summaryrefslogtreecommitdiff
path: root/absl/random/internal/fast_uniform_bits.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/internal/fast_uniform_bits.h')
-rw-r--r--absl/random/internal/fast_uniform_bits.h349
1 files changed, 164 insertions, 185 deletions
diff --git a/absl/random/internal/fast_uniform_bits.h b/absl/random/internal/fast_uniform_bits.h
index 184a2708..e8df92f3 100644
--- a/absl/random/internal/fast_uniform_bits.h
+++ b/absl/random/internal/fast_uniform_bits.h
@@ -22,11 +22,18 @@
namespace absl {
namespace random_internal {
+// Returns true if the input value is zero or a power of two. Useful for
+// determining if the range of output values in a URBG
+template <typename UIntType>
+constexpr bool IsPowerOfTwoOrZero(UIntType n) {
+ return (n == 0) || ((n & (n - 1)) == 0);
+}
+
// Computes the length of the range of values producible by the URBG, or returns
// zero if that would encompass the entire range of representable values in
// URBG::result_type.
template <typename URBG>
-constexpr typename URBG::result_type constexpr_range() {
+constexpr typename URBG::result_type RangeSize() {
using result_type = typename URBG::result_type;
return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
(URBG::min)() == std::numeric_limits<result_type>::lowest())
@@ -34,6 +41,42 @@ constexpr typename URBG::result_type constexpr_range() {
: (URBG::max)() - (URBG::min)() + result_type{1};
}
+template <typename UIntType>
+constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
+ return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
+}
+
+// Given a URBG generating values in the closed interval [Lo, Hi], returns the
+// largest power of two less than or equal to `Hi - Lo + 1`.
+template <typename URBG>
+constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
+ return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
+}
+
+// Computes the floor of the log. (i.e., std::floor(std::log2(N));
+template <typename UIntType>
+constexpr UIntType IntegerLog2(UIntType n) {
+ return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
+}
+
+// Returns the number of bits of randomness returned through
+// `PowerOfTwoVariate(urbg)`.
+template <typename URBG>
+constexpr size_t NumBits() {
+ return RangeSize<URBG>() == 0
+ ? std::numeric_limits<typename URBG::result_type>::digits
+ : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
+}
+
+// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
+// If `n == 0`, all bits are set.
+template <typename UIntType>
+constexpr UIntType MaskFromShift(UIntType n) {
+ return ((n % std::numeric_limits<UIntType>::digits) == 0)
+ ? ~UIntType{0}
+ : (UIntType{1} << n) - UIntType{1};
+}
+
// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
@@ -45,14 +88,6 @@ constexpr typename URBG::result_type constexpr_range() {
// generator that will outlive the std::independent_bits_engine instance.
template <typename UIntType = uint64_t>
class FastUniformBits {
- static_assert(std::is_unsigned<UIntType>::value,
- "Class-template FastUniformBits<> must be parameterized using "
- "an unsigned type.");
-
- // `kWidth` is the width, in binary digits, of the output. By default it is
- // the number of binary digits in the `result_type`.
- static constexpr size_t kWidth = std::numeric_limits<UIntType>::digits;
-
public:
using result_type = UIntType;
@@ -65,14 +100,47 @@ class FastUniformBits {
result_type operator()(URBG& g); // NOLINT(runtime/references)
private:
- // Variate() generates a single random variate, always returning a value
- // in the closed interval [0 ... FastUniformBitsURBGConstants::kRangeMask]
- // (kRangeMask+1 is a power of 2).
+ static_assert(std::is_unsigned<UIntType>::value,
+ "Class-template FastUniformBits<> must be parameterized using "
+ "an unsigned type.");
+
+ // PowerOfTwoVariate() generates a single random variate, always returning a
+ // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
+ // the URBG already generates values in a power-of-two range, the generator
+ // itself is used. Otherwise, we use rejection sampling on the largest
+ // possible power-of-two-sized subrange.
+ struct PowerOfTwoTag {};
+ struct RejectionSamplingTag {};
template <typename URBG>
- typename URBG::result_type Variate(URBG& g); // NOLINT(runtime/references)
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g) { // NOLINT(runtime/references)
+ using tag =
+ typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
+ PowerOfTwoTag, RejectionSamplingTag>::type;
+ return PowerOfTwoVariate(g, tag{});
+ }
+
+ template <typename URBG>
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g, // NOLINT(runtime/references)
+ PowerOfTwoTag) {
+ return g() - (URBG::min)();
+ }
- // generate() generates a random value, dispatched on whether
- // the underlying URNG must loop over multiple calls or not.
+ template <typename URBG>
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g, // NOLINT(runtime/references)
+ RejectionSamplingTag) {
+ // Use rejection sampling to ensure uniformity across the range.
+ typename URBG::result_type u;
+ do {
+ u = g() - (URBG::min)();
+ } while (u >= PowerOfTwoSubRangeSize<URBG>());
+ return u;
+ }
+
+ // Generate() generates a random value, dispatched on whether
+ // the underlying URBG must loop over multiple calls or not.
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
std::true_type /* avoid_looping */);
@@ -82,196 +150,107 @@ class FastUniformBits {
std::false_type /* avoid_looping */);
};
-// FastUniformBitsURBGConstants computes the URBG-derived constants used
-// by FastUniformBits::Generate and FastUniformBits::Variate.
-// Parameterized by the FastUniformBits parameter:
-// `URBG`: The underlying UniformRandomNumberGenerator.
-//
-// The values here indicate the URBG range as well as providing an indicator
-// whether the URBG output is a power of 2, and kRangeMask, which allows masking
-// the generated output to kRangeBits.
+template <typename UIntType>
template <typename URBG>
-class FastUniformBitsURBGConstants {
- // Computes the floor of the log. (i.e., std::floor(std::log2(N));
- static constexpr size_t constexpr_log2(size_t n) {
- return (n <= 1) ? 0 : 1 + constexpr_log2(n / 2);
- }
-
- // Computes a mask of n bits for the URBG::result_type.
- static constexpr typename URBG::result_type constexpr_mask(size_t n) {
- return (typename URBG::result_type(1) << n) - 1;
- }
-
- public:
- using result_type = typename URBG::result_type;
-
- // The range of the URNG, max - min + 1, or zero if that result would cause
- // overflow.
- static constexpr result_type kRange = constexpr_range<URBG>();
-
- static constexpr bool kPowerOfTwo =
- (kRange == 0) || ((kRange & (kRange - 1)) == 0);
-
- // kRangeBits describes the number number of bits suitable to mask off of URNG
- // variate, which is:
- // kRangeBits = floor(log2(kRange))
- static constexpr size_t kRangeBits =
- kRange == 0 ? std::numeric_limits<result_type>::digits
- : constexpr_log2(kRange);
-
- // kRangeMask is the mask used when sampling variates from the URNG when the
- // width of the URNG range is not a power of 2.
+typename FastUniformBits<UIntType>::result_type
+FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
+ // kRangeMask is the mask used when sampling variates from the URBG when the
+ // width of the URBG range is not a power of 2.
// Y = (2 ^ kRange) - 1
- static constexpr result_type kRangeMask =
- kRange == 0 ? (std::numeric_limits<result_type>::max)()
- : constexpr_mask(kRangeBits);
-
- static_assert((URBG::max)() != (URBG::min)(),
- "Class-template FastUniformBitsURBGConstants<> "
+ static_assert((URBG::max)() > (URBG::min)(),
"URBG::max and URBG::min may not be equal.");
-
- static_assert(std::is_unsigned<result_type>::value,
- "Class-template FastUniformBitsURBGConstants<> "
- "URBG::result_type must be unsigned.");
-
- static_assert(kRangeMask > 0,
- "Class-template FastUniformBitsURBGConstants<> "
- "URBG does not generate sufficient random bits.");
-
- static_assert(kRange == 0 ||
- kRangeBits < std::numeric_limits<result_type>::digits,
- "Class-template FastUniformBitsURBGConstants<> "
- "URBG range computation error.");
-};
-
-// FastUniformBitsLoopingConstants computes the looping constants used
-// by FastUniformBits::Generate. These constants indicate how multiple
-// URBG::result_type values are combined into an output_value.
-// Parameterized by the FastUniformBits parameters:
-// `UIntType`: output type.
-// `URNG`: The underlying UniformRandomNumberGenerator.
-//
-// The looping constants describe the sets of loop counters and mask values
-// which control how individual variates are combined the final output. The
-// algorithm ensures that the number of bits used by any individual call differs
-// by at-most one bit from any other call. This is simplified into constants
-// which describe two loops, with the second loop parameters providing one extra
-// bit per variate.
-//
-// See [rand.adapt.ibits] for more details on the use of these constants.
-template <typename UIntType, typename URBG>
-class FastUniformBitsLoopingConstants {
- private:
- static constexpr size_t kWidth = std::numeric_limits<UIntType>::digits;
using urbg_result_type = typename URBG::result_type;
- using uint_result_type = UIntType;
-
- public:
- using result_type =
- typename std::conditional<(sizeof(urbg_result_type) <=
- sizeof(uint_result_type)),
- uint_result_type, urbg_result_type>::type;
-
- private:
- // Estimate N as ceil(width / urng width), and W0 as (width / N).
- static constexpr size_t kRangeBits =
- FastUniformBitsURBGConstants<URBG>::kRangeBits;
-
- // The range of the URNG, max - min + 1, or zero if that result would cause
- // overflow.
- static constexpr result_type kRange = constexpr_range<URBG>();
- static constexpr size_t kEstimateN =
- kWidth / kRangeBits + (kWidth % kRangeBits != 0);
- static constexpr size_t kEstimateW0 = kWidth / kEstimateN;
- static constexpr result_type kEstimateY0 = (kRange >> kEstimateW0)
- << kEstimateW0;
-
- public:
- // Parameters for the two loops:
- // kN0, kN1 are the number of underlying calls required for each loop.
- // KW0, kW1 are shift widths for each loop.
- //
- static constexpr size_t kN1 = (kRange - kEstimateY0) >
- (kEstimateY0 / kEstimateN)
- ? kEstimateN + 1
- : kEstimateN;
- static constexpr size_t kN0 = kN1 - (kWidth % kN1);
- static constexpr size_t kW0 = kWidth / kN1;
- static constexpr size_t kW1 = kW0 + 1;
-
- static constexpr result_type kM0 = (result_type(1) << kW0) - 1;
- static constexpr result_type kM1 = (result_type(1) << kW1) - 1;
-
- static_assert(
- kW0 <= kRangeBits,
- "Class-template FastUniformBitsLoopingConstants::kW0 too large.");
-
- static_assert(
- kW0 > 0,
- "Class-template FastUniformBitsLoopingConstants::kW0 too small.");
-};
-
-template <typename UIntType>
-template <typename URBG>
-typename FastUniformBits<UIntType>::result_type
-FastUniformBits<UIntType>::operator()(
- URBG& g) { // NOLINT(runtime/references)
- using constants = FastUniformBitsURBGConstants<URBG>;
- return Generate(
- g, std::integral_constant<bool, constants::kRangeMask >= (max)()>{});
-}
-
-template <typename UIntType>
-template <typename URBG>
-typename URBG::result_type FastUniformBits<UIntType>::Variate(
- URBG& g) { // NOLINT(runtime/references)
- using constants = FastUniformBitsURBGConstants<URBG>;
- if (constants::kPowerOfTwo) {
- return g() - (URBG::min)();
- }
-
- // Use rejection sampling to ensure uniformity across the range.
- typename URBG::result_type u;
- do {
- u = g() - (URBG::min)();
- } while (u > constants::kRangeMask);
- return u;
+ constexpr urbg_result_type kRangeMask =
+ RangeSize<URBG>() == 0
+ ? (std::numeric_limits<urbg_result_type>::max)()
+ : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
+ return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
-FastUniformBits<UIntType>::Generate(
- URBG& g, // NOLINT(runtime/references)
- std::true_type /* avoid_looping */) {
+FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
+ std::true_type /* avoid_looping */) {
// The width of the result_type is less than than the width of the random bits
- // provided by URNG. Thus, generate a single value and then simply mask off
+ // provided by URBG. Thus, generate a single value and then simply mask off
// the required bits.
- return Variate(g) & (max)();
+
+ return PowerOfTwoVariate(g) & (max)();
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
-FastUniformBits<UIntType>::Generate(
- URBG& g, // NOLINT(runtime/references)
- std::false_type /* avoid_looping */) {
- // The width of the result_type is wider than the number of random bits
- // provided by URNG. Thus we merge several variates of URNG into the result
- // using a shift and mask. The constants type generates the parameters used
- // ensure that the bits are distributed across all the invocations of the
- // underlying URNG.
- using constants = FastUniformBitsLoopingConstants<UIntType, URBG>;
+FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
+ std::false_type /* avoid_looping */) {
+ // See [rand.adapt.ibits] for more details on the constants calculated below.
+ //
+ // It is preferable to use roughly the same number of bits from each generator
+ // call, however this is only possible when the number of bits provided by the
+ // URBG is a divisor of the number of bits in `result_type`. In all other
+ // cases, the number of bits used cannot always be the same, but it can be
+ // guaranteed to be off by at most 1. Thus we run two loops, one with a
+ // smaller bit-width size (`kSmallWidth`) and one with a larger width size
+ // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
+ // `kSmallIters` and `kLargeIters` times respectively such
+ // that
+ //
+ // `kTotalWidth == kSmallIters * kSmallWidth
+ // + kLargeIters * kLargeWidth`
+ //
+ // where `kTotalWidth` is the total number of bits in `result_type`.
+ //
+ constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
+ constexpr size_t kUrbgWidth = NumBits<URBG>();
+ constexpr size_t kTotalIters =
+ kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
+ constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
+ constexpr size_t kLargeWidth = kSmallWidth + 1;
+ //
+ // Because `kLargeWidth == kSmallWidth + 1`, it follows that
+ //
+ // `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
+ //
+ // and therefore
+ //
+ // `kLargeIters == kTotalWidth % kSmallWidth`
+ //
+ // Intuitively, each iteration with the large width accounts for one unit
+ // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
+ // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
+ // there would be no need for any large iterations (i.e., one loop would
+ // suffice), and indeed, in this case, `kLargeIters` would be zero.
+ constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
+ constexpr size_t kSmallIters =
+ (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;
+
+ static_assert(
+ kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
+ "Error in looping constant calculations.");
result_type s = 0;
- for (size_t n = 0; n < constants::kN0; ++n) {
- auto u = Variate(g);
- s = (s << constants::kW0) + (u & constants::kM0);
+
+ constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
+ constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
+ for (size_t n = 0; n < kSmallIters; ++n) {
+ s = (s << kSmallShift) +
+ (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
}
- for (size_t n = constants::kN0; n < constants::kN1; ++n) {
- auto u = Variate(g);
- s = (s << constants::kW1) + (u & constants::kM1);
+
+ constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
+ constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
+ for (size_t n = 0; n < kLargeIters; ++n) {
+ s = (s << kLargeShift) +
+ (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
}
+
+ static_assert(
+ kLargeShift == kSmallShift + 1 ||
+ (kLargeShift == 0 &&
+ kSmallShift == std::numeric_limits<result_type>::digits - 1),
+ "Error in looping constant calculations");
+
return s;
}