summaryrefslogtreecommitdiff
path: root/absl/random/internal/fast_uniform_bits.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/random/internal/fast_uniform_bits.h')
-rw-r--r--absl/random/internal/fast_uniform_bits.h262
1 files changed, 262 insertions, 0 deletions
diff --git a/absl/random/internal/fast_uniform_bits.h b/absl/random/internal/fast_uniform_bits.h
new file mode 100644
index 00000000..5aa9de01
--- /dev/null
+++ b/absl/random/internal/fast_uniform_bits.h
@@ -0,0 +1,262 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
+#define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
+
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+#include <type_traits>
+
+namespace absl {
+inline namespace lts_2019_08_08 {
+namespace random_internal {
+// Returns true if the input value is zero or a power of two. Useful for
+// determining if the range of output values in a URBG
+template <typename UIntType>
+constexpr bool IsPowerOfTwoOrZero(UIntType n) {
+ return (n == 0) || ((n & (n - 1)) == 0);
+}
+
+// Computes the length of the range of values producible by the URBG, or returns
+// zero if that would encompass the entire range of representable values in
+// URBG::result_type.
+template <typename URBG>
+constexpr typename URBG::result_type RangeSize() {
+ using result_type = typename URBG::result_type;
+ return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
+ (URBG::min)() == std::numeric_limits<result_type>::lowest())
+ ? result_type{0}
+ : (URBG::max)() - (URBG::min)() + result_type{1};
+}
+
+template <typename UIntType>
+constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
+ return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
+}
+
+// Given a URBG generating values in the closed interval [Lo, Hi], returns the
+// largest power of two less than or equal to `Hi - Lo + 1`.
+template <typename URBG>
+constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
+ return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
+}
+
+// Computes the floor of the log. (i.e., std::floor(std::log2(N));
+template <typename UIntType>
+constexpr UIntType IntegerLog2(UIntType n) {
+ return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
+}
+
+// Returns the number of bits of randomness returned through
+// `PowerOfTwoVariate(urbg)`.
+template <typename URBG>
+constexpr size_t NumBits() {
+ return RangeSize<URBG>() == 0
+ ? std::numeric_limits<typename URBG::result_type>::digits
+ : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
+}
+
+// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
+// If `n == 0`, all bits are set.
+template <typename UIntType>
+constexpr UIntType MaskFromShift(UIntType n) {
+ return ((n % std::numeric_limits<UIntType>::digits) == 0)
+ ? ~UIntType{0}
+ : (UIntType{1} << n) - UIntType{1};
+}
+
+// FastUniformBits implements a fast path to acquire uniform independent bits
+// from a type which conforms to the [rand.req.urbg] concept.
+// Parameterized by:
+// `UIntType`: the result (output) type
+//
+// The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
+// instantiated from an existing generator through a copy or a move. It does
+// not, however, facilitate the production of pseudorandom bits from an un-owned
+// generator that will outlive the std::independent_bits_engine instance.
+template <typename UIntType = uint64_t>
+class FastUniformBits {
+ public:
+ using result_type = UIntType;
+
+ static constexpr result_type(min)() { return 0; }
+ static constexpr result_type(max)() {
+ return (std::numeric_limits<result_type>::max)();
+ }
+
+ template <typename URBG>
+ result_type operator()(URBG& g); // NOLINT(runtime/references)
+
+ private:
+ static_assert(std::is_unsigned<UIntType>::value,
+ "Class-template FastUniformBits<> must be parameterized using "
+ "an unsigned type.");
+
+ // PowerOfTwoVariate() generates a single random variate, always returning a
+ // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
+ // the URBG already generates values in a power-of-two range, the generator
+ // itself is used. Otherwise, we use rejection sampling on the largest
+ // possible power-of-two-sized subrange.
+ struct PowerOfTwoTag {};
+ struct RejectionSamplingTag {};
+ template <typename URBG>
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g) { // NOLINT(runtime/references)
+ using tag =
+ typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
+ PowerOfTwoTag, RejectionSamplingTag>::type;
+ return PowerOfTwoVariate(g, tag{});
+ }
+
+ template <typename URBG>
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g, // NOLINT(runtime/references)
+ PowerOfTwoTag) {
+ return g() - (URBG::min)();
+ }
+
+ template <typename URBG>
+ static typename URBG::result_type PowerOfTwoVariate(
+ URBG& g, // NOLINT(runtime/references)
+ RejectionSamplingTag) {
+ // Use rejection sampling to ensure uniformity across the range.
+ typename URBG::result_type u;
+ do {
+ u = g() - (URBG::min)();
+ } while (u >= PowerOfTwoSubRangeSize<URBG>());
+ return u;
+ }
+
+ // Generate() generates a random value, dispatched on whether
+ // the underlying URBG must loop over multiple calls or not.
+ template <typename URBG>
+ result_type Generate(URBG& g, // NOLINT(runtime/references)
+ std::true_type /* avoid_looping */);
+
+ template <typename URBG>
+ result_type Generate(URBG& g, // NOLINT(runtime/references)
+ std::false_type /* avoid_looping */);
+};
+
+template <typename UIntType>
+template <typename URBG>
+typename FastUniformBits<UIntType>::result_type
+FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
+ // kRangeMask is the mask used when sampling variates from the URBG when the
+ // width of the URBG range is not a power of 2.
+ // Y = (2 ^ kRange) - 1
+ static_assert((URBG::max)() > (URBG::min)(),
+ "URBG::max and URBG::min may not be equal.");
+ using urbg_result_type = typename URBG::result_type;
+ constexpr urbg_result_type kRangeMask =
+ RangeSize<URBG>() == 0
+ ? (std::numeric_limits<urbg_result_type>::max)()
+ : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
+ return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
+}
+
+template <typename UIntType>
+template <typename URBG>
+typename FastUniformBits<UIntType>::result_type
+FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
+ std::true_type /* avoid_looping */) {
+ // The width of the result_type is less than than the width of the random bits
+ // provided by URBG. Thus, generate a single value and then simply mask off
+ // the required bits.
+
+ return PowerOfTwoVariate(g) & (max)();
+}
+
+template <typename UIntType>
+template <typename URBG>
+typename FastUniformBits<UIntType>::result_type
+FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
+ std::false_type /* avoid_looping */) {
+ // See [rand.adapt.ibits] for more details on the constants calculated below.
+ //
+ // It is preferable to use roughly the same number of bits from each generator
+ // call, however this is only possible when the number of bits provided by the
+ // URBG is a divisor of the number of bits in `result_type`. In all other
+ // cases, the number of bits used cannot always be the same, but it can be
+ // guaranteed to be off by at most 1. Thus we run two loops, one with a
+ // smaller bit-width size (`kSmallWidth`) and one with a larger width size
+ // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
+ // `kSmallIters` and `kLargeIters` times respectively such
+ // that
+ //
+ // `kTotalWidth == kSmallIters * kSmallWidth
+ // + kLargeIters * kLargeWidth`
+ //
+ // where `kTotalWidth` is the total number of bits in `result_type`.
+ //
+ constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
+ constexpr size_t kUrbgWidth = NumBits<URBG>();
+ constexpr size_t kTotalIters =
+ kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
+ constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
+ constexpr size_t kLargeWidth = kSmallWidth + 1;
+ //
+ // Because `kLargeWidth == kSmallWidth + 1`, it follows that
+ //
+ // `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
+ //
+ // and therefore
+ //
+ // `kLargeIters == kTotalWidth % kSmallWidth`
+ //
+ // Intuitively, each iteration with the large width accounts for one unit
+ // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
+ // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
+ // there would be no need for any large iterations (i.e., one loop would
+ // suffice), and indeed, in this case, `kLargeIters` would be zero.
+ constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
+ constexpr size_t kSmallIters =
+ (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;
+
+ static_assert(
+ kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
+ "Error in looping constant calculations.");
+
+ result_type s = 0;
+
+ constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
+ constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
+ for (size_t n = 0; n < kSmallIters; ++n) {
+ s = (s << kSmallShift) +
+ (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
+ }
+
+ constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
+ constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
+ for (size_t n = 0; n < kLargeIters; ++n) {
+ s = (s << kLargeShift) +
+ (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
+ }
+
+ static_assert(
+ kLargeShift == kSmallShift + 1 ||
+ (kLargeShift == 0 &&
+ kSmallShift == std::numeric_limits<result_type>::digits - 1),
+ "Error in looping constant calculations");
+
+ return s;
+}
+
+} // namespace random_internal
+} // inline namespace lts_2019_08_08
+} // namespace absl
+
+#endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_