as an argument and return a pointer to the last byte they wrote, which is the
// terminating '\0'. At most `kFastToBufferSize` bytes are written.
-absl::Nonnull<char*> FastIntToBuffer(int32_t i, absl::Nonnull<char*> buffer);
-absl::Nonnull<char*> FastIntToBuffer(uint32_t i, absl::Nonnull<char*> buffer);
-absl::Nonnull<char*> FastIntToBuffer(int64_t i, absl::Nonnull<char*> buffer);
-absl::Nonnull<char*> FastIntToBuffer(uint64_t i, absl::Nonnull<char*> buffer);
+absl::Nonnull<char*> FastIntToBuffer(int32_t i, absl::Nonnull<char*> buffer)
+ ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
+absl::Nonnull<char*> FastIntToBuffer(uint32_t n, absl::Nonnull<char*> out_str)
+ ABSL_INTERNAL_NEED_MIN_SIZE(out_str, kFastToBufferSize);
+absl::Nonnull<char*> FastIntToBuffer(int64_t i, absl::Nonnull<char*> buffer)
+ ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
+absl::Nonnull<char*> FastIntToBuffer(uint64_t i, absl::Nonnull<char*> buffer)
+ ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
// For enums and integer types that are not an exact match for the types above,
// use templates to call the appropriate one of the four overloads above.
template <typename int_type>
-absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer) {
+absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer)
+ ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize) {
static_assert(sizeof(i) <= 64 / 8,
"FastIntToBuffer works only with 64-bit-or-less integers.");
// TODO(jorg): This signed-ness check is used because it works correctly
@@ -294,58 +207,6 @@ absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer) {
}
}
-// These functions do NOT add any null-terminator.
-// They return a pointer to the beginning of the written string.
-// The digit counts provided must *exactly* match the number of base-10 digits
-// in the number, or the behavior is undefined.
-// (i.e. do NOT count the minus sign, or over- or under-count the digits.)
-absl::Nonnull<char*> FastIntToBufferBackward(int32_t i,
- absl::Nonnull<char*> buffer_end,
- uint32_t exact_digit_count);
-absl::Nonnull<char*> FastIntToBufferBackward(uint32_t i,
- absl::Nonnull<char*> buffer_end,
- uint32_t exact_digit_count);
-absl::Nonnull<char*> FastIntToBufferBackward(int64_t i,
- absl::Nonnull<char*> buffer_end,
- uint32_t exact_digit_count);
-absl::Nonnull<char*> FastIntToBufferBackward(uint64_t i,
- absl::Nonnull<char*> buffer_end,
- uint32_t exact_digit_count);
-
-// For enums and integer types that are not an exact match for the types above,
-// use templates to call the appropriate one of the four overloads above.
-template <typename int_type>
-absl::Nonnull<char*> FastIntToBufferBackward(int_type i,
- absl::Nonnull<char*> buffer_end,
- uint32_t exact_digit_count) {
- static_assert(
- sizeof(i) <= 64 / 8,
- "FastIntToBufferBackward works only with 64-bit-or-less integers.");
- // This signed-ness check is used because it works correctly
- // with enums, and it also serves to check that int_type is not a pointer.
- // If one day something like std::is_signed<enum E> works, switch to it.
- // These conditions are constexpr bools to suppress MSVC warning C4127.
- constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
- constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
- if (kIsSigned) {
- if (kUse64Bit) {
- return FastIntToBufferBackward(static_cast<int64_t>(i), buffer_end,
- exact_digit_count);
- } else {
- return FastIntToBufferBackward(static_cast<int32_t>(i), buffer_end,
- exact_digit_count);
- }
- } else {
- if (kUse64Bit) {
- return FastIntToBufferBackward(static_cast<uint64_t>(i), buffer_end,
- exact_digit_count);
- } else {
- return FastIntToBufferBackward(static_cast<uint32_t>(i), buffer_end,
- exact_digit_count);
- }
- }
-}
-
// Implementation of SimpleAtoi, generalized to support arbitrary base (used
// with base different from 10 elsewhere in Abseil implementation).
template <typename int_type>
diff --git a/absl/strings/numbers_test.cc b/absl/strings/numbers_test.cc
index 1ceff70f..75c2dcf2 100644
--- a/absl/strings/numbers_test.cc
+++ b/absl/strings/numbers_test.cc
@@ -231,15 +231,10 @@ TEST(Numbers, TestFastPrints) {
CheckInt32(INT_MIN);
CheckInt32(INT_MAX);
CheckInt64(LONG_MIN);
- CheckInt64(uint64_t{10000000});
- CheckInt64(uint64_t{100000000});
CheckInt64(uint64_t{1000000000});
CheckInt64(uint64_t{9999999999});
CheckInt64(uint64_t{100000000000000});
CheckInt64(uint64_t{999999999999999});
- CheckInt64(uint64_t{1000000000000000});
- CheckInt64(uint64_t{10000000000000000});
- CheckInt64(uint64_t{100000000000000000});
CheckInt64(uint64_t{1000000000000000000});
CheckInt64(uint64_t{1199999999999999999});
CheckInt64(int64_t{-700000000000000000});
@@ -251,8 +246,6 @@ TEST(Numbers, TestFastPrints) {
CheckUInt64(uint64_t{999999999999999});
CheckUInt64(uint64_t{1000000000000000000});
CheckUInt64(uint64_t{1199999999999999999});
- CheckUInt64(uint64_t{10000000000000000000u});
- CheckUInt64(uint64_t{10200300040000500006u});
CheckUInt64(std::numeric_limits<uint64_t>::max());
for (int i = 0; i < 10000; i++) {
diff --git a/absl/strings/str_cat.cc b/absl/strings/str_cat.cc
index b637b551..c51c1373 100644
--- a/absl/strings/str_cat.cc
+++ b/absl/strings/str_cat.cc
@@ -22,13 +22,11 @@
#include <initializer_list>
#include <limits>
#include <string>
-#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/nullability.h"
#include "absl/strings/internal/resize_uninitialized.h"
-#include "absl/strings/numbers.h"
#include "absl/strings/string_view.h"
namespace absl {
@@ -44,7 +42,8 @@ ABSL_NAMESPACE_BEGIN
namespace {
// Append is merely a version of memcpy that returns the address of the byte
// after the area just overwritten.
-absl::Nonnull<char*> Append(absl::Nonnull<char*> out, const AlphaNum& x) {
+inline absl::Nonnull<char*> Append(absl::Nonnull<char*> out,
+ const AlphaNum& x) {
// memcpy is allowed to overwrite arbitrary memory, so doing this after the
// call would force an extra fetch of x.size().
char* after = out + x.size();
@@ -54,6 +53,11 @@ absl::Nonnull<char*> Append(absl::Nonnull<char*> out, const AlphaNum& x) {
return after;
}
+inline void STLStringAppendUninitializedAmortized(std::string* dest,
+ size_t to_append) {
+ strings_internal::AppendUninitializedTraits<std::string>::Append(dest,
+ to_append);
+}
} // namespace
std::string StrCat(const AlphaNum& a, const AlphaNum& b) {
@@ -120,130 +124,6 @@ std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c,
namespace strings_internal {
// Do not call directly - these are not part of the public API.
-void STLStringAppendUninitializedAmortized(std::string* dest,
- size_t to_append) {
- strings_internal::AppendUninitializedTraits<std::string>::Append(dest,
- to_append);
-}
-
-template <typename Integer>
-std::enable_if_t<std::is_integral<Integer>::value, std::string> IntegerToString(
- Integer i) {
- std::string str;
- const auto /* either bool or std::false_type */ is_negative =
- absl::numbers_internal::IsNegative(i);
- const uint32_t digits = absl::numbers_internal::Base10Digits(
- absl::numbers_internal::UnsignedAbsoluteValue(i));
- absl::strings_internal::STLStringResizeUninitialized(
- &str, digits + static_cast<uint32_t>(is_negative));
- absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits);
- return str;
-}
-
-template <>
-std::string IntegerToString(long i) { // NOLINT
- if (sizeof(i) <= sizeof(int)) {
- return IntegerToString(static_cast<int>(i));
- } else {
- return IntegerToString(static_cast<long long>(i)); // NOLINT
- }
-}
-
-template <>
-std::string IntegerToString(unsigned long i) { // NOLINT
- if (sizeof(i) <= sizeof(unsigned int)) {
- return IntegerToString(static_cast<unsigned int>(i));
- } else {
- return IntegerToString(static_cast<unsigned long long>(i)); // NOLINT
- }
-}
-
-template <typename Float>
-std::enable_if_t<std::is_floating_point<Float>::value, std::string>
-FloatToString(Float f) {
- std::string result;
- strings_internal::STLStringResizeUninitialized(
- &result, numbers_internal::kSixDigitsToBufferSize);
- char* start = &result[0];
- result.erase(numbers_internal::SixDigitsToBuffer(f, start));
- return result;
-}
-
-std::string SingleArgStrCat(int x) { return IntegerToString(x); }
-std::string SingleArgStrCat(unsigned int x) { return IntegerToString(x); }
-// NOLINTNEXTLINE
-std::string SingleArgStrCat(long x) { return IntegerToString(x); }
-// NOLINTNEXTLINE
-std::string SingleArgStrCat(unsigned long x) { return IntegerToString(x); }
-// NOLINTNEXTLINE
-std::string SingleArgStrCat(long long x) { return IntegerToString(x); }
-// NOLINTNEXTLINE
-std::string SingleArgStrCat(unsigned long long x) { return IntegerToString(x); }
-std::string SingleArgStrCat(float x) { return FloatToString(x); }
-std::string SingleArgStrCat(double x) { return FloatToString(x); }
-
-template <class Integer>
-std::enable_if_t<std::is_integral<Integer>::value, void> AppendIntegerToString(
- std::string& str, Integer i) {
- const auto /* either bool or std::false_type */ is_negative =
- absl::numbers_internal::IsNegative(i);
- const uint32_t digits = absl::numbers_internal::Base10Digits(
- absl::numbers_internal::UnsignedAbsoluteValue(i));
- absl::strings_internal::STLStringAppendUninitializedAmortized(
- &str, digits + static_cast<uint32_t>(is_negative));
- absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits);
-}
-
-template <>
-void AppendIntegerToString(std::string& str, long i) { // NOLINT
- if (sizeof(i) <= sizeof(int)) {
- return AppendIntegerToString(str, static_cast<int>(i));
- } else {
- return AppendIntegerToString(str, static_cast<long long>(i)); // NOLINT
- }
-}
-
-template <>
-void AppendIntegerToString(std::string& str,
- unsigned long i) { // NOLINT
- if (sizeof(i) <= sizeof(unsigned int)) {
- return AppendIntegerToString(str, static_cast<unsigned int>(i));
- } else {
- return AppendIntegerToString(str,
- static_cast<unsigned long long>(i)); // NOLINT
- }
-}
-
-// `SingleArgStrAppend` overloads are defined here for the same reasons as with
-// `SingleArgStrCat` above.
-void SingleArgStrAppend(std::string& str, int x) {
- return AppendIntegerToString(str, x);
-}
-
-void SingleArgStrAppend(std::string& str, unsigned int x) {
- return AppendIntegerToString(str, x);
-}
-
-// NOLINTNEXTLINE
-void SingleArgStrAppend(std::string& str, long x) {
- return AppendIntegerToString(str, x);
-}
-
-// NOLINTNEXTLINE
-void SingleArgStrAppend(std::string& str, unsigned long x) {
- return AppendIntegerToString(str, x);
-}
-
-// NOLINTNEXTLINE
-void SingleArgStrAppend(std::string& str, long long x) {
- return AppendIntegerToString(str, x);
-}
-
-// NOLINTNEXTLINE
-void SingleArgStrAppend(std::string& str, unsigned long long x) {
- return AppendIntegerToString(str, x);
-}
-
std::string CatPieces(std::initializer_list<absl::string_view> pieces) {
std::string result;
// Use uint64_t to prevent size_t overflow. We assume it is not possible for
@@ -287,7 +167,7 @@ void AppendPieces(absl::Nonnull<std::string*> dest,
ASSERT_NO_OVERLAP(*dest, piece);
to_append += piece.size();
}
- strings_internal::STLStringAppendUninitializedAmortized(dest, to_append);
+ STLStringAppendUninitializedAmortized(dest, to_append);
char* const begin = &(*dest)[0];
char* out = begin + old_size;
@@ -306,7 +186,7 @@ void AppendPieces(absl::Nonnull<std::string*> dest,
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a) {
ASSERT_NO_OVERLAP(*dest, a);
std::string::size_type old_size = dest->size();
- strings_internal::STLStringAppendUninitializedAmortized(dest, a.size());
+ STLStringAppendUninitializedAmortized(dest, a.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
@@ -318,8 +198,7 @@ void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
std::string::size_type old_size = dest->size();
- strings_internal::STLStringAppendUninitializedAmortized(dest,
- a.size() + b.size());
+ STLStringAppendUninitializedAmortized(dest, a.size() + b.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
@@ -333,8 +212,7 @@ void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
ASSERT_NO_OVERLAP(*dest, b);
ASSERT_NO_OVERLAP(*dest, c);
std::string::size_type old_size = dest->size();
- strings_internal::STLStringAppendUninitializedAmortized(
- dest, a.size() + b.size() + c.size());
+ STLStringAppendUninitializedAmortized(dest, a.size() + b.size() + c.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
@@ -350,7 +228,7 @@ void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
ASSERT_NO_OVERLAP(*dest, c);
ASSERT_NO_OVERLAP(*dest, d);
std::string::size_type old_size = dest->size();
- strings_internal::STLStringAppendUninitializedAmortized(
+ STLStringAppendUninitializedAmortized(
dest, a.size() + b.size() + c.size() + d.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
diff --git a/absl/strings/str_cat.h b/absl/strings/str_cat.h
index 33355bfd..b98adc02 100644
--- a/absl/strings/str_cat.h
+++ b/absl/strings/str_cat.h
@@ -94,6 +94,7 @@
#include <cstdint>
#include <cstring>
#include <initializer_list>
+#include <limits>
#include <string>
#include <type_traits>
#include <utility>
@@ -453,36 +454,77 @@ std::string CatPieces(std::initializer_list<absl::string_view> pieces);
void AppendPieces(absl::Nonnull<std::string*> dest,
std::initializer_list<absl::string_view> pieces);
-void STLStringAppendUninitializedAmortized(std::string* dest, size_t to_append);
+template <typename Integer>
+std::string IntegerToString(Integer i) {
+ // Any integer (signed/unsigned) up to 64 bits can be formatted into a buffer
+ // with 22 bytes (including NULL at the end).
+ constexpr size_t kMaxDigits10 = 22;
+ std::string result;
+ strings_internal::STLStringResizeUninitialized(&result, kMaxDigits10);
+ char* start = &result[0];
+ // note: this can be optimized to not write last zero.
+ char* end = numbers_internal::FastIntToBuffer(i, start);
+ auto size = static_cast<size_t>(end - start);
+ assert((size < result.size()) &&
+ "StrCat(Integer) does not fit into kMaxDigits10");
+ result.erase(size);
+ return result;
+}
+template <typename Float>
+std::string FloatToString(Float f) {
+ std::string result;
+ strings_internal::STLStringResizeUninitialized(
+ &result, numbers_internal::kSixDigitsToBufferSize);
+ char* start = &result[0];
+ result.erase(numbers_internal::SixDigitsToBuffer(f, start));
+ return result;
+}
// `SingleArgStrCat` overloads take built-in `int`, `long` and `long long` types
// (signed / unsigned) to avoid ambiguity on the call side. If we used int32_t
// and int64_t, then at least one of the three (`int` / `long` / `long long`)
// would have been ambiguous when passed to `SingleArgStrCat`.
-std::string SingleArgStrCat(int x);
-std::string SingleArgStrCat(unsigned int x);
-std::string SingleArgStrCat(long x); // NOLINT
-std::string SingleArgStrCat(unsigned long x); // NOLINT
-std::string SingleArgStrCat(long long x); // NOLINT
-std::string SingleArgStrCat(unsigned long long x); // NOLINT
-std::string SingleArgStrCat(float x);
-std::string SingleArgStrCat(double x);
-
-// `SingleArgStrAppend` overloads are defined here for the same reasons as with
-// `SingleArgStrCat` above.
-void SingleArgStrAppend(std::string& str, int x);
-void SingleArgStrAppend(std::string& str, unsigned int x);
-void SingleArgStrAppend(std::string& str, long x); // NOLINT
-void SingleArgStrAppend(std::string& str, unsigned long x); // NOLINT
-void SingleArgStrAppend(std::string& str, long long x); // NOLINT
-void SingleArgStrAppend(std::string& str, unsigned long long x); // NOLINT
-
-template <typename T,
- typename = std::enable_if_t<std::is_arithmetic<T>::value &&
- !std::is_same<T, char>::value &&
- !std::is_same<T, bool>::value>>
+inline std::string SingleArgStrCat(int x) { return IntegerToString(x); }
+inline std::string SingleArgStrCat(unsigned int x) {
+ return IntegerToString(x);
+}
+// NOLINTNEXTLINE
+inline std::string SingleArgStrCat(long x) { return IntegerToString(x); }
+// NOLINTNEXTLINE
+inline std::string SingleArgStrCat(unsigned long x) {
+ return IntegerToString(x);
+}
+// NOLINTNEXTLINE
+inline std::string SingleArgStrCat(long long x) { return IntegerToString(x); }
+// NOLINTNEXTLINE
+inline std::string SingleArgStrCat(unsigned long long x) {
+ return IntegerToString(x);
+}
+inline std::string SingleArgStrCat(float x) { return FloatToString(x); }
+inline std::string SingleArgStrCat(double x) { return FloatToString(x); }
+
+// As of September 2023, the SingleArgStrCat() optimization is only enabled for
+// libc++. The reasons for this are:
+// 1) The SSO size for libc++ is 23, while libstdc++ and MSSTL have an SSO size
+// of 15. Since IntegerToString unconditionally resizes the string to 22 bytes,
+// this causes both libstdc++ and MSSTL to allocate.
+// 2) strings_internal::STLStringResizeUninitialized() only has an
+// implementation that avoids initialization when using libc++. This isn't as
+// relevant as (1), and the cost should be benchmarked if (1) ever changes on
+// libstc++ or MSSTL.
+#ifdef _LIBCPP_VERSION
+#define ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE true
+#else
+#define ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE false
+#endif
+
+template <typename T, typename = std::enable_if_t<
+ ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE &&
+ std::is_arithmetic<T>{} && !std::is_same<T, char>{}>>
using EnableIfFastCase = T;
+#undef ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE
+
} // namespace strings_internal
ABSL_MUST_USE_RESULT inline std::string StrCat() { return std::string(); }
@@ -558,67 +600,6 @@ inline void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
static_cast<const AlphaNum&>(args).Piece()...});
}
-template <class String, class T>
-std::enable_if_t<
- std::is_integral<absl::strings_internal::EnableIfFastCase<T>>::value, void>
-StrAppend(absl::Nonnull<String*> result, T i) {
- return absl::strings_internal::SingleArgStrAppend(*result, i);
-}
-
-// This overload is only selected if all the parameters are numbers that can be
-// handled quickly.
-// Later we can look into how we can extend this to more general argument
-// mixtures without bloating codegen too much, or copying unnecessarily.
-template <typename String, typename... T>
-std::enable_if_t<
- (sizeof...(T) > 1),
- std::common_type_t<std::conditional_t<
- true, void, absl::strings_internal::EnableIfFastCase<T>>...>>
-StrAppend(absl::Nonnull<String*> str, T... args) {
- // Do not add unnecessary variables, logic, or even "free" lambdas here.
- // They can add overhead for the compiler and/or at run time.
- // Furthermore, assume this function will be inlined.
- // This function is carefully tailored to be able to be largely optimized away
- // so that it becomes near-equivalent to the caller handling each argument
- // individually while minimizing register pressure, so that the compiler
- // can inline it with minimal overhead.
-
- // First, calculate the total length, so we can perform just a single resize.
- // Save all the lengths for later.
- size_t total_length = 0;
- const ptrdiff_t lengths[] = {
- absl::numbers_internal::GetNumDigitsOrNegativeIfNegative(args)...};
- for (const ptrdiff_t possibly_negative_length : lengths) {
- // Lengths are negative for negative numbers. Keep them for later use, but
- // take their absolute values for calculating total lengths;
- total_length += possibly_negative_length < 0
- ? static_cast<size_t>(-possibly_negative_length)
- : static_cast<size_t>(possibly_negative_length);
- }
-
- // Now reserve space for all the arguments.
- const size_t old_size = str->size();
- absl::strings_internal::STLStringAppendUninitializedAmortized(str,
- total_length);
-
- // Finally, output each argument one-by-one, from left to right.
- size_t i = 0; // The current argument we're processing
- ptrdiff_t n; // The length of the current argument
- typename String::pointer pos = &(*str)[old_size];
- using SomeTrivialEmptyType = std::false_type;
- const SomeTrivialEmptyType dummy;
- // Ugly code due to the lack of C++17 fold expressions
- const SomeTrivialEmptyType dummies[] = {
- (/* Comma expressions are poor man's C++17 fold expression for C++14 */
- (void)(n = lengths[i]),
- (void)(n < 0 ? (void)(*pos++ = '-'), (n = ~n) : 0),
- (void)absl::numbers_internal::FastIntToBufferBackward(
- absl::numbers_internal::UnsignedAbsoluteValue(std::move(args)),
- pos += n, static_cast<uint32_t>(n)),
- (void)++i, dummy)...};
- (void)dummies; // Remove & migrate to fold expressions in C++17
-}
-
// Helper function for the future StrCat default floating-point format, %.6g
// This is fast.
inline strings_internal::AlphaNumBuffer<
diff --git a/absl/strings/str_cat_test.cc b/absl/strings/str_cat_test.cc
index b30a86fe..66eddf0d 100644
--- a/absl/strings/str_cat_test.cc
+++ b/absl/strings/str_cat_test.cc
@@ -39,24 +39,6 @@
namespace {
-template <typename Integer>
-void VerifyInteger(Integer value) {
- const std::string expected = std::to_string(value);
-
- EXPECT_EQ(absl::StrCat(value), expected);
-
- const char* short_prefix = "x";
- const char* long_prefix = "2;k.msabxiuow2[09i;o3k21-93-9=29]";
-
- std::string short_str = short_prefix;
- absl::StrAppend(&short_str, value);
- EXPECT_EQ(short_str, short_prefix + expected);
-
- std::string long_str = long_prefix;
- absl::StrAppend(&long_str, value);
- EXPECT_EQ(long_str, long_prefix + expected);
-}
-
// Test absl::StrCat of ints and longs of various sizes and signdedness.
TEST(StrCat, Ints) {
const short s = -1; // NOLINT(runtime/int)
@@ -86,34 +68,6 @@ TEST(StrCat, Ints) {
EXPECT_EQ(answer, "-9-12");
answer = absl::StrCat(uintptr, 0);
EXPECT_EQ(answer, "130");
-
- for (const uint32_t base : {2u, 10u}) {
- for (const int extra_shift : {0, 12}) {
- for (uint64_t i = 0; i < (1 << 8); ++i) {
- uint64_t j = i;
- while (true) {
- uint64_t v = j ^ (extra_shift != 0 ? (j << extra_shift) * base : 0);
- VerifyInteger(static_cast<bool>(v));
- VerifyInteger(static_cast<wchar_t>(v));
- VerifyInteger(static_cast<signed char>(v));
- VerifyInteger(static_cast<unsigned char>(v));
- VerifyInteger(static_cast<short>(v)); // NOLINT
- VerifyInteger(static_cast<unsigned short>(v)); // NOLINT
- VerifyInteger(static_cast<int>(v)); // NOLINT
- VerifyInteger(static_cast<unsigned int>(v)); // NOLINT
- VerifyInteger(static_cast<long>(v)); // NOLINT
- VerifyInteger(static_cast<unsigned long>(v)); // NOLINT
- VerifyInteger(static_cast<long long>(v)); // NOLINT
- VerifyInteger(static_cast<unsigned long long>(v)); // NOLINT
- const uint64_t next = j == 0 ? 1 : j * base;
- if (next <= j) {
- break;
- }
- j = next;
- }
- }
- }
- }
}
TEST(StrCat, Enums) {