summaryrefslogtreecommitdiff
path: root/absl/debugging/internal/demangle_rust.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/debugging/internal/demangle_rust.cc')
-rw-r--r--absl/debugging/internal/demangle_rust.cc925
1 files changed, 925 insertions, 0 deletions
diff --git a/absl/debugging/internal/demangle_rust.cc b/absl/debugging/internal/demangle_rust.cc
new file mode 100644
index 00000000..4309bd84
--- /dev/null
+++ b/absl/debugging/internal/demangle_rust.cc
@@ -0,0 +1,925 @@
+// Copyright 2024 The Abseil Authors
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/debugging/internal/demangle_rust.h"
+
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <limits>
+
+#include "absl/base/attributes.h"
+#include "absl/base/config.h"
+#include "absl/debugging/internal/decode_rust_punycode.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+namespace debugging_internal {
+
+namespace {
+
+// Same step limit as the C++ demangler in demangle.cc uses.
+constexpr int kMaxReturns = 1 << 17;
+
+bool IsDigit(char c) { return '0' <= c && c <= '9'; }
+bool IsLower(char c) { return 'a' <= c && c <= 'z'; }
+bool IsUpper(char c) { return 'A' <= c && c <= 'Z'; }
+bool IsAlpha(char c) { return IsLower(c) || IsUpper(c); }
+bool IsIdentifierChar(char c) { return IsAlpha(c) || IsDigit(c) || c == '_'; }
+bool IsLowerHexDigit(char c) { return IsDigit(c) || ('a' <= c && c <= 'f'); }
+
+const char* BasicTypeName(char c) {
+ switch (c) {
+ case 'a': return "i8";
+ case 'b': return "bool";
+ case 'c': return "char";
+ case 'd': return "f64";
+ case 'e': return "str";
+ case 'f': return "f32";
+ case 'h': return "u8";
+ case 'i': return "isize";
+ case 'j': return "usize";
+ case 'l': return "i32";
+ case 'm': return "u32";
+ case 'n': return "i128";
+ case 'o': return "u128";
+ case 'p': return "_";
+ case 's': return "i16";
+ case 't': return "u16";
+ case 'u': return "()";
+ case 'v': return "...";
+ case 'x': return "i64";
+ case 'y': return "u64";
+ case 'z': return "!";
+ }
+ return nullptr;
+}
+
+// Parser for Rust symbol mangling v0, whose grammar is defined here:
+//
+// https://doc.rust-lang.org/rustc/symbol-mangling/v0.html#symbol-grammar-summary
+class RustSymbolParser {
+ public:
+ // Prepares to demangle the given encoding, a Rust symbol name starting with
+ // _R, into the output buffer [out, out_end). The caller is expected to
+ // continue by calling the new object's Parse function.
+ RustSymbolParser(const char* encoding, char* out, char* const out_end)
+ : encoding_(encoding), out_(out), out_end_(out_end) {
+ if (out_ != out_end_) *out_ = '\0';
+ }
+
+ // Parses the constructor's encoding argument, writing output into the range
+ // [out, out_end). Returns true on success and false for input whose
+ // structure was not recognized or exceeded implementation limits, such as by
+ // nesting structures too deep. In either case *this should not be used
+ // again.
+ ABSL_MUST_USE_RESULT bool Parse() && {
+ // Recursively parses the grammar production named by callee, then resumes
+ // execution at the next statement.
+ //
+ // Recursive-descent parsing is a beautifully readable translation of a
+ // grammar, but it risks stack overflow if implemented by naive recursion on
+ // the C++ call stack. So we simulate recursion by goto and switch instead,
+ // keeping a bounded stack of "return addresses" in the recursion_stack_
+ // member.
+ //
+ // The callee argument is a statement label. We goto that label after
+ // saving the "return address" on recursion_stack_. The next continue
+ // statement in the for loop below "returns" from this "call".
+ //
+ // The caller argument names the return point. Each value of caller must
+ // appear in only one ABSL_DEMANGLER_RECURSE call and be listed in the
+ // definition of enum ReturnAddress. The switch implements the control
+ // transfer from the end of a "called" subroutine back to the statement
+ // after the "call".
+ //
+ // Note that not all the grammar productions have to be packed into the
+ // switch, but only those which appear in a cycle in the grammar. Anything
+ // acyclic can be written as ordinary functions and function calls, e.g.,
+ // ParseIdentifier.
+#define ABSL_DEMANGLER_RECURSE(callee, caller) \
+ do { \
+ if (recursion_depth_ == kStackSize) return false; \
+ /* The next continue will switch on this saved value ... */ \
+ recursion_stack_[recursion_depth_++] = caller; \
+ goto callee; \
+ /* ... and will land here, resuming the suspended code. */ \
+ case caller: {} \
+ } while (0)
+
+ // Parse the encoding, counting completed recursive calls to guard against
+ // excessively complex input and infinite-loop bugs.
+ int iter = 0;
+ goto whole_encoding;
+ for (; iter < kMaxReturns && recursion_depth_ > 0; ++iter) {
+ // This switch resumes the code path most recently suspended by
+ // ABSL_DEMANGLER_RECURSE.
+ switch (recursion_stack_[--recursion_depth_]) {
+ //
+ // symbol-name ->
+ // _R decimal-number? path instantiating-crate? vendor-specific-suffix?
+ whole_encoding:
+ if (!Eat('_') || !Eat('R')) return false;
+ // decimal-number? is always empty today, so proceed to path, which
+ // can't start with a decimal digit.
+ ABSL_DEMANGLER_RECURSE(path, kInstantiatingCrate);
+ if (IsAlpha(Peek())) {
+ ++silence_depth_; // Print nothing more from here on.
+ ABSL_DEMANGLER_RECURSE(path, kVendorSpecificSuffix);
+ }
+ switch (Take()) {
+ case '.': case '$': case '\0': return true;
+ }
+ return false; // unexpected trailing content
+
+ // path -> crate-root | inherent-impl | trait-impl | trait-definition |
+ // nested-path | generic-args | backref
+ //
+ // Note that ABSL_DEMANGLER_RECURSE does not work inside a nested switch
+ // (which would hide the generated case label). Thus we jump out of the
+ // inner switch with gotos before performing any fake recursion.
+ path:
+ switch (Take()) {
+ case 'C': goto crate_root;
+ case 'M': goto inherent_impl;
+ case 'X': goto trait_impl;
+ case 'Y': goto trait_definition;
+ case 'N': goto nested_path;
+ case 'I': goto generic_args;
+ case 'B': goto path_backref;
+ default: return false;
+ }
+
+ // crate-root -> C identifier (C consumed above)
+ crate_root:
+ if (!ParseIdentifier()) return false;
+ continue;
+
+ // inherent-impl -> M impl-path type (M already consumed)
+ inherent_impl:
+ if (!Emit("<")) return false;
+ ABSL_DEMANGLER_RECURSE(impl_path, kInherentImplType);
+ ABSL_DEMANGLER_RECURSE(type, kInherentImplEnding);
+ if (!Emit(">")) return false;
+ continue;
+
+ // trait-impl -> X impl-path type path (X already consumed)
+ trait_impl:
+ if (!Emit("<")) return false;
+ ABSL_DEMANGLER_RECURSE(impl_path, kTraitImplType);
+ ABSL_DEMANGLER_RECURSE(type, kTraitImplInfix);
+ if (!Emit(" as ")) return false;
+ ABSL_DEMANGLER_RECURSE(path, kTraitImplEnding);
+ if (!Emit(">")) return false;
+ continue;
+
+ // impl-path -> disambiguator? path (but never print it!)
+ impl_path:
+ ++silence_depth_;
+ {
+ int ignored_disambiguator;
+ if (!ParseDisambiguator(ignored_disambiguator)) return false;
+ }
+ ABSL_DEMANGLER_RECURSE(path, kImplPathEnding);
+ --silence_depth_;
+ continue;
+
+ // trait-definition -> Y type path (Y already consumed)
+ trait_definition:
+ if (!Emit("<")) return false;
+ ABSL_DEMANGLER_RECURSE(type, kTraitDefinitionInfix);
+ if (!Emit(" as ")) return false;
+ ABSL_DEMANGLER_RECURSE(path, kTraitDefinitionEnding);
+ if (!Emit(">")) return false;
+ continue;
+
+ // nested-path -> N namespace path identifier (N already consumed)
+ // namespace -> lower | upper
+ nested_path:
+ // Uppercase namespaces must be saved on a stack so we can print
+ // ::{closure#0} or ::{shim:vtable#0} or ::{X:name#0} as needed.
+ if (IsUpper(Peek())) {
+ if (!PushNamespace(Take())) return false;
+ ABSL_DEMANGLER_RECURSE(path, kIdentifierInUppercaseNamespace);
+ if (!Emit("::")) return false;
+ if (!ParseIdentifier(PopNamespace())) return false;
+ continue;
+ }
+
+ // Lowercase namespaces, however, are never represented in the output;
+ // they all emit just ::name.
+ if (IsLower(Take())) {
+ ABSL_DEMANGLER_RECURSE(path, kIdentifierInLowercaseNamespace);
+ if (!Emit("::")) return false;
+ if (!ParseIdentifier()) return false;
+ continue;
+ }
+
+ // Neither upper or lower
+ return false;
+
+ // type -> basic-type | array-type | slice-type | tuple-type |
+ // ref-type | mut-ref-type | const-ptr-type | mut-ptr-type |
+ // fn-type | dyn-trait-type | path | backref
+ //
+ // We use ifs instead of switch (Take()) because the default case jumps
+ // to path, which will need to see the first character not yet Taken
+ // from the input. Because we do not use a nested switch here,
+ // ABSL_DEMANGLER_RECURSE works fine in the 'S' case.
+ type:
+ if (IsLower(Peek())) {
+ const char* type_name = BasicTypeName(Take());
+ if (type_name == nullptr || !Emit(type_name)) return false;
+ continue;
+ }
+ if (Eat('A')) {
+ // array-type = A type const
+ if (!Emit("[")) return false;
+ ABSL_DEMANGLER_RECURSE(type, kArraySize);
+ if (!Emit("; ")) return false;
+ ABSL_DEMANGLER_RECURSE(constant, kFinishArray);
+ if (!Emit("]")) return false;
+ continue;
+ }
+ if (Eat('S')) {
+ if (!Emit("[")) return false;
+ ABSL_DEMANGLER_RECURSE(type, kSliceEnding);
+ if (!Emit("]")) return false;
+ continue;
+ }
+ if (Eat('T')) goto tuple_type;
+ if (Eat('R')) {
+ if (!Emit("&")) return false;
+ if (!ParseOptionalLifetime()) return false;
+ goto type;
+ }
+ if (Eat('Q')) {
+ if (!Emit("&mut ")) return false;
+ if (!ParseOptionalLifetime()) return false;
+ goto type;
+ }
+ if (Eat('P')) {
+ if (!Emit("*const ")) return false;
+ goto type;
+ }
+ if (Eat('O')) {
+ if (!Emit("*mut ")) return false;
+ goto type;
+ }
+ if (Eat('F')) goto fn_type;
+ if (Eat('D')) goto dyn_trait_type;
+ if (Eat('B')) goto type_backref;
+ goto path;
+
+ // tuple-type -> T type* E (T already consumed)
+ tuple_type:
+ if (!Emit("(")) return false;
+
+ // The toolchain should call the unit type u instead of TE, but the
+ // grammar and other demanglers also recognize TE, so we do too.
+ if (Eat('E')) {
+ if (!Emit(")")) return false;
+ continue;
+ }
+
+ // A tuple with one element is rendered (type,) instead of (type).
+ ABSL_DEMANGLER_RECURSE(type, kAfterFirstTupleElement);
+ if (Eat('E')) {
+ if (!Emit(",)")) return false;
+ continue;
+ }
+
+ // A tuple with two elements is of course (x, y).
+ if (!Emit(", ")) return false;
+ ABSL_DEMANGLER_RECURSE(type, kAfterSecondTupleElement);
+ if (Eat('E')) {
+ if (!Emit(")")) return false;
+ continue;
+ }
+
+ // And (x, y, z) for three elements.
+ if (!Emit(", ")) return false;
+ ABSL_DEMANGLER_RECURSE(type, kAfterThirdTupleElement);
+ if (Eat('E')) {
+ if (!Emit(")")) return false;
+ continue;
+ }
+
+ // For longer tuples we write (x, y, z, ...), printing none of the
+ // content of the fourth and later types. Thus we avoid exhausting
+ // output buffers and human readers' patience when some library has a
+ // long tuple as an implementation detail, without having to
+ // completely obfuscate all tuples.
+ if (!Emit(", ...)")) return false;
+ ++silence_depth_;
+ while (!Eat('E')) {
+ ABSL_DEMANGLER_RECURSE(type, kAfterSubsequentTupleElement);
+ }
+ --silence_depth_;
+ continue;
+
+ // fn-type -> F fn-sig (F already consumed)
+ // fn-sig -> binder? U? (K abi)? type* E type
+ // abi -> C | undisambiguated-identifier
+ //
+ // We follow the C++ demangler in suppressing details of function
+ // signatures. Every function type is rendered "fn...".
+ fn_type:
+ if (!Emit("fn...")) return false;
+ ++silence_depth_;
+ if (!ParseOptionalBinder()) return false;
+ (void)Eat('U');
+ if (Eat('K')) {
+ if (!Eat('C') && !ParseUndisambiguatedIdentifier()) return false;
+ }
+ while (!Eat('E')) {
+ ABSL_DEMANGLER_RECURSE(type, kContinueParameterList);
+ }
+ ABSL_DEMANGLER_RECURSE(type, kFinishFn);
+ --silence_depth_;
+ continue;
+
+ // dyn-trait-type -> D dyn-bounds lifetime (D already consumed)
+ // dyn-bounds -> binder? dyn-trait* E
+ //
+ // The grammar strangely allows an empty trait list, even though the
+ // compiler should never output one. We follow existing demanglers in
+ // rendering DEL_ as "dyn ".
+ //
+ // Because auto traits lengthen a type name considerably without
+ // providing much value to a search for related source code, it would be
+ // desirable to abbreviate
+ // dyn main::Trait + std::marker::Copy + std::marker::Send
+ // to
+ // dyn main::Trait + ...,
+ // eliding the auto traits. But it is difficult to do so correctly, in
+ // part because there is no guarantee that the mangling will list the
+ // main trait first. So we just print all the traits in their order of
+ // appearance in the mangled name.
+ dyn_trait_type:
+ if (!Emit("dyn ")) return false;
+ if (!ParseOptionalBinder()) return false;
+ if (!Eat('E')) {
+ ABSL_DEMANGLER_RECURSE(dyn_trait, kBeginAutoTraits);
+ while (!Eat('E')) {
+ if (!Emit(" + ")) return false;
+ ABSL_DEMANGLER_RECURSE(dyn_trait, kContinueAutoTraits);
+ }
+ }
+ if (!ParseRequiredLifetime()) return false;
+ continue;
+
+ // dyn-trait -> path dyn-trait-assoc-binding*
+ // dyn-trait-assoc-binding -> p undisambiguated-identifier type
+ //
+ // We render nonempty binding lists as <>, omitting their contents as
+ // for generic-args.
+ dyn_trait:
+ ABSL_DEMANGLER_RECURSE(path, kContinueDynTrait);
+ if (Peek() == 'p') {
+ if (!Emit("<>")) return false;
+ ++silence_depth_;
+ while (Eat('p')) {
+ if (!ParseUndisambiguatedIdentifier()) return false;
+ ABSL_DEMANGLER_RECURSE(type, kContinueAssocBinding);
+ }
+ --silence_depth_;
+ }
+ continue;
+
+ // const -> type const-data | p | backref
+ //
+ // const is a C++ keyword, so we use the label `constant` instead.
+ constant:
+ if (Eat('B')) goto const_backref;
+ if (Eat('p')) {
+ if (!Emit("_")) return false;
+ continue;
+ }
+
+ // Scan the type without printing it.
+ //
+ // The Rust language restricts the type of a const generic argument
+ // much more than the mangling grammar does. We do not enforce this.
+ //
+ // We also do not bother printing false, true, 'A', and '\u{abcd}' for
+ // the types bool and char. Because we do not print generic-args
+ // contents, we expect to print constants only in array sizes, and
+ // those should not be bool or char.
+ ++silence_depth_;
+ ABSL_DEMANGLER_RECURSE(type, kConstData);
+ --silence_depth_;
+
+ // const-data -> n? hex-digit* _
+ //
+ // Although the grammar doesn't say this, existing demanglers expect
+ // that zero is 0, not an empty digit sequence, and no nonzero value
+ // may have leading zero digits. Also n0_ is accepted and printed as
+ // -0, though a toolchain will probably never write that encoding.
+ if (Eat('n') && !EmitChar('-')) return false;
+ if (!Emit("0x")) return false;
+ if (Eat('0')) {
+ if (!EmitChar('0')) return false;
+ if (!Eat('_')) return false;
+ continue;
+ }
+ while (IsLowerHexDigit(Peek())) {
+ if (!EmitChar(Take())) return false;
+ }
+ if (!Eat('_')) return false;
+ continue;
+
+ // generic-args -> I path generic-arg* E (I already consumed)
+ //
+ // We follow the C++ demangler in omitting all the arguments from the
+ // output, printing only the list opening and closing tokens.
+ generic_args:
+ ABSL_DEMANGLER_RECURSE(path, kBeginGenericArgList);
+ if (!Emit("::<>")) return false;
+ ++silence_depth_;
+ while (!Eat('E')) {
+ ABSL_DEMANGLER_RECURSE(generic_arg, kContinueGenericArgList);
+ }
+ --silence_depth_;
+ continue;
+
+ // generic-arg -> lifetime | type | K const
+ generic_arg:
+ if (Peek() == 'L') {
+ if (!ParseOptionalLifetime()) return false;
+ continue;
+ }
+ if (Eat('K')) goto constant;
+ goto type;
+
+ // backref -> B base-62-number (B already consumed)
+ //
+ // The BeginBackref call parses and range-checks the base-62-number. We
+ // always do that much.
+ //
+ // The recursive call parses and prints what the backref points at. We
+ // save CPU and stack by skipping this work if the output would be
+ // suppressed anyway.
+ path_backref:
+ if (!BeginBackref()) return false;
+ if (silence_depth_ == 0) {
+ ABSL_DEMANGLER_RECURSE(path, kPathBackrefEnding);
+ }
+ EndBackref();
+ continue;
+
+ // This represents the same backref production as in path_backref but
+ // parses the target as a type instead of a path.
+ type_backref:
+ if (!BeginBackref()) return false;
+ if (silence_depth_ == 0) {
+ ABSL_DEMANGLER_RECURSE(type, kTypeBackrefEnding);
+ }
+ EndBackref();
+ continue;
+
+ const_backref:
+ if (!BeginBackref()) return false;
+ if (silence_depth_ == 0) {
+ ABSL_DEMANGLER_RECURSE(constant, kConstantBackrefEnding);
+ }
+ EndBackref();
+ continue;
+ }
+ }
+
+ return false; // hit iteration limit or a bug in our stack handling
+ }
+
+ private:
+ // Enumerates resumption points for ABSL_DEMANGLER_RECURSE calls.
+ enum ReturnAddress : uint8_t {
+ kInstantiatingCrate,
+ kVendorSpecificSuffix,
+ kIdentifierInUppercaseNamespace,
+ kIdentifierInLowercaseNamespace,
+ kInherentImplType,
+ kInherentImplEnding,
+ kTraitImplType,
+ kTraitImplInfix,
+ kTraitImplEnding,
+ kImplPathEnding,
+ kTraitDefinitionInfix,
+ kTraitDefinitionEnding,
+ kArraySize,
+ kFinishArray,
+ kSliceEnding,
+ kAfterFirstTupleElement,
+ kAfterSecondTupleElement,
+ kAfterThirdTupleElement,
+ kAfterSubsequentTupleElement,
+ kContinueParameterList,
+ kFinishFn,
+ kBeginAutoTraits,
+ kContinueAutoTraits,
+ kContinueDynTrait,
+ kContinueAssocBinding,
+ kConstData,
+ kBeginGenericArgList,
+ kContinueGenericArgList,
+ kPathBackrefEnding,
+ kTypeBackrefEnding,
+ kConstantBackrefEnding,
+ };
+
+ // Element counts for the stack arrays. Larger stack sizes accommodate more
+ // deeply nested names at the cost of a larger footprint on the C++ call
+ // stack.
+ enum {
+ // Maximum recursive calls outstanding at one time.
+ kStackSize = 256,
+
+ // Maximum N<uppercase> nested-paths open at once. We do not expect
+ // closures inside closures inside closures as much as functions inside
+ // modules inside other modules, so we can use a smaller array here.
+ kNamespaceStackSize = 64,
+
+ // Maximum number of nested backrefs. We can keep this stack pretty small
+ // because we do not follow backrefs inside generic-args or other contexts
+ // that suppress printing, so deep stacking is unlikely in practice.
+ kPositionStackSize = 16,
+ };
+
+ // Returns the next input character without consuming it.
+ char Peek() const { return encoding_[pos_]; }
+
+ // Consumes and returns the next input character.
+ char Take() { return encoding_[pos_++]; }
+
+ // If the next input character is the given character, consumes it and returns
+ // true; otherwise returns false without consuming a character.
+ ABSL_MUST_USE_RESULT bool Eat(char want) {
+ if (encoding_[pos_] != want) return false;
+ ++pos_;
+ return true;
+ }
+
+ // Provided there is enough remaining output space, appends c to the output,
+ // writing a fresh NUL terminator afterward, and returns true. Returns false
+ // if the output buffer had less than two bytes free.
+ ABSL_MUST_USE_RESULT bool EmitChar(char c) {
+ if (silence_depth_ > 0) return true;
+ if (out_end_ - out_ < 2) return false;
+ *out_++ = c;
+ *out_ = '\0';
+ return true;
+ }
+
+ // Provided there is enough remaining output space, appends the C string token
+ // to the output, followed by a NUL character, and returns true. Returns
+ // false if not everything fit into the output buffer.
+ ABSL_MUST_USE_RESULT bool Emit(const char* token) {
+ if (silence_depth_ > 0) return true;
+ const size_t token_length = std::strlen(token);
+ const size_t bytes_to_copy = token_length + 1; // token and final NUL
+ if (static_cast<size_t>(out_end_ - out_) < bytes_to_copy) return false;
+ std::memcpy(out_, token, bytes_to_copy);
+ out_ += token_length;
+ return true;
+ }
+
+ // Provided there is enough remaining output space, appends the decimal form
+ // of disambiguator (if it's nonnegative) or "?" (if it's negative) to the
+ // output, followed by a NUL character, and returns true. Returns false if
+ // not everything fit into the output buffer.
+ ABSL_MUST_USE_RESULT bool EmitDisambiguator(int disambiguator) {
+ if (disambiguator < 0) return EmitChar('?'); // parsed but too large
+ if (disambiguator == 0) return EmitChar('0');
+ // Convert disambiguator to decimal text. Three digits per byte is enough
+ // because 999 > 256. The bound will remain correct even if future
+ // maintenance changes the type of the disambiguator variable.
+ char digits[3 * sizeof(disambiguator)] = {};
+ size_t leading_digit_index = sizeof(digits) - 1;
+ for (; disambiguator > 0; disambiguator /= 10) {
+ digits[--leading_digit_index] =
+ static_cast<char>('0' + disambiguator % 10);
+ }
+ return Emit(digits + leading_digit_index);
+ }
+
+ // Consumes an optional disambiguator (s123_) from the input.
+ //
+ // On success returns true and fills value with the encoded value if it was
+ // not too big, otherwise with -1. If the optional disambiguator was omitted,
+ // value is 0. On parse failure returns false and sets value to -1.
+ ABSL_MUST_USE_RESULT bool ParseDisambiguator(int& value) {
+ value = -1;
+
+ // disambiguator = s base-62-number
+ //
+ // Disambiguators are optional. An omitted disambiguator is zero.
+ if (!Eat('s')) {
+ value = 0;
+ return true;
+ }
+ int base_62_value = 0;
+ if (!ParseBase62Number(base_62_value)) return false;
+ value = base_62_value < 0 ? -1 : base_62_value + 1;
+ return true;
+ }
+
+ // Consumes a base-62 number like _ or 123_ from the input.
+ //
+ // On success returns true and fills value with the encoded value if it was
+ // not too big, otherwise with -1. On parse failure returns false and sets
+ // value to -1.
+ ABSL_MUST_USE_RESULT bool ParseBase62Number(int& value) {
+ value = -1;
+
+ // base-62-number = (digit | lower | upper)* _
+ //
+ // An empty base-62 digit sequence means 0.
+ if (Eat('_')) {
+ value = 0;
+ return true;
+ }
+
+ // A nonempty digit sequence denotes its base-62 value plus 1.
+ int encoded_number = 0;
+ bool overflowed = false;
+ while (IsAlpha(Peek()) || IsDigit(Peek())) {
+ const char c = Take();
+ if (encoded_number >= std::numeric_limits<int>::max()/62) {
+ // If we are close to overflowing an int, keep parsing but stop updating
+ // encoded_number and remember to return -1 at the end. The point is to
+ // avoid undefined behavior while parsing crate-root disambiguators,
+ // which are large in practice but not shown in demangling, while
+ // successfully computing closure and shim disambiguators, which are
+ // typically small and are printed out.
+ overflowed = true;
+ } else {
+ int digit;
+ if (IsDigit(c)) {
+ digit = c - '0';
+ } else if (IsLower(c)) {
+ digit = c - 'a' + 10;
+ } else {
+ digit = c - 'A' + 36;
+ }
+ encoded_number = 62 * encoded_number + digit;
+ }
+ }
+
+ if (!Eat('_')) return false;
+ if (!overflowed) value = encoded_number + 1;
+ return true;
+ }
+
+ // Consumes an identifier from the input, returning true on success.
+ //
+ // A nonzero uppercase_namespace specifies the character after the N in a
+ // nested-identifier, e.g., 'C' for a closure, allowing ParseIdentifier to
+ // write out the name with the conventional decoration for that namespace.
+ ABSL_MUST_USE_RESULT bool ParseIdentifier(char uppercase_namespace = '\0') {
+ // identifier -> disambiguator? undisambiguated-identifier
+ int disambiguator = 0;
+ if (!ParseDisambiguator(disambiguator)) return false;
+
+ return ParseUndisambiguatedIdentifier(uppercase_namespace, disambiguator);
+ }
+
+ // Consumes from the input an identifier with no preceding disambiguator,
+ // returning true on success.
+ //
+ // When ParseIdentifier calls this, it passes the N<namespace> character and
+ // disambiguator value so that "{closure#42}" and similar forms can be
+ // rendered correctly.
+ //
+ // At other appearances of undisambiguated-identifier in the grammar, this
+ // treatment is not applicable, and the call site omits both arguments.
+ ABSL_MUST_USE_RESULT bool ParseUndisambiguatedIdentifier(
+ char uppercase_namespace = '\0', int disambiguator = 0) {
+ // undisambiguated-identifier -> u? decimal-number _? bytes
+ const bool is_punycoded = Eat('u');
+ if (!IsDigit(Peek())) return false;
+ int num_bytes = 0;
+ if (!ParseDecimalNumber(num_bytes)) return false;
+ (void)Eat('_'); // optional separator, needed if a digit follows
+ if (is_punycoded) {
+ DecodeRustPunycodeOptions options;
+ options.punycode_begin = &encoding_[pos_];
+ options.punycode_end = &encoding_[pos_] + num_bytes;
+ options.out_begin = out_;
+ options.out_end = out_end_;
+ out_ = DecodeRustPunycode(options);
+ if (out_ == nullptr) return false;
+ pos_ += static_cast<size_t>(num_bytes);
+ }
+
+ // Emit the beginnings of braced forms like {shim:vtable#0}.
+ if (uppercase_namespace != '\0') {
+ switch (uppercase_namespace) {
+ case 'C':
+ if (!Emit("{closure")) return false;
+ break;
+ case 'S':
+ if (!Emit("{shim")) return false;
+ break;
+ default:
+ if (!EmitChar('{') || !EmitChar(uppercase_namespace)) return false;
+ break;
+ }
+ if (num_bytes > 0 && !Emit(":")) return false;
+ }
+
+ // Emit the name itself.
+ if (!is_punycoded) {
+ for (int i = 0; i < num_bytes; ++i) {
+ const char c = Take();
+ if (!IsIdentifierChar(c) &&
+ // The spec gives toolchains the choice of Punycode or raw UTF-8 for
+ // identifiers containing code points above 0x7f, so accept bytes
+ // with the high bit set.
+ (c & 0x80) == 0) {
+ return false;
+ }
+ if (!EmitChar(c)) return false;
+ }
+ }
+
+ // Emit the endings of braced forms, e.g., "#42}".
+ if (uppercase_namespace != '\0') {
+ if (!EmitChar('#')) return false;
+ if (!EmitDisambiguator(disambiguator)) return false;
+ if (!EmitChar('}')) return false;
+ }
+
+ return true;
+ }
+
+ // Consumes a decimal number like 0 or 123 from the input. On success returns
+ // true and fills value with the encoded value. If the encoded value is too
+ // large or otherwise unparsable, returns false and sets value to -1.
+ ABSL_MUST_USE_RESULT bool ParseDecimalNumber(int& value) {
+ value = -1;
+ if (!IsDigit(Peek())) return false;
+ int encoded_number = Take() - '0';
+ if (encoded_number == 0) {
+ // Decimal numbers are never encoded with extra leading zeroes.
+ value = 0;
+ return true;
+ }
+ while (IsDigit(Peek()) &&
+ // avoid overflow
+ encoded_number < std::numeric_limits<int>::max()/10) {
+ encoded_number = 10 * encoded_number + (Take() - '0');
+ }
+ if (IsDigit(Peek())) return false; // too big
+ value = encoded_number;
+ return true;
+ }
+
+ // Consumes a binder of higher-ranked lifetimes if one is present. On success
+ // returns true and discards the encoded lifetime count. On parse failure
+ // returns false.
+ ABSL_MUST_USE_RESULT bool ParseOptionalBinder() {
+ // binder -> G base-62-number
+ if (!Eat('G')) return true;
+ int ignored_binding_count;
+ return ParseBase62Number(ignored_binding_count);
+ }
+
+ // Consumes a lifetime if one is present.
+ //
+ // On success returns true and discards the lifetime index. We do not print
+ // or even range-check lifetimes because they are a finer detail than other
+ // things we omit from output, such as the entire contents of generic-args.
+ //
+ // On parse failure returns false.
+ ABSL_MUST_USE_RESULT bool ParseOptionalLifetime() {
+ // lifetime -> L base-62-number
+ if (!Eat('L')) return true;
+ int ignored_de_bruijn_index;
+ return ParseBase62Number(ignored_de_bruijn_index);
+ }
+
+ // Consumes a lifetime just like ParseOptionalLifetime, but returns false if
+ // there is no lifetime here.
+ ABSL_MUST_USE_RESULT bool ParseRequiredLifetime() {
+ if (Peek() != 'L') return false;
+ return ParseOptionalLifetime();
+ }
+
+ // Pushes ns onto the namespace stack and returns true if the stack is not
+ // full, else returns false.
+ ABSL_MUST_USE_RESULT bool PushNamespace(char ns) {
+ if (namespace_depth_ == kNamespaceStackSize) return false;
+ namespace_stack_[namespace_depth_++] = ns;
+ return true;
+ }
+
+ // Pops the last pushed namespace. Requires that the namespace stack is not
+ // empty (namespace_depth_ > 0).
+ char PopNamespace() { return namespace_stack_[--namespace_depth_]; }
+
+ // Pushes position onto the position stack and returns true if the stack is
+ // not full, else returns false.
+ ABSL_MUST_USE_RESULT bool PushPosition(int position) {
+ if (position_depth_ == kPositionStackSize) return false;
+ position_stack_[position_depth_++] = position;
+ return true;
+ }
+
+ // Pops the last pushed input position. Requires that the position stack is
+ // not empty (position_depth_ > 0).
+ int PopPosition() { return position_stack_[--position_depth_]; }
+
+ // Consumes a base-62-number denoting a backref target, pushes the current
+ // input position on the data stack, and sets the input position to the
+ // beginning of the backref target. Returns true on success. Returns false
+ // if parsing failed, the stack is exhausted, or the backref target position
+ // is out of range.
+ ABSL_MUST_USE_RESULT bool BeginBackref() {
+ // backref = B base-62-number (B already consumed)
+ //
+ // Reject backrefs that don't parse, overflow int, or don't point backward.
+ // If the offset looks fine, adjust it to account for the _R prefix.
+ int offset = 0;
+ const int offset_of_this_backref =
+ pos_ - 2 /* _R */ - 1 /* B already consumed */;
+ if (!ParseBase62Number(offset) || offset < 0 ||
+ offset >= offset_of_this_backref) {
+ return false;
+ }
+ offset += 2;
+
+ // Save the old position to restore later.
+ if (!PushPosition(pos_)) return false;
+
+ // Move the input position to the backref target.
+ //
+ // Note that we do not check whether the new position points to the
+ // beginning of a construct matching the context in which the backref
+ // appeared. We just jump to it and see whether nested parsing succeeds.
+ // We therefore accept various wrong manglings, e.g., a type backref
+ // pointing to an 'l' character inside an identifier, which happens to mean
+ // i32 when parsed as a type mangling. This saves the complexity and RAM
+ // footprint of remembering which offsets began which kinds of
+ // substructures. Existing demanglers take similar shortcuts.
+ pos_ = offset;
+ return true;
+ }
+
+ // Cleans up after a backref production by restoring the previous input
+ // position from the data stack.
+ void EndBackref() { pos_ = PopPosition(); }
+
+ // The leftmost recursion_depth_ elements of recursion_stack_ contain the
+ // ReturnAddresses pushed by ABSL_DEMANGLER_RECURSE calls not yet completed.
+ ReturnAddress recursion_stack_[kStackSize] = {};
+ int recursion_depth_ = 0;
+
+ // The leftmost namespace_depth_ elements of namespace_stack_ contain the
+ // uppercase namespace identifiers for open nested-paths, e.g., 'C' for a
+ // closure.
+ char namespace_stack_[kNamespaceStackSize] = {};
+ int namespace_depth_ = 0;
+
+ // The leftmost position_depth_ elements of position_stack_ contain the input
+ // positions to return to after fully printing the targets of backrefs.
+ int position_stack_[kPositionStackSize] = {};
+ int position_depth_ = 0;
+
+ // Anything parsed while silence_depth_ > 0 contributes nothing to the
+ // demangled output. For constructs omitted from the demangling, such as
+ // impl-path and the contents of generic-args, we will increment
+ // silence_depth_ on the way in and decrement silence_depth_ on the way out.
+ int silence_depth_ = 0;
+
+ // Input: encoding_ points to a Rust mangled symbol, and encoding_[pos_] is
+ // the next input character to be scanned.
+ int pos_ = 0;
+ const char* encoding_ = nullptr;
+
+ // Output: *out_ is where the next output character should be written, and
+ // out_end_ points past the last byte of available space.
+ char* out_ = nullptr;
+ char* out_end_ = nullptr;
+};
+
+} // namespace
+
+bool DemangleRustSymbolEncoding(const char* mangled, char* out,
+ size_t out_size) {
+ return RustSymbolParser(mangled, out, out + out_size).Parse();
+}
+
+} // namespace debugging_internal
+ABSL_NAMESPACE_END
+} // namespace absl