diff options
Diffstat (limited to 'absl/debugging/internal/demangle_rust.cc')
-rw-r--r-- | absl/debugging/internal/demangle_rust.cc | 925 |
1 files changed, 925 insertions, 0 deletions
diff --git a/absl/debugging/internal/demangle_rust.cc b/absl/debugging/internal/demangle_rust.cc new file mode 100644 index 00000000..4309bd84 --- /dev/null +++ b/absl/debugging/internal/demangle_rust.cc @@ -0,0 +1,925 @@ +// Copyright 2024 The Abseil Authors +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "absl/debugging/internal/demangle_rust.h" + +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <limits> + +#include "absl/base/attributes.h" +#include "absl/base/config.h" +#include "absl/debugging/internal/decode_rust_punycode.h" + +namespace absl { +ABSL_NAMESPACE_BEGIN +namespace debugging_internal { + +namespace { + +// Same step limit as the C++ demangler in demangle.cc uses. +constexpr int kMaxReturns = 1 << 17; + +bool IsDigit(char c) { return '0' <= c && c <= '9'; } +bool IsLower(char c) { return 'a' <= c && c <= 'z'; } +bool IsUpper(char c) { return 'A' <= c && c <= 'Z'; } +bool IsAlpha(char c) { return IsLower(c) || IsUpper(c); } +bool IsIdentifierChar(char c) { return IsAlpha(c) || IsDigit(c) || c == '_'; } +bool IsLowerHexDigit(char c) { return IsDigit(c) || ('a' <= c && c <= 'f'); } + +const char* BasicTypeName(char c) { + switch (c) { + case 'a': return "i8"; + case 'b': return "bool"; + case 'c': return "char"; + case 'd': return "f64"; + case 'e': return "str"; + case 'f': return "f32"; + case 'h': return "u8"; + case 'i': return "isize"; + case 'j': return "usize"; + case 'l': return "i32"; + case 'm': return "u32"; + case 'n': return "i128"; + case 'o': return "u128"; + case 'p': return "_"; + case 's': return "i16"; + case 't': return "u16"; + case 'u': return "()"; + case 'v': return "..."; + case 'x': return "i64"; + case 'y': return "u64"; + case 'z': return "!"; + } + return nullptr; +} + +// Parser for Rust symbol mangling v0, whose grammar is defined here: +// +// https://doc.rust-lang.org/rustc/symbol-mangling/v0.html#symbol-grammar-summary +class RustSymbolParser { + public: + // Prepares to demangle the given encoding, a Rust symbol name starting with + // _R, into the output buffer [out, out_end). The caller is expected to + // continue by calling the new object's Parse function. + RustSymbolParser(const char* encoding, char* out, char* const out_end) + : encoding_(encoding), out_(out), out_end_(out_end) { + if (out_ != out_end_) *out_ = '\0'; + } + + // Parses the constructor's encoding argument, writing output into the range + // [out, out_end). Returns true on success and false for input whose + // structure was not recognized or exceeded implementation limits, such as by + // nesting structures too deep. In either case *this should not be used + // again. + ABSL_MUST_USE_RESULT bool Parse() && { + // Recursively parses the grammar production named by callee, then resumes + // execution at the next statement. + // + // Recursive-descent parsing is a beautifully readable translation of a + // grammar, but it risks stack overflow if implemented by naive recursion on + // the C++ call stack. So we simulate recursion by goto and switch instead, + // keeping a bounded stack of "return addresses" in the recursion_stack_ + // member. + // + // The callee argument is a statement label. We goto that label after + // saving the "return address" on recursion_stack_. The next continue + // statement in the for loop below "returns" from this "call". + // + // The caller argument names the return point. Each value of caller must + // appear in only one ABSL_DEMANGLER_RECURSE call and be listed in the + // definition of enum ReturnAddress. The switch implements the control + // transfer from the end of a "called" subroutine back to the statement + // after the "call". + // + // Note that not all the grammar productions have to be packed into the + // switch, but only those which appear in a cycle in the grammar. Anything + // acyclic can be written as ordinary functions and function calls, e.g., + // ParseIdentifier. +#define ABSL_DEMANGLER_RECURSE(callee, caller) \ + do { \ + if (recursion_depth_ == kStackSize) return false; \ + /* The next continue will switch on this saved value ... */ \ + recursion_stack_[recursion_depth_++] = caller; \ + goto callee; \ + /* ... and will land here, resuming the suspended code. */ \ + case caller: {} \ + } while (0) + + // Parse the encoding, counting completed recursive calls to guard against + // excessively complex input and infinite-loop bugs. + int iter = 0; + goto whole_encoding; + for (; iter < kMaxReturns && recursion_depth_ > 0; ++iter) { + // This switch resumes the code path most recently suspended by + // ABSL_DEMANGLER_RECURSE. + switch (recursion_stack_[--recursion_depth_]) { + // + // symbol-name -> + // _R decimal-number? path instantiating-crate? vendor-specific-suffix? + whole_encoding: + if (!Eat('_') || !Eat('R')) return false; + // decimal-number? is always empty today, so proceed to path, which + // can't start with a decimal digit. + ABSL_DEMANGLER_RECURSE(path, kInstantiatingCrate); + if (IsAlpha(Peek())) { + ++silence_depth_; // Print nothing more from here on. + ABSL_DEMANGLER_RECURSE(path, kVendorSpecificSuffix); + } + switch (Take()) { + case '.': case '$': case '\0': return true; + } + return false; // unexpected trailing content + + // path -> crate-root | inherent-impl | trait-impl | trait-definition | + // nested-path | generic-args | backref + // + // Note that ABSL_DEMANGLER_RECURSE does not work inside a nested switch + // (which would hide the generated case label). Thus we jump out of the + // inner switch with gotos before performing any fake recursion. + path: + switch (Take()) { + case 'C': goto crate_root; + case 'M': goto inherent_impl; + case 'X': goto trait_impl; + case 'Y': goto trait_definition; + case 'N': goto nested_path; + case 'I': goto generic_args; + case 'B': goto path_backref; + default: return false; + } + + // crate-root -> C identifier (C consumed above) + crate_root: + if (!ParseIdentifier()) return false; + continue; + + // inherent-impl -> M impl-path type (M already consumed) + inherent_impl: + if (!Emit("<")) return false; + ABSL_DEMANGLER_RECURSE(impl_path, kInherentImplType); + ABSL_DEMANGLER_RECURSE(type, kInherentImplEnding); + if (!Emit(">")) return false; + continue; + + // trait-impl -> X impl-path type path (X already consumed) + trait_impl: + if (!Emit("<")) return false; + ABSL_DEMANGLER_RECURSE(impl_path, kTraitImplType); + ABSL_DEMANGLER_RECURSE(type, kTraitImplInfix); + if (!Emit(" as ")) return false; + ABSL_DEMANGLER_RECURSE(path, kTraitImplEnding); + if (!Emit(">")) return false; + continue; + + // impl-path -> disambiguator? path (but never print it!) + impl_path: + ++silence_depth_; + { + int ignored_disambiguator; + if (!ParseDisambiguator(ignored_disambiguator)) return false; + } + ABSL_DEMANGLER_RECURSE(path, kImplPathEnding); + --silence_depth_; + continue; + + // trait-definition -> Y type path (Y already consumed) + trait_definition: + if (!Emit("<")) return false; + ABSL_DEMANGLER_RECURSE(type, kTraitDefinitionInfix); + if (!Emit(" as ")) return false; + ABSL_DEMANGLER_RECURSE(path, kTraitDefinitionEnding); + if (!Emit(">")) return false; + continue; + + // nested-path -> N namespace path identifier (N already consumed) + // namespace -> lower | upper + nested_path: + // Uppercase namespaces must be saved on a stack so we can print + // ::{closure#0} or ::{shim:vtable#0} or ::{X:name#0} as needed. + if (IsUpper(Peek())) { + if (!PushNamespace(Take())) return false; + ABSL_DEMANGLER_RECURSE(path, kIdentifierInUppercaseNamespace); + if (!Emit("::")) return false; + if (!ParseIdentifier(PopNamespace())) return false; + continue; + } + + // Lowercase namespaces, however, are never represented in the output; + // they all emit just ::name. + if (IsLower(Take())) { + ABSL_DEMANGLER_RECURSE(path, kIdentifierInLowercaseNamespace); + if (!Emit("::")) return false; + if (!ParseIdentifier()) return false; + continue; + } + + // Neither upper or lower + return false; + + // type -> basic-type | array-type | slice-type | tuple-type | + // ref-type | mut-ref-type | const-ptr-type | mut-ptr-type | + // fn-type | dyn-trait-type | path | backref + // + // We use ifs instead of switch (Take()) because the default case jumps + // to path, which will need to see the first character not yet Taken + // from the input. Because we do not use a nested switch here, + // ABSL_DEMANGLER_RECURSE works fine in the 'S' case. + type: + if (IsLower(Peek())) { + const char* type_name = BasicTypeName(Take()); + if (type_name == nullptr || !Emit(type_name)) return false; + continue; + } + if (Eat('A')) { + // array-type = A type const + if (!Emit("[")) return false; + ABSL_DEMANGLER_RECURSE(type, kArraySize); + if (!Emit("; ")) return false; + ABSL_DEMANGLER_RECURSE(constant, kFinishArray); + if (!Emit("]")) return false; + continue; + } + if (Eat('S')) { + if (!Emit("[")) return false; + ABSL_DEMANGLER_RECURSE(type, kSliceEnding); + if (!Emit("]")) return false; + continue; + } + if (Eat('T')) goto tuple_type; + if (Eat('R')) { + if (!Emit("&")) return false; + if (!ParseOptionalLifetime()) return false; + goto type; + } + if (Eat('Q')) { + if (!Emit("&mut ")) return false; + if (!ParseOptionalLifetime()) return false; + goto type; + } + if (Eat('P')) { + if (!Emit("*const ")) return false; + goto type; + } + if (Eat('O')) { + if (!Emit("*mut ")) return false; + goto type; + } + if (Eat('F')) goto fn_type; + if (Eat('D')) goto dyn_trait_type; + if (Eat('B')) goto type_backref; + goto path; + + // tuple-type -> T type* E (T already consumed) + tuple_type: + if (!Emit("(")) return false; + + // The toolchain should call the unit type u instead of TE, but the + // grammar and other demanglers also recognize TE, so we do too. + if (Eat('E')) { + if (!Emit(")")) return false; + continue; + } + + // A tuple with one element is rendered (type,) instead of (type). + ABSL_DEMANGLER_RECURSE(type, kAfterFirstTupleElement); + if (Eat('E')) { + if (!Emit(",)")) return false; + continue; + } + + // A tuple with two elements is of course (x, y). + if (!Emit(", ")) return false; + ABSL_DEMANGLER_RECURSE(type, kAfterSecondTupleElement); + if (Eat('E')) { + if (!Emit(")")) return false; + continue; + } + + // And (x, y, z) for three elements. + if (!Emit(", ")) return false; + ABSL_DEMANGLER_RECURSE(type, kAfterThirdTupleElement); + if (Eat('E')) { + if (!Emit(")")) return false; + continue; + } + + // For longer tuples we write (x, y, z, ...), printing none of the + // content of the fourth and later types. Thus we avoid exhausting + // output buffers and human readers' patience when some library has a + // long tuple as an implementation detail, without having to + // completely obfuscate all tuples. + if (!Emit(", ...)")) return false; + ++silence_depth_; + while (!Eat('E')) { + ABSL_DEMANGLER_RECURSE(type, kAfterSubsequentTupleElement); + } + --silence_depth_; + continue; + + // fn-type -> F fn-sig (F already consumed) + // fn-sig -> binder? U? (K abi)? type* E type + // abi -> C | undisambiguated-identifier + // + // We follow the C++ demangler in suppressing details of function + // signatures. Every function type is rendered "fn...". + fn_type: + if (!Emit("fn...")) return false; + ++silence_depth_; + if (!ParseOptionalBinder()) return false; + (void)Eat('U'); + if (Eat('K')) { + if (!Eat('C') && !ParseUndisambiguatedIdentifier()) return false; + } + while (!Eat('E')) { + ABSL_DEMANGLER_RECURSE(type, kContinueParameterList); + } + ABSL_DEMANGLER_RECURSE(type, kFinishFn); + --silence_depth_; + continue; + + // dyn-trait-type -> D dyn-bounds lifetime (D already consumed) + // dyn-bounds -> binder? dyn-trait* E + // + // The grammar strangely allows an empty trait list, even though the + // compiler should never output one. We follow existing demanglers in + // rendering DEL_ as "dyn ". + // + // Because auto traits lengthen a type name considerably without + // providing much value to a search for related source code, it would be + // desirable to abbreviate + // dyn main::Trait + std::marker::Copy + std::marker::Send + // to + // dyn main::Trait + ..., + // eliding the auto traits. But it is difficult to do so correctly, in + // part because there is no guarantee that the mangling will list the + // main trait first. So we just print all the traits in their order of + // appearance in the mangled name. + dyn_trait_type: + if (!Emit("dyn ")) return false; + if (!ParseOptionalBinder()) return false; + if (!Eat('E')) { + ABSL_DEMANGLER_RECURSE(dyn_trait, kBeginAutoTraits); + while (!Eat('E')) { + if (!Emit(" + ")) return false; + ABSL_DEMANGLER_RECURSE(dyn_trait, kContinueAutoTraits); + } + } + if (!ParseRequiredLifetime()) return false; + continue; + + // dyn-trait -> path dyn-trait-assoc-binding* + // dyn-trait-assoc-binding -> p undisambiguated-identifier type + // + // We render nonempty binding lists as <>, omitting their contents as + // for generic-args. + dyn_trait: + ABSL_DEMANGLER_RECURSE(path, kContinueDynTrait); + if (Peek() == 'p') { + if (!Emit("<>")) return false; + ++silence_depth_; + while (Eat('p')) { + if (!ParseUndisambiguatedIdentifier()) return false; + ABSL_DEMANGLER_RECURSE(type, kContinueAssocBinding); + } + --silence_depth_; + } + continue; + + // const -> type const-data | p | backref + // + // const is a C++ keyword, so we use the label `constant` instead. + constant: + if (Eat('B')) goto const_backref; + if (Eat('p')) { + if (!Emit("_")) return false; + continue; + } + + // Scan the type without printing it. + // + // The Rust language restricts the type of a const generic argument + // much more than the mangling grammar does. We do not enforce this. + // + // We also do not bother printing false, true, 'A', and '\u{abcd}' for + // the types bool and char. Because we do not print generic-args + // contents, we expect to print constants only in array sizes, and + // those should not be bool or char. + ++silence_depth_; + ABSL_DEMANGLER_RECURSE(type, kConstData); + --silence_depth_; + + // const-data -> n? hex-digit* _ + // + // Although the grammar doesn't say this, existing demanglers expect + // that zero is 0, not an empty digit sequence, and no nonzero value + // may have leading zero digits. Also n0_ is accepted and printed as + // -0, though a toolchain will probably never write that encoding. + if (Eat('n') && !EmitChar('-')) return false; + if (!Emit("0x")) return false; + if (Eat('0')) { + if (!EmitChar('0')) return false; + if (!Eat('_')) return false; + continue; + } + while (IsLowerHexDigit(Peek())) { + if (!EmitChar(Take())) return false; + } + if (!Eat('_')) return false; + continue; + + // generic-args -> I path generic-arg* E (I already consumed) + // + // We follow the C++ demangler in omitting all the arguments from the + // output, printing only the list opening and closing tokens. + generic_args: + ABSL_DEMANGLER_RECURSE(path, kBeginGenericArgList); + if (!Emit("::<>")) return false; + ++silence_depth_; + while (!Eat('E')) { + ABSL_DEMANGLER_RECURSE(generic_arg, kContinueGenericArgList); + } + --silence_depth_; + continue; + + // generic-arg -> lifetime | type | K const + generic_arg: + if (Peek() == 'L') { + if (!ParseOptionalLifetime()) return false; + continue; + } + if (Eat('K')) goto constant; + goto type; + + // backref -> B base-62-number (B already consumed) + // + // The BeginBackref call parses and range-checks the base-62-number. We + // always do that much. + // + // The recursive call parses and prints what the backref points at. We + // save CPU and stack by skipping this work if the output would be + // suppressed anyway. + path_backref: + if (!BeginBackref()) return false; + if (silence_depth_ == 0) { + ABSL_DEMANGLER_RECURSE(path, kPathBackrefEnding); + } + EndBackref(); + continue; + + // This represents the same backref production as in path_backref but + // parses the target as a type instead of a path. + type_backref: + if (!BeginBackref()) return false; + if (silence_depth_ == 0) { + ABSL_DEMANGLER_RECURSE(type, kTypeBackrefEnding); + } + EndBackref(); + continue; + + const_backref: + if (!BeginBackref()) return false; + if (silence_depth_ == 0) { + ABSL_DEMANGLER_RECURSE(constant, kConstantBackrefEnding); + } + EndBackref(); + continue; + } + } + + return false; // hit iteration limit or a bug in our stack handling + } + + private: + // Enumerates resumption points for ABSL_DEMANGLER_RECURSE calls. + enum ReturnAddress : uint8_t { + kInstantiatingCrate, + kVendorSpecificSuffix, + kIdentifierInUppercaseNamespace, + kIdentifierInLowercaseNamespace, + kInherentImplType, + kInherentImplEnding, + kTraitImplType, + kTraitImplInfix, + kTraitImplEnding, + kImplPathEnding, + kTraitDefinitionInfix, + kTraitDefinitionEnding, + kArraySize, + kFinishArray, + kSliceEnding, + kAfterFirstTupleElement, + kAfterSecondTupleElement, + kAfterThirdTupleElement, + kAfterSubsequentTupleElement, + kContinueParameterList, + kFinishFn, + kBeginAutoTraits, + kContinueAutoTraits, + kContinueDynTrait, + kContinueAssocBinding, + kConstData, + kBeginGenericArgList, + kContinueGenericArgList, + kPathBackrefEnding, + kTypeBackrefEnding, + kConstantBackrefEnding, + }; + + // Element counts for the stack arrays. Larger stack sizes accommodate more + // deeply nested names at the cost of a larger footprint on the C++ call + // stack. + enum { + // Maximum recursive calls outstanding at one time. + kStackSize = 256, + + // Maximum N<uppercase> nested-paths open at once. We do not expect + // closures inside closures inside closures as much as functions inside + // modules inside other modules, so we can use a smaller array here. + kNamespaceStackSize = 64, + + // Maximum number of nested backrefs. We can keep this stack pretty small + // because we do not follow backrefs inside generic-args or other contexts + // that suppress printing, so deep stacking is unlikely in practice. + kPositionStackSize = 16, + }; + + // Returns the next input character without consuming it. + char Peek() const { return encoding_[pos_]; } + + // Consumes and returns the next input character. + char Take() { return encoding_[pos_++]; } + + // If the next input character is the given character, consumes it and returns + // true; otherwise returns false without consuming a character. + ABSL_MUST_USE_RESULT bool Eat(char want) { + if (encoding_[pos_] != want) return false; + ++pos_; + return true; + } + + // Provided there is enough remaining output space, appends c to the output, + // writing a fresh NUL terminator afterward, and returns true. Returns false + // if the output buffer had less than two bytes free. + ABSL_MUST_USE_RESULT bool EmitChar(char c) { + if (silence_depth_ > 0) return true; + if (out_end_ - out_ < 2) return false; + *out_++ = c; + *out_ = '\0'; + return true; + } + + // Provided there is enough remaining output space, appends the C string token + // to the output, followed by a NUL character, and returns true. Returns + // false if not everything fit into the output buffer. + ABSL_MUST_USE_RESULT bool Emit(const char* token) { + if (silence_depth_ > 0) return true; + const size_t token_length = std::strlen(token); + const size_t bytes_to_copy = token_length + 1; // token and final NUL + if (static_cast<size_t>(out_end_ - out_) < bytes_to_copy) return false; + std::memcpy(out_, token, bytes_to_copy); + out_ += token_length; + return true; + } + + // Provided there is enough remaining output space, appends the decimal form + // of disambiguator (if it's nonnegative) or "?" (if it's negative) to the + // output, followed by a NUL character, and returns true. Returns false if + // not everything fit into the output buffer. + ABSL_MUST_USE_RESULT bool EmitDisambiguator(int disambiguator) { + if (disambiguator < 0) return EmitChar('?'); // parsed but too large + if (disambiguator == 0) return EmitChar('0'); + // Convert disambiguator to decimal text. Three digits per byte is enough + // because 999 > 256. The bound will remain correct even if future + // maintenance changes the type of the disambiguator variable. + char digits[3 * sizeof(disambiguator)] = {}; + size_t leading_digit_index = sizeof(digits) - 1; + for (; disambiguator > 0; disambiguator /= 10) { + digits[--leading_digit_index] = + static_cast<char>('0' + disambiguator % 10); + } + return Emit(digits + leading_digit_index); + } + + // Consumes an optional disambiguator (s123_) from the input. + // + // On success returns true and fills value with the encoded value if it was + // not too big, otherwise with -1. If the optional disambiguator was omitted, + // value is 0. On parse failure returns false and sets value to -1. + ABSL_MUST_USE_RESULT bool ParseDisambiguator(int& value) { + value = -1; + + // disambiguator = s base-62-number + // + // Disambiguators are optional. An omitted disambiguator is zero. + if (!Eat('s')) { + value = 0; + return true; + } + int base_62_value = 0; + if (!ParseBase62Number(base_62_value)) return false; + value = base_62_value < 0 ? -1 : base_62_value + 1; + return true; + } + + // Consumes a base-62 number like _ or 123_ from the input. + // + // On success returns true and fills value with the encoded value if it was + // not too big, otherwise with -1. On parse failure returns false and sets + // value to -1. + ABSL_MUST_USE_RESULT bool ParseBase62Number(int& value) { + value = -1; + + // base-62-number = (digit | lower | upper)* _ + // + // An empty base-62 digit sequence means 0. + if (Eat('_')) { + value = 0; + return true; + } + + // A nonempty digit sequence denotes its base-62 value plus 1. + int encoded_number = 0; + bool overflowed = false; + while (IsAlpha(Peek()) || IsDigit(Peek())) { + const char c = Take(); + if (encoded_number >= std::numeric_limits<int>::max()/62) { + // If we are close to overflowing an int, keep parsing but stop updating + // encoded_number and remember to return -1 at the end. The point is to + // avoid undefined behavior while parsing crate-root disambiguators, + // which are large in practice but not shown in demangling, while + // successfully computing closure and shim disambiguators, which are + // typically small and are printed out. + overflowed = true; + } else { + int digit; + if (IsDigit(c)) { + digit = c - '0'; + } else if (IsLower(c)) { + digit = c - 'a' + 10; + } else { + digit = c - 'A' + 36; + } + encoded_number = 62 * encoded_number + digit; + } + } + + if (!Eat('_')) return false; + if (!overflowed) value = encoded_number + 1; + return true; + } + + // Consumes an identifier from the input, returning true on success. + // + // A nonzero uppercase_namespace specifies the character after the N in a + // nested-identifier, e.g., 'C' for a closure, allowing ParseIdentifier to + // write out the name with the conventional decoration for that namespace. + ABSL_MUST_USE_RESULT bool ParseIdentifier(char uppercase_namespace = '\0') { + // identifier -> disambiguator? undisambiguated-identifier + int disambiguator = 0; + if (!ParseDisambiguator(disambiguator)) return false; + + return ParseUndisambiguatedIdentifier(uppercase_namespace, disambiguator); + } + + // Consumes from the input an identifier with no preceding disambiguator, + // returning true on success. + // + // When ParseIdentifier calls this, it passes the N<namespace> character and + // disambiguator value so that "{closure#42}" and similar forms can be + // rendered correctly. + // + // At other appearances of undisambiguated-identifier in the grammar, this + // treatment is not applicable, and the call site omits both arguments. + ABSL_MUST_USE_RESULT bool ParseUndisambiguatedIdentifier( + char uppercase_namespace = '\0', int disambiguator = 0) { + // undisambiguated-identifier -> u? decimal-number _? bytes + const bool is_punycoded = Eat('u'); + if (!IsDigit(Peek())) return false; + int num_bytes = 0; + if (!ParseDecimalNumber(num_bytes)) return false; + (void)Eat('_'); // optional separator, needed if a digit follows + if (is_punycoded) { + DecodeRustPunycodeOptions options; + options.punycode_begin = &encoding_[pos_]; + options.punycode_end = &encoding_[pos_] + num_bytes; + options.out_begin = out_; + options.out_end = out_end_; + out_ = DecodeRustPunycode(options); + if (out_ == nullptr) return false; + pos_ += static_cast<size_t>(num_bytes); + } + + // Emit the beginnings of braced forms like {shim:vtable#0}. + if (uppercase_namespace != '\0') { + switch (uppercase_namespace) { + case 'C': + if (!Emit("{closure")) return false; + break; + case 'S': + if (!Emit("{shim")) return false; + break; + default: + if (!EmitChar('{') || !EmitChar(uppercase_namespace)) return false; + break; + } + if (num_bytes > 0 && !Emit(":")) return false; + } + + // Emit the name itself. + if (!is_punycoded) { + for (int i = 0; i < num_bytes; ++i) { + const char c = Take(); + if (!IsIdentifierChar(c) && + // The spec gives toolchains the choice of Punycode or raw UTF-8 for + // identifiers containing code points above 0x7f, so accept bytes + // with the high bit set. + (c & 0x80) == 0) { + return false; + } + if (!EmitChar(c)) return false; + } + } + + // Emit the endings of braced forms, e.g., "#42}". + if (uppercase_namespace != '\0') { + if (!EmitChar('#')) return false; + if (!EmitDisambiguator(disambiguator)) return false; + if (!EmitChar('}')) return false; + } + + return true; + } + + // Consumes a decimal number like 0 or 123 from the input. On success returns + // true and fills value with the encoded value. If the encoded value is too + // large or otherwise unparsable, returns false and sets value to -1. + ABSL_MUST_USE_RESULT bool ParseDecimalNumber(int& value) { + value = -1; + if (!IsDigit(Peek())) return false; + int encoded_number = Take() - '0'; + if (encoded_number == 0) { + // Decimal numbers are never encoded with extra leading zeroes. + value = 0; + return true; + } + while (IsDigit(Peek()) && + // avoid overflow + encoded_number < std::numeric_limits<int>::max()/10) { + encoded_number = 10 * encoded_number + (Take() - '0'); + } + if (IsDigit(Peek())) return false; // too big + value = encoded_number; + return true; + } + + // Consumes a binder of higher-ranked lifetimes if one is present. On success + // returns true and discards the encoded lifetime count. On parse failure + // returns false. + ABSL_MUST_USE_RESULT bool ParseOptionalBinder() { + // binder -> G base-62-number + if (!Eat('G')) return true; + int ignored_binding_count; + return ParseBase62Number(ignored_binding_count); + } + + // Consumes a lifetime if one is present. + // + // On success returns true and discards the lifetime index. We do not print + // or even range-check lifetimes because they are a finer detail than other + // things we omit from output, such as the entire contents of generic-args. + // + // On parse failure returns false. + ABSL_MUST_USE_RESULT bool ParseOptionalLifetime() { + // lifetime -> L base-62-number + if (!Eat('L')) return true; + int ignored_de_bruijn_index; + return ParseBase62Number(ignored_de_bruijn_index); + } + + // Consumes a lifetime just like ParseOptionalLifetime, but returns false if + // there is no lifetime here. + ABSL_MUST_USE_RESULT bool ParseRequiredLifetime() { + if (Peek() != 'L') return false; + return ParseOptionalLifetime(); + } + + // Pushes ns onto the namespace stack and returns true if the stack is not + // full, else returns false. + ABSL_MUST_USE_RESULT bool PushNamespace(char ns) { + if (namespace_depth_ == kNamespaceStackSize) return false; + namespace_stack_[namespace_depth_++] = ns; + return true; + } + + // Pops the last pushed namespace. Requires that the namespace stack is not + // empty (namespace_depth_ > 0). + char PopNamespace() { return namespace_stack_[--namespace_depth_]; } + + // Pushes position onto the position stack and returns true if the stack is + // not full, else returns false. + ABSL_MUST_USE_RESULT bool PushPosition(int position) { + if (position_depth_ == kPositionStackSize) return false; + position_stack_[position_depth_++] = position; + return true; + } + + // Pops the last pushed input position. Requires that the position stack is + // not empty (position_depth_ > 0). + int PopPosition() { return position_stack_[--position_depth_]; } + + // Consumes a base-62-number denoting a backref target, pushes the current + // input position on the data stack, and sets the input position to the + // beginning of the backref target. Returns true on success. Returns false + // if parsing failed, the stack is exhausted, or the backref target position + // is out of range. + ABSL_MUST_USE_RESULT bool BeginBackref() { + // backref = B base-62-number (B already consumed) + // + // Reject backrefs that don't parse, overflow int, or don't point backward. + // If the offset looks fine, adjust it to account for the _R prefix. + int offset = 0; + const int offset_of_this_backref = + pos_ - 2 /* _R */ - 1 /* B already consumed */; + if (!ParseBase62Number(offset) || offset < 0 || + offset >= offset_of_this_backref) { + return false; + } + offset += 2; + + // Save the old position to restore later. + if (!PushPosition(pos_)) return false; + + // Move the input position to the backref target. + // + // Note that we do not check whether the new position points to the + // beginning of a construct matching the context in which the backref + // appeared. We just jump to it and see whether nested parsing succeeds. + // We therefore accept various wrong manglings, e.g., a type backref + // pointing to an 'l' character inside an identifier, which happens to mean + // i32 when parsed as a type mangling. This saves the complexity and RAM + // footprint of remembering which offsets began which kinds of + // substructures. Existing demanglers take similar shortcuts. + pos_ = offset; + return true; + } + + // Cleans up after a backref production by restoring the previous input + // position from the data stack. + void EndBackref() { pos_ = PopPosition(); } + + // The leftmost recursion_depth_ elements of recursion_stack_ contain the + // ReturnAddresses pushed by ABSL_DEMANGLER_RECURSE calls not yet completed. + ReturnAddress recursion_stack_[kStackSize] = {}; + int recursion_depth_ = 0; + + // The leftmost namespace_depth_ elements of namespace_stack_ contain the + // uppercase namespace identifiers for open nested-paths, e.g., 'C' for a + // closure. + char namespace_stack_[kNamespaceStackSize] = {}; + int namespace_depth_ = 0; + + // The leftmost position_depth_ elements of position_stack_ contain the input + // positions to return to after fully printing the targets of backrefs. + int position_stack_[kPositionStackSize] = {}; + int position_depth_ = 0; + + // Anything parsed while silence_depth_ > 0 contributes nothing to the + // demangled output. For constructs omitted from the demangling, such as + // impl-path and the contents of generic-args, we will increment + // silence_depth_ on the way in and decrement silence_depth_ on the way out. + int silence_depth_ = 0; + + // Input: encoding_ points to a Rust mangled symbol, and encoding_[pos_] is + // the next input character to be scanned. + int pos_ = 0; + const char* encoding_ = nullptr; + + // Output: *out_ is where the next output character should be written, and + // out_end_ points past the last byte of available space. + char* out_ = nullptr; + char* out_end_ = nullptr; +}; + +} // namespace + +bool DemangleRustSymbolEncoding(const char* mangled, char* out, + size_t out_size) { + return RustSymbolParser(mangled, out, out + out_size).Parse(); +} + +} // namespace debugging_internal +ABSL_NAMESPACE_END +} // namespace absl |