summaryrefslogtreecommitdiff
path: root/absl/container/inlined_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/inlined_vector.h')
-rw-r--r--absl/container/inlined_vector.h1255
1 files changed, 659 insertions, 596 deletions
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
index 183ade54..37714baf 100644
--- a/absl/container/inlined_vector.h
+++ b/absl/container/inlined_vector.h
@@ -1,4 +1,4 @@
-// Copyright 2017 The Abseil Authors.
+// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -20,17 +20,17 @@
// vector" which behaves in an equivalent fashion to a `std::vector`, except
// that storage for small sequences of the vector are provided inline without
// requiring any heap allocation.
-
-// An `absl::InlinedVector<T,N>` specifies the size N at which to inline as one
-// of its template parameters. Vectors of length <= N are provided inline.
-// Typically N is very small (e.g., 4) so that sequences that are expected to be
-// short do not require allocations.
-
-// An `absl::InlinedVector` does not usually require a specific allocator; if
+//
+// An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
+// its template parameters. Instances where `size() <= N` hold contained
+// elements in inline space. Typically `N` is very small so that sequences that
+// are expected to be short do not require allocations.
+//
+// An `absl::InlinedVector` does not usually require a specific allocator. If
// the inlined vector grows beyond its initial constraints, it will need to
-// allocate (as any normal `std::vector` would) and it will generally use the
-// default allocator in that case; optionally, a custom allocator may be
-// specified using an `absl::InlinedVector<T,N,A>` construction.
+// allocate (as any normal `std::vector` would). This is usually performed with
+// the default allocator (defined as `std::allocator<T>`). Optionally, a custom
+// allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
#ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
#define ABSL_CONTAINER_INLINED_VECTOR_H_
@@ -53,7 +53,7 @@
#include "absl/memory/memory.h"
namespace absl {
-inline namespace lts_2018_06_20 {
+inline namespace lts_2018_12_18 {
// -----------------------------------------------------------------------------
// InlinedVector
@@ -62,12 +62,30 @@ inline namespace lts_2018_06_20 {
// An `absl::InlinedVector` is designed to be a drop-in replacement for
// `std::vector` for use cases where the vector's size is sufficiently small
// that it can be inlined. If the inlined vector does grow beyond its estimated
-// size, it will trigger an initial allocation on the heap, and will behave as a
-// `std:vector`. The API of the `absl::InlinedVector` within this file is
+// capacity, it will trigger an initial allocation on the heap, and will behave
+// as a `std:vector`. The API of the `absl::InlinedVector` within this file is
// designed to cover the same API footprint as covered by `std::vector`.
-template <typename T, size_t N, typename A = std::allocator<T> >
+template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
- using AllocatorTraits = std::allocator_traits<A>;
+ static_assert(N > 0, "InlinedVector requires inline capacity greater than 0");
+ constexpr static typename A::size_type inlined_capacity() {
+ return static_cast<typename A::size_type>(N);
+ }
+
+ template <typename Iterator>
+ using DisableIfIntegral =
+ absl::enable_if_t<!std::is_integral<Iterator>::value>;
+
+ template <typename Iterator>
+ using EnableIfInputIterator = absl::enable_if_t<std::is_convertible<
+ typename std::iterator_traits<Iterator>::iterator_category,
+ std::input_iterator_tag>::value>;
+
+ template <typename Iterator>
+ using IteratorCategory =
+ typename std::iterator_traits<Iterator>::iterator_category;
+
+ using rvalue_reference = typename A::value_type&&;
public:
using allocator_type = A;
@@ -83,51 +101,64 @@ class InlinedVector {
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ // ---------------------------------------------------------------------------
+ // InlinedVector Constructors and Destructor
+ // ---------------------------------------------------------------------------
+
+ // Creates an empty inlined vector with a default initialized allocator.
InlinedVector() noexcept(noexcept(allocator_type()))
: allocator_and_tag_(allocator_type()) {}
+ // Creates an empty inlined vector with a specified allocator.
explicit InlinedVector(const allocator_type& alloc) noexcept
: allocator_and_tag_(alloc) {}
- // Create a vector with n copies of value_type().
- explicit InlinedVector(size_type n) : allocator_and_tag_(allocator_type()) {
+ // Creates an inlined vector with `n` copies of `value_type()`.
+ explicit InlinedVector(size_type n,
+ const allocator_type& alloc = allocator_type())
+ : allocator_and_tag_(alloc) {
InitAssign(n);
}
- // Create a vector with n copies of elem
- InlinedVector(size_type n, const value_type& elem,
+ // Creates an inlined vector with `n` copies of `v`.
+ InlinedVector(size_type n, const_reference v,
const allocator_type& alloc = allocator_type())
: allocator_and_tag_(alloc) {
- InitAssign(n, elem);
+ InitAssign(n, v);
}
- // Create and initialize with the elements [first .. last).
- // The unused enable_if argument restricts this constructor so that it is
- // elided when value_type is an integral type. This prevents ambiguous
- // interpretation between a call to this constructor with two integral
- // arguments and a call to the preceding (n, elem) constructor.
- template <typename InputIterator>
- InlinedVector(
- InputIterator first, InputIterator last,
- const allocator_type& alloc = allocator_type(),
- typename std::enable_if<!std::is_integral<InputIterator>::value>::type* =
- nullptr)
+ // Creates an inlined vector of copies of the values in `init_list`.
+ InlinedVector(std::initializer_list<value_type> init_list,
+ const allocator_type& alloc = allocator_type())
: allocator_and_tag_(alloc) {
- AppendRange(first, last);
+ AppendRange(init_list.begin(), init_list.end(),
+ IteratorCategory<decltype(init_list.begin())>{});
}
- InlinedVector(std::initializer_list<value_type> init,
+ // Creates an inlined vector with elements constructed from the provided
+ // Iterator range [`first`, `last`).
+ //
+ // NOTE: The `enable_if` prevents ambiguous interpretation between a call to
+ // this constructor with two integral arguments and a call to the above
+ // `InlinedVector(size_type, const_reference)` constructor.
+ template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
+ InlinedVector(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type())
: allocator_and_tag_(alloc) {
- AppendRange(init.begin(), init.end());
+ AppendRange(first, last, IteratorCategory<InputIterator>{});
}
- InlinedVector(const InlinedVector& v);
- InlinedVector(const InlinedVector& v, const allocator_type& alloc);
+ // Creates a copy of `other` using `other`'s allocator.
+ InlinedVector(const InlinedVector& other);
- // This move constructor does not allocate and only moves the underlying
+ // Creates a copy of `other` but with a specified allocator.
+ InlinedVector(const InlinedVector& other, const allocator_type& alloc);
+
+ // Creates an inlined vector by moving in the contents of `other`.
+ //
+ // NOTE: This move constructor does not allocate and only moves the underlying
// objects, so its `noexcept` specification depends on whether moving the
- // underlying objects can throw or not. We assume
+ // underlying objects can throw or not. We assume:
// a) move constructors should only throw due to allocation failure and
// b) if `value_type`'s move constructor allocates, it uses the same
// allocation function as the `InlinedVector`'s allocator, so the move
@@ -137,408 +168,422 @@ class InlinedVector {
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value);
- // This move constructor allocates and also moves the underlying objects, so
- // its `noexcept` specification depends on whether the allocation can throw
- // and whether moving the underlying objects can throw. Based on the same
- // assumptions above, the `noexcept` specification is dominated by whether the
- // allocation can throw regardless of whether `value_type`'s move constructor
- // is specified as `noexcept`.
+ // Creates an inlined vector by moving in the contents of `other`.
+ //
+ // NOTE: This move constructor allocates and subsequently moves the underlying
+ // objects, so its `noexcept` specification depends on whether the allocation
+ // can throw and whether moving the underlying objects can throw. Based on the
+ // same assumptions as above, the `noexcept` specification is dominated by
+ // whether the allocation can throw regardless of whether `value_type`'s move
+ // constructor is specified as `noexcept`.
InlinedVector(InlinedVector&& v, const allocator_type& alloc) noexcept(
absl::allocator_is_nothrow<allocator_type>::value);
~InlinedVector() { clear(); }
- InlinedVector& operator=(const InlinedVector& v) {
- if (this == &v) {
- return *this;
- }
- // Optimized to avoid reallocation.
- // Prefer reassignment to copy construction for elements.
- if (size() < v.size()) { // grow
- reserve(v.size());
- std::copy(v.begin(), v.begin() + size(), begin());
- std::copy(v.begin() + size(), v.end(), std::back_inserter(*this));
- } else { // maybe shrink
- erase(begin() + v.size(), end());
- std::copy(v.begin(), v.end(), begin());
- }
- return *this;
- }
-
- InlinedVector& operator=(InlinedVector&& v) {
- if (this == &v) {
- return *this;
- }
- if (v.allocated()) {
- clear();
- tag().set_allocated_size(v.size());
- init_allocation(v.allocation());
- v.tag() = Tag();
- } else {
- if (allocated()) clear();
- // Both are inlined now.
- if (size() < v.size()) {
- auto mid = std::make_move_iterator(v.begin() + size());
- std::copy(std::make_move_iterator(v.begin()), mid, begin());
- UninitializedCopy(mid, std::make_move_iterator(v.end()), end());
- } else {
- auto new_end = std::copy(std::make_move_iterator(v.begin()),
- std::make_move_iterator(v.end()), begin());
- Destroy(new_end, end());
- }
- tag().set_inline_size(v.size());
- }
- return *this;
- }
-
- InlinedVector& operator=(std::initializer_list<value_type> init) {
- AssignRange(init.begin(), init.end());
- return *this;
- }
+ // ---------------------------------------------------------------------------
+ // InlinedVector Member Accessors
+ // ---------------------------------------------------------------------------
- // InlinedVector::assign()
+ // `InlinedVector::empty()`
//
- // Replaces the contents of the inlined vector with copies of those in the
- // iterator range [first, last).
- template <typename InputIterator>
- void assign(
- InputIterator first, InputIterator last,
- typename std::enable_if<!std::is_integral<InputIterator>::value>::type* =
- nullptr) {
- AssignRange(first, last);
- }
-
- // Overload of `InlinedVector::assign()` to take values from elements of an
- // initializer list
- void assign(std::initializer_list<value_type> init) {
- AssignRange(init.begin(), init.end());
- }
-
- // Overload of `InlinedVector::assign()` to replace the first `n` elements of
- // the inlined vector with `elem` values.
- void assign(size_type n, const value_type& elem) {
- if (n <= size()) { // Possibly shrink
- std::fill_n(begin(), n, elem);
- erase(begin() + n, end());
- return;
- }
- // Grow
- reserve(n);
- std::fill_n(begin(), size(), elem);
- if (allocated()) {
- UninitializedFill(allocated_space() + size(), allocated_space() + n,
- elem);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space() + size(), inlined_space() + n, elem);
- tag().set_inline_size(n);
- }
- }
+ // Checks if the inlined vector has no elements.
+ bool empty() const noexcept { return !size(); }
- // InlinedVector::size()
+ // `InlinedVector::size()`
//
// Returns the number of elements in the inlined vector.
size_type size() const noexcept { return tag().size(); }
- // InlinedVector::empty()
- //
- // Checks if the inlined vector has no elements.
- bool empty() const noexcept { return (size() == 0); }
-
- // InlinedVector::capacity()
- //
- // Returns the number of elements that can be stored in an inlined vector
- // without requiring a reallocation of underlying memory. Note that for
- // most inlined vectors, `capacity()` should equal its initial size `N`; for
- // inlined vectors which exceed this capacity, they will no longer be inlined,
- // and `capacity()` will equal its capacity on the allocated heap.
- size_type capacity() const noexcept {
- return allocated() ? allocation().capacity() : N;
- }
-
- // InlinedVector::max_size()
+ // `InlinedVector::max_size()`
//
// Returns the maximum number of elements the vector can hold.
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
- // vector is allocated; as a result, the maximum size of the container that
- // we can express is half of the max for our size type.
- return std::numeric_limits<size_type>::max() / 2;
+ // vector is allocated. As a result, the maximum size of the container that
+ // we can express is half of the max for `size_type`.
+ return (std::numeric_limits<size_type>::max)() / 2;
}
- // InlinedVector::data()
+ // `InlinedVector::capacity()`
//
- // Returns a const T* pointer to elements of the inlined vector. This pointer
- // can be used to access (but not modify) the contained elements.
- // Only results within the range `[0,size())` are defined.
- const_pointer data() const noexcept {
- return allocated() ? allocated_space() : inlined_space();
+ // Returns the number of elements that can be stored in the inlined vector
+ // without requiring a reallocation of underlying memory.
+ //
+ // NOTE: For most inlined vectors, `capacity()` should equal
+ // `inlined_capacity()`. For inlined vectors which exceed this capacity, they
+ // will no longer be inlined and `capacity()` will equal its capacity on the
+ // allocated heap.
+ size_type capacity() const noexcept {
+ return allocated() ? allocation().capacity() : inlined_capacity();
}
- // Overload of InlinedVector::data() to return a T* pointer to elements of the
- // inlined vector. This pointer can be used to access and modify the contained
- // elements.
+ // `InlinedVector::data()`
+ //
+ // Returns a `pointer` to elements of the inlined vector. This pointer can be
+ // used to access and modify the contained elements.
+ // Only results within the range [`0`, `size()`) are defined.
pointer data() noexcept {
return allocated() ? allocated_space() : inlined_space();
}
- // InlinedVector::clear()
- //
- // Removes all elements from the inlined vector.
- void clear() noexcept {
- size_type s = size();
- if (allocated()) {
- Destroy(allocated_space(), allocated_space() + s);
- allocation().Dealloc(allocator());
- } else if (s != 0) { // do nothing for empty vectors
- Destroy(inlined_space(), inlined_space() + s);
- }
- tag() = Tag();
+ // Overload of `InlinedVector::data()` to return a `const_pointer` to elements
+ // of the inlined vector. This pointer can be used to access (but not modify)
+ // the contained elements.
+ const_pointer data() const noexcept {
+ return allocated() ? allocated_space() : inlined_space();
}
- // InlinedVector::at()
+ // `InlinedVector::operator[]()`
//
- // Returns the ith element of an inlined vector.
- const value_type& at(size_type i) const {
- if (ABSL_PREDICT_FALSE(i >= size())) {
- base_internal::ThrowStdOutOfRange(
- "InlinedVector::at failed bounds check");
- }
+ // Returns a `reference` to the `i`th element of the inlined vector using the
+ // array operator.
+ reference operator[](size_type i) {
+ assert(i < size());
return data()[i];
}
- // InlinedVector::operator[]
- //
- // Returns the ith element of an inlined vector using the array operator.
- const value_type& operator[](size_type i) const {
+ // Overload of `InlinedVector::operator[]()` to return a `const_reference` to
+ // the `i`th element of the inlined vector.
+ const_reference operator[](size_type i) const {
assert(i < size());
return data()[i];
}
- // Overload of InlinedVector::at() to return the ith element of an inlined
- // vector.
- value_type& at(size_type i) {
- if (i >= size()) {
+ // `InlinedVector::at()`
+ //
+ // Returns a `reference` to the `i`th element of the inlined vector.
+ reference at(size_type i) {
+ if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
- "InlinedVector::at failed bounds check");
+ "InlinedVector::at() failed bounds check");
}
return data()[i];
}
- // Overload of InlinedVector::operator[] to return the ith element of an
- // inlined vector.
- value_type& operator[](size_type i) {
- assert(i < size());
+ // Overload of `InlinedVector::at()` to return a `const_reference` to the
+ // `i`th element of the inlined vector.
+ const_reference at(size_type i) const {
+ if (ABSL_PREDICT_FALSE(i >= size())) {
+ base_internal::ThrowStdOutOfRange(
+ "InlinedVector::at() failed bounds check");
+ }
return data()[i];
}
- // InlinedVector::back()
- //
- // Returns a reference to the last element of an inlined vector.
- value_type& back() {
- assert(!empty());
- return at(size() - 1);
- }
-
- // Overload of InlinedVector::back() returns a reference to the last element
- // of an inlined vector of const values.
- const value_type& back() const {
- assert(!empty());
- return at(size() - 1);
- }
-
- // InlinedVector::front()
+ // `InlinedVector::front()`
//
- // Returns a reference to the first element of an inlined vector.
- value_type& front() {
+ // Returns a `reference` to the first element of the inlined vector.
+ reference front() {
assert(!empty());
return at(0);
}
- // Overload of InlinedVector::front() returns a reference to the first element
- // of an inlined vector of const values.
- const value_type& front() const {
+ // Overload of `InlinedVector::front()` returns a `const_reference` to the
+ // first element of the inlined vector.
+ const_reference front() const {
assert(!empty());
return at(0);
}
- // InlinedVector::emplace_back()
+ // `InlinedVector::back()`
//
- // Constructs and appends an object to the inlined vector.
- //
- // Returns a reference to the inserted element.
- template <typename... Args>
- value_type& emplace_back(Args&&... args) {
- size_type s = size();
- assert(s <= capacity());
- if (ABSL_PREDICT_FALSE(s == capacity())) {
- return GrowAndEmplaceBack(std::forward<Args>(args)...);
- }
- assert(s < capacity());
-
- value_type* space;
- if (allocated()) {
- tag().set_allocated_size(s + 1);
- space = allocated_space();
- } else {
- tag().set_inline_size(s + 1);
- space = inlined_space();
- }
- return Construct(space + s, std::forward<Args>(args)...);
+ // Returns a `reference` to the last element of the inlined vector.
+ reference back() {
+ assert(!empty());
+ return at(size() - 1);
}
- // InlinedVector::push_back()
- //
- // Appends a const element to the inlined vector.
- void push_back(const value_type& t) { emplace_back(t); }
-
- // Overload of InlinedVector::push_back() to append a move-only element to the
- // inlined vector.
- void push_back(value_type&& t) { emplace_back(std::move(t)); }
-
- // InlinedVector::pop_back()
- //
- // Removes the last element (which is destroyed) in the inlined vector.
- void pop_back() {
+ // Overload of `InlinedVector::back()` to return a `const_reference` to the
+ // last element of the inlined vector.
+ const_reference back() const {
assert(!empty());
- size_type s = size();
- if (allocated()) {
- Destroy(allocated_space() + s - 1, allocated_space() + s);
- tag().set_allocated_size(s - 1);
- } else {
- Destroy(inlined_space() + s - 1, inlined_space() + s);
- tag().set_inline_size(s - 1);
- }
+ return at(size() - 1);
}
- // InlinedVector::resize()
+ // `InlinedVector::begin()`
//
- // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
- // the inlined vector's current size, extra elements are destroyed. If `n` is
- // larger than the initial size, new elements are value-initialized.
- void resize(size_type n);
-
- // Overload of InlinedVector::resize() to resize the inlined vector to contain
- // `n` elements. If `n` is larger than the current size, enough copies of
- // `elem` are appended to increase its size to `n`.
- void resize(size_type n, const value_type& elem);
-
- // InlinedVector::begin()
- //
- // Returns an iterator to the beginning of the inlined vector.
+ // Returns an `iterator` to the beginning of the inlined vector.
iterator begin() noexcept { return data(); }
- // Overload of InlinedVector::begin() for returning a const iterator to the
- // beginning of the inlined vector.
+ // Overload of `InlinedVector::begin()` to return a `const_iterator` to
+ // the beginning of the inlined vector.
const_iterator begin() const noexcept { return data(); }
- // InlinedVector::cbegin()
- //
- // Returns a const iterator to the beginning of the inlined vector.
- const_iterator cbegin() const noexcept { return begin(); }
-
- // InlinedVector::end()
+ // `InlinedVector::end()`
//
- // Returns an iterator to the end of the inlined vector.
+ // Returns an `iterator` to the end of the inlined vector.
iterator end() noexcept { return data() + size(); }
- // Overload of InlinedVector::end() for returning a const iterator to the end
- // of the inlined vector.
+ // Overload of `InlinedVector::end()` to return a `const_iterator` to the
+ // end of the inlined vector.
const_iterator end() const noexcept { return data() + size(); }
- // InlinedVector::cend()
+ // `InlinedVector::cbegin()`
+ //
+ // Returns a `const_iterator` to the beginning of the inlined vector.
+ const_iterator cbegin() const noexcept { return begin(); }
+
+ // `InlinedVector::cend()`
//
- // Returns a const iterator to the end of the inlined vector.
+ // Returns a `const_iterator` to the end of the inlined vector.
const_iterator cend() const noexcept { return end(); }
- // InlinedVector::rbegin()
+ // `InlinedVector::rbegin()`
//
- // Returns a reverse iterator from the end of the inlined vector.
+ // Returns a `reverse_iterator` from the end of the inlined vector.
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
- // Overload of InlinedVector::rbegin() for returning a const reverse iterator
- // from the end of the inlined vector.
+ // Overload of `InlinedVector::rbegin()` to return a
+ // `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
}
- // InlinedVector::crbegin()
+ // `InlinedVector::rend()`
//
- // Returns a const reverse iterator from the end of the inlined vector.
- const_reverse_iterator crbegin() const noexcept { return rbegin(); }
-
- // InlinedVector::rend()
- //
- // Returns a reverse iterator from the beginning of the inlined vector.
+ // Returns a `reverse_iterator` from the beginning of the inlined vector.
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
- // Overload of InlinedVector::rend() for returning a const reverse iterator
+ // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
// from the beginning of the inlined vector.
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
}
- // InlinedVector::crend()
+ // `InlinedVector::crbegin()`
//
- // Returns a reverse iterator from the beginning of the inlined vector.
+ // Returns a `const_reverse_iterator` from the end of the inlined vector.
+ const_reverse_iterator crbegin() const noexcept { return rbegin(); }
+
+ // `InlinedVector::crend()`
+ //
+ // Returns a `const_reverse_iterator` from the beginning of the inlined
+ // vector.
const_reverse_iterator crend() const noexcept { return rend(); }
- // InlinedVector::emplace()
+ // `InlinedVector::get_allocator()`
//
- // Constructs and inserts an object to the inlined vector at the given
- // `position`, returning an iterator pointing to the newly emplaced element.
- template <typename... Args>
- iterator emplace(const_iterator position, Args&&... args);
+ // Returns a copy of the allocator of the inlined vector.
+ allocator_type get_allocator() const { return allocator(); }
+
+ // ---------------------------------------------------------------------------
+ // InlinedVector Member Mutators
+ // ---------------------------------------------------------------------------
+
+ // `InlinedVector::operator=()`
+ //
+ // Replaces the contents of the inlined vector with copies of the elements in
+ // the provided `std::initializer_list`.
+ InlinedVector& operator=(std::initializer_list<value_type> init_list) {
+ AssignRange(init_list.begin(), init_list.end(),
+ IteratorCategory<decltype(init_list.begin())>{});
+ return *this;
+ }
+
+ // Overload of `InlinedVector::operator=()` to replace the contents of the
+ // inlined vector with the contents of `other`.
+ InlinedVector& operator=(const InlinedVector& other) {
+ if (ABSL_PREDICT_FALSE(this == &other)) return *this;
+
+ // Optimized to avoid reallocation.
+ // Prefer reassignment to copy construction for elements.
+ if (size() < other.size()) { // grow
+ reserve(other.size());
+ std::copy(other.begin(), other.begin() + size(), begin());
+ std::copy(other.begin() + size(), other.end(), std::back_inserter(*this));
+ } else { // maybe shrink
+ erase(begin() + other.size(), end());
+ std::copy(other.begin(), other.end(), begin());
+ }
+ return *this;
+ }
- // InlinedVector::insert()
+ // Overload of `InlinedVector::operator=()` to replace the contents of the
+ // inlined vector with the contents of `other`.
//
- // Inserts an element of the specified value at `position`, returning an
- // iterator pointing to the newly inserted element.
- iterator insert(const_iterator position, const value_type& v) {
+ // NOTE: As a result of calling this overload, `other` may be empty or it's
+ // contents may be left in a moved-from state.
+ InlinedVector& operator=(InlinedVector&& other) {
+ if (ABSL_PREDICT_FALSE(this == &other)) return *this;
+
+ if (other.allocated()) {
+ clear();
+ tag().set_allocated_size(other.size());
+ init_allocation(other.allocation());
+ other.tag() = Tag();
+ } else {
+ if (allocated()) clear();
+ // Both are inlined now.
+ if (size() < other.size()) {
+ auto mid = std::make_move_iterator(other.begin() + size());
+ std::copy(std::make_move_iterator(other.begin()), mid, begin());
+ UninitializedCopy(mid, std::make_move_iterator(other.end()), end());
+ } else {
+ auto new_end = std::copy(std::make_move_iterator(other.begin()),
+ std::make_move_iterator(other.end()), begin());
+ Destroy(new_end, end());
+ }
+ tag().set_inline_size(other.size());
+ }
+ return *this;
+ }
+
+ // `InlinedVector::assign()`
+ //
+ // Replaces the contents of the inlined vector with `n` copies of `v`.
+ void assign(size_type n, const_reference v) {
+ if (n <= size()) { // Possibly shrink
+ std::fill_n(begin(), n, v);
+ erase(begin() + n, end());
+ return;
+ }
+ // Grow
+ reserve(n);
+ std::fill_n(begin(), size(), v);
+ if (allocated()) {
+ UninitializedFill(allocated_space() + size(), allocated_space() + n, v);
+ tag().set_allocated_size(n);
+ } else {
+ UninitializedFill(inlined_space() + size(), inlined_space() + n, v);
+ tag().set_inline_size(n);
+ }
+ }
+
+ // Overload of `InlinedVector::assign()` to replace the contents of the
+ // inlined vector with copies of the values in the provided
+ // `std::initializer_list`.
+ void assign(std::initializer_list<value_type> init_list) {
+ AssignRange(init_list.begin(), init_list.end(),
+ IteratorCategory<decltype(init_list.begin())>{});
+ }
+
+ // Overload of `InlinedVector::assign()` to replace the contents of the
+ // inlined vector with values constructed from the range [`first`, `last`).
+ template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
+ void assign(InputIterator first, InputIterator last) {
+ AssignRange(first, last, IteratorCategory<InputIterator>{});
+ }
+
+ // `InlinedVector::resize()`
+ //
+ // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
+ // the inlined vector's current size, extra elements are destroyed. If `n` is
+ // larger than the initial size, new elements are value-initialized.
+ void resize(size_type n);
+
+ // Overload of `InlinedVector::resize()` to resize the inlined vector to
+ // contain `n` elements where, if `n` is larger than `size()`, the new values
+ // will be copy-constructed from `v`.
+ void resize(size_type n, const_reference v);
+
+ // `InlinedVector::insert()`
+ //
+ // Copies `v` into `position`, returning an `iterator` pointing to the newly
+ // inserted element.
+ iterator insert(const_iterator position, const_reference v) {
return emplace(position, v);
}
- // Overload of InlinedVector::insert() for inserting an element of the
- // specified rvalue, returning an iterator pointing to the newly inserted
- // element.
- iterator insert(const_iterator position, value_type&& v) {
+ // Overload of `InlinedVector::insert()` for moving `v` into `position`,
+ // returning an iterator pointing to the newly inserted element.
+ iterator insert(const_iterator position, rvalue_reference v) {
return emplace(position, std::move(v));
}
- // Overload of InlinedVector::insert() for inserting `n` elements of the
- // specified value at `position`, returning an iterator pointing to the first
+ // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
+ // of `v` starting at `position`. Returns an `iterator` pointing to the first
// of the newly inserted elements.
- iterator insert(const_iterator position, size_type n, const value_type& v) {
+ iterator insert(const_iterator position, size_type n, const_reference v) {
return InsertWithCount(position, n, v);
}
- // Overload of `InlinedVector::insert()` to disambiguate the two
- // three-argument overloads of `insert()`, returning an iterator pointing to
- // the first of the newly inserted elements.
+ // Overload of `InlinedVector::insert()` for copying the contents of the
+ // `std::initializer_list` into the vector starting at `position`. Returns an
+ // `iterator` pointing to the first of the newly inserted elements.
+ iterator insert(const_iterator position,
+ std::initializer_list<value_type> init_list) {
+ return insert(position, init_list.begin(), init_list.end());
+ }
+
+ // Overload of `InlinedVector::insert()` for inserting elements constructed
+ // from the range [`first`, `last`). Returns an `iterator` pointing to the
+ // first of the newly inserted elements.
+ //
+ // NOTE: The `enable_if` is intended to disambiguate the two three-argument
+ // overloads of `insert()`.
template <typename InputIterator,
- typename = typename std::enable_if<std::is_convertible<
- typename std::iterator_traits<InputIterator>::iterator_category,
- std::input_iterator_tag>::value>::type>
+ typename = EnableIfInputIterator<InputIterator>>
iterator insert(const_iterator position, InputIterator first,
InputIterator last) {
- using IterType =
- typename std::iterator_traits<InputIterator>::iterator_category;
- return InsertWithRange(position, first, last, IterType());
+ return InsertWithRange(position, first, last,
+ IteratorCategory<InputIterator>());
}
- // Overload of InlinedVector::insert() for inserting a list of elements at
- // `position`, returning an iterator pointing to the first of the newly
- // inserted elements.
- iterator insert(const_iterator position,
- std::initializer_list<value_type> init) {
- return insert(position, init.begin(), init.end());
+ // `InlinedVector::emplace()`
+ //
+ // Constructs and inserts an object in the inlined vector at the given
+ // `position`, returning an `iterator` pointing to the newly emplaced element.
+ template <typename... Args>
+ iterator emplace(const_iterator position, Args&&... args);
+
+ // `InlinedVector::emplace_back()`
+ //
+ // Constructs and appends a new element to the end of the inlined vector,
+ // returning a `reference` to the emplaced element.
+ template <typename... Args>
+ reference emplace_back(Args&&... args) {
+ size_type s = size();
+ assert(s <= capacity());
+ if (ABSL_PREDICT_FALSE(s == capacity())) {
+ return GrowAndEmplaceBack(std::forward<Args>(args)...);
+ }
+ assert(s < capacity());
+
+ pointer space;
+ if (allocated()) {
+ tag().set_allocated_size(s + 1);
+ space = allocated_space();
+ } else {
+ tag().set_inline_size(s + 1);
+ space = inlined_space();
+ }
+ return Construct(space + s, std::forward<Args>(args)...);
+ }
+
+ // `InlinedVector::push_back()`
+ //
+ // Appends a copy of `v` to the end of the inlined vector.
+ void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
+
+ // Overload of `InlinedVector::push_back()` for moving `v` into a newly
+ // appended element.
+ void push_back(rvalue_reference v) {
+ static_cast<void>(emplace_back(std::move(v)));
+ }
+
+ // `InlinedVector::pop_back()`
+ //
+ // Destroys the element at the end of the inlined vector and shrinks the size
+ // by `1` (unless the inlined vector is empty, in which case this is a no-op).
+ void pop_back() noexcept {
+ assert(!empty());
+ size_type s = size();
+ if (allocated()) {
+ Destroy(allocated_space() + s - 1, allocated_space() + s);
+ tag().set_allocated_size(s - 1);
+ } else {
+ Destroy(inlined_space() + s - 1, inlined_space() + s);
+ tag().set_inline_size(s - 1);
+ }
}
- // InlinedVector::erase()
+ // `InlinedVector::erase()`
//
// Erases the element at `position` of the inlined vector, returning an
- // iterator pointing to the following element or the container's end if the
- // last element was erased.
+ // `iterator` pointing to the first element following the erased element.
+ //
+ // NOTE: May return the end iterator, which is not dereferencable.
iterator erase(const_iterator position) {
assert(position >= begin());
assert(position < end());
@@ -549,23 +594,36 @@ class InlinedVector {
return pos;
}
- // Overload of InlinedVector::erase() for erasing all elements in the
- // iterator range [first, last) in the inlined vector, returning an iterator
- // pointing to the first element following the range erased, or the
- // container's end if range included the container's last element.
- iterator erase(const_iterator first, const_iterator last);
+ // Overload of `InlinedVector::erase()` for erasing all elements in the
+ // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
+ // to the first element following the range erased or the end iterator if `to`
+ // was the end iterator.
+ iterator erase(const_iterator from, const_iterator to);
+
+ // `InlinedVector::clear()`
+ //
+ // Destroys all elements in the inlined vector, sets the size of `0` and
+ // deallocates the heap allocation if the inlined vector was allocated.
+ void clear() noexcept {
+ size_type s = size();
+ if (allocated()) {
+ Destroy(allocated_space(), allocated_space() + s);
+ allocation().Dealloc(allocator());
+ } else if (s != 0) { // do nothing for empty vectors
+ Destroy(inlined_space(), inlined_space() + s);
+ }
+ tag() = Tag();
+ }
- // InlinedVector::reserve()
+ // `InlinedVector::reserve()`
//
// Enlarges the underlying representation of the inlined vector so it can hold
// at least `n` elements. This method does not change `size()` or the actual
// contents of the vector.
//
- // Note that if `n` does not exceed the inlined vector's initial size `N`,
- // `reserve()` will have no effect; if it does exceed its initial size,
- // `reserve()` will trigger an initial allocation and move the inlined vector
- // onto the heap. If the vector already exists on the heap and the requested
- // size exceeds it, a reallocation will be performed.
+ // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
+ // effects. Otherwise, `reserve()` will reallocate, performing an n-time
+ // element-wise move of everything contained.
void reserve(size_type n) {
if (n > capacity()) {
// Make room for new elements
@@ -573,26 +631,25 @@ class InlinedVector {
}
}
- // InlinedVector::shrink_to_fit()
+ // `InlinedVector::shrink_to_fit()`
//
- // Reduces memory usage by freeing unused memory.
- // After this call `capacity()` will be equal to `max(N, size())`.
+ // Reduces memory usage by freeing unused memory. After this call, calls to
+ // `capacity()` will be equal to `(std::max)(inlined_capacity(), size())`.
//
- // If `size() <= N` and the elements are currently stored on the heap, they
- // will be moved to the inlined storage and the heap memory deallocated.
- // If `size() > N` and `size() < capacity()` the elements will be moved to
- // a reallocated storage on heap.
+ // If `size() <= inlined_capacity()` and the elements are currently stored on
+ // the heap, they will be moved to the inlined storage and the heap memory
+ // will be deallocated.
+ //
+ // If `size() > inlined_capacity()` and `size() < capacity()` the elements
+ // will be moved to a smaller heap allocation.
void shrink_to_fit() {
const auto s = size();
- if (!allocated() || s == capacity()) {
- // There's nothing to deallocate.
- return;
- }
+ if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;
- if (s <= N) {
+ if (s <= inlined_capacity()) {
// Move the elements to the inlined storage.
- // We have to do this using a temporary, because inlined_storage and
- // allocation_storage are in a union field.
+ // We have to do this using a temporary, because `inlined_storage` and
+ // `allocation_storage` are in a union field.
auto temp = std::move(*this);
assign(std::make_move_iterator(temp.begin()),
std::make_move_iterator(temp.end()));
@@ -600,8 +657,8 @@ class InlinedVector {
}
// Reallocate storage and move elements.
- // We can't simply use the same approach as above, because assign() would
- // call into reserve() internally and reserve larger capacity than we need.
+ // We can't simply use the same approach as above, because `assign()` would
+ // call into `reserve()` internally and reserve larger capacity than we need
Allocation new_allocation(allocator(), s);
UninitializedCopy(std::make_move_iterator(allocated_space()),
std::make_move_iterator(allocated_space() + s),
@@ -609,118 +666,126 @@ class InlinedVector {
ResetAllocation(new_allocation, s);
}
- // InlinedVector::swap()
+ // `InlinedVector::swap()`
//
// Swaps the contents of this inlined vector with the contents of `other`.
void swap(InlinedVector& other);
- // InlinedVector::get_allocator()
- //
- // Returns the allocator of this inlined vector.
- allocator_type get_allocator() const { return allocator(); }
+ template <typename Hash>
+ friend Hash AbslHashValue(Hash hash, const InlinedVector& inlined_vector) {
+ const_pointer p = inlined_vector.data();
+ size_type n = inlined_vector.size();
+ return Hash::combine(Hash::combine_contiguous(std::move(hash), p, n), n);
+ }
private:
- static_assert(N > 0, "inlined vector with nonpositive size");
-
- // It holds whether the vector is allocated or not in the lowest bit.
- // The size is held in the high bits:
- // size_ = (size << 1) | is_allocated;
+ // Holds whether the vector is allocated or not in the lowest bit and the size
+ // in the high bits:
+ // `size_ = (size << 1) | is_allocated;`
class Tag {
public:
Tag() : size_(0) {}
- size_type size() const { return size_ >> 1; }
- void add_size(size_type n) { size_ += n << 1; }
- void set_inline_size(size_type n) { size_ = n << 1; }
- void set_allocated_size(size_type n) { size_ = (n << 1) | 1; }
- bool allocated() const { return size_ & 1; }
+ size_type size() const { return size_ / 2; }
+ void add_size(size_type n) { size_ += n * 2; }
+ void set_inline_size(size_type n) { size_ = n * 2; }
+ void set_allocated_size(size_type n) { size_ = (n * 2) + 1; }
+ bool allocated() const { return size_ % 2; }
private:
size_type size_;
};
- // Derives from allocator_type to use the empty base class optimization.
- // If the allocator_type is stateless, we can 'store'
- // our instance of it for free.
+ // Derives from `allocator_type` to use the empty base class optimization.
+ // If the `allocator_type` is stateless, we can store our instance for free.
class AllocatorAndTag : private allocator_type {
public:
- explicit AllocatorAndTag(const allocator_type& a, Tag t = Tag())
- : allocator_type(a), tag_(t) {
- }
+ explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {}
+
Tag& tag() { return tag_; }
const Tag& tag() const { return tag_; }
+
allocator_type& allocator() { return *this; }
const allocator_type& allocator() const { return *this; }
+
private:
Tag tag_;
};
class Allocation {
public:
- Allocation(allocator_type& a, // NOLINT(runtime/references)
- size_type capacity)
- : capacity_(capacity),
- buffer_(AllocatorTraits::allocate(a, capacity_)) {}
+ Allocation(allocator_type& a, size_type capacity)
+ : capacity_(capacity), buffer_(Create(a, capacity)) {}
- void Dealloc(allocator_type& a) { // NOLINT(runtime/references)
- AllocatorTraits::deallocate(a, buffer(), capacity());
+ void Dealloc(allocator_type& a) {
+ std::allocator_traits<allocator_type>::deallocate(a, buffer_, capacity_);
}
size_type capacity() const { return capacity_; }
- const value_type* buffer() const { return buffer_; }
- value_type* buffer() { return buffer_; }
+
+ const_pointer buffer() const { return buffer_; }
+
+ pointer buffer() { return buffer_; }
private:
+ static pointer Create(allocator_type& a, size_type n) {
+ return std::allocator_traits<allocator_type>::allocate(a, n);
+ }
+
size_type capacity_;
- value_type* buffer_;
+ pointer buffer_;
};
const Tag& tag() const { return allocator_and_tag_.tag(); }
+
Tag& tag() { return allocator_and_tag_.tag(); }
Allocation& allocation() {
return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation);
}
+
const Allocation& allocation() const {
return reinterpret_cast<const Allocation&>(
rep_.allocation_storage.allocation);
}
+
void init_allocation(const Allocation& allocation) {
new (&rep_.allocation_storage.allocation) Allocation(allocation);
}
- value_type* inlined_space() {
- return reinterpret_cast<value_type*>(&rep_.inlined_storage.inlined);
- }
- const value_type* inlined_space() const {
- return reinterpret_cast<const value_type*>(&rep_.inlined_storage.inlined);
+ // TODO(absl-team): investigate whether the reinterpret_cast is appropriate.
+ pointer inlined_space() {
+ return reinterpret_cast<pointer>(
+ std::addressof(rep_.inlined_storage.inlined[0]));
}
- value_type* allocated_space() {
- return allocation().buffer();
- }
- const value_type* allocated_space() const {
- return allocation().buffer();
+ const_pointer inlined_space() const {
+ return reinterpret_cast<const_pointer>(
+ std::addressof(rep_.inlined_storage.inlined[0]));
}
+ pointer allocated_space() { return allocation().buffer(); }
+
+ const_pointer allocated_space() const { return allocation().buffer(); }
+
const allocator_type& allocator() const {
return allocator_and_tag_.allocator();
}
- allocator_type& allocator() {
- return allocator_and_tag_.allocator();
- }
+
+ allocator_type& allocator() { return allocator_and_tag_.allocator(); }
bool allocated() const { return tag().allocated(); }
- // Enlarge the underlying representation so we can store size_ + delta elems.
- // The size is not changed, and any newly added memory is not initialized.
+ // Enlarge the underlying representation so we can store `size_ + delta` elems
+ // in allocated space. The size is not changed, and any newly added memory is
+ // not initialized.
void EnlargeBy(size_type delta);
- // Shift all elements from position to end() n places to the right.
+ // Shift all elements from `position` to `end()` by `n` places to the right.
// If the vector needs to be enlarged, memory will be allocated.
- // Returns iterators pointing to the start of the previously-initialized
+ // Returns `iterator`s pointing to the start of the previously-initialized
// portion and the start of the uninitialized portion of the created gap.
- // The number of initialized spots is pair.second - pair.first;
- // the number of raw spots is n - (pair.second - pair.first).
+ // The number of initialized spots is `pair.second - pair.first`. The number
+ // of raw spots is `n - (pair.second - pair.first)`.
//
// Updates the size of the InlinedVector internally.
std::pair<iterator, iterator> ShiftRight(const_iterator position,
@@ -740,13 +805,13 @@ class InlinedVector {
}
template <typename... Args>
- value_type& GrowAndEmplaceBack(Args&&... args) {
+ reference GrowAndEmplaceBack(Args&&... args) {
assert(size() == capacity());
const size_type s = size();
Allocation new_allocation(allocator(), 2 * capacity());
- value_type& new_element =
+ reference new_element =
Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
UninitializedCopy(std::make_move_iterator(data()),
std::make_move_iterator(data() + s),
@@ -758,98 +823,91 @@ class InlinedVector {
}
void InitAssign(size_type n);
- void InitAssign(size_type n, const value_type& t);
+
+ void InitAssign(size_type n, const_reference v);
template <typename... Args>
- value_type& Construct(pointer p, Args&&... args) {
- AllocatorTraits::construct(allocator(), p, std::forward<Args>(args)...);
+ reference Construct(pointer p, Args&&... args) {
+ std::allocator_traits<allocator_type>::construct(
+ allocator(), p, std::forward<Args>(args)...);
return *p;
}
- template <typename Iter>
- void UninitializedCopy(Iter src, Iter src_last, value_type* dst) {
+ template <typename Iterator>
+ void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {
for (; src != src_last; ++dst, ++src) Construct(dst, *src);
}
template <typename... Args>
- void UninitializedFill(value_type* dst, value_type* dst_last,
- const Args&... args) {
+ void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {
for (; dst != dst_last; ++dst) Construct(dst, args...);
}
- // Destroy [ptr, ptr_last) in place.
- void Destroy(value_type* ptr, value_type* ptr_last);
+ // Destroy [`from`, `to`) in place.
+ void Destroy(pointer from, pointer to);
- template <typename Iter>
- void AppendRange(Iter first, Iter last, std::input_iterator_tag) {
- std::copy(first, last, std::back_inserter(*this));
- }
+ template <typename Iterator>
+ void AppendRange(Iterator first, Iterator last, std::forward_iterator_tag);
- // Faster path for forward iterators.
- template <typename Iter>
- void AppendRange(Iter first, Iter last, std::forward_iterator_tag);
+ template <typename Iterator>
+ void AppendRange(Iterator first, Iterator last, std::input_iterator_tag);
- template <typename Iter>
- void AppendRange(Iter first, Iter last) {
- using IterTag = typename std::iterator_traits<Iter>::iterator_category;
- AppendRange(first, last, IterTag());
- }
+ template <typename Iterator>
+ void AssignRange(Iterator first, Iterator last, std::forward_iterator_tag);
- template <typename Iter>
- void AssignRange(Iter first, Iter last, std::input_iterator_tag);
-
- // Faster path for forward iterators.
- template <typename Iter>
- void AssignRange(Iter first, Iter last, std::forward_iterator_tag);
-
- template <typename Iter>
- void AssignRange(Iter first, Iter last) {
- using IterTag = typename std::iterator_traits<Iter>::iterator_category;
- AssignRange(first, last, IterTag());
- }
+ template <typename Iterator>
+ void AssignRange(Iterator first, Iterator last, std::input_iterator_tag);
iterator InsertWithCount(const_iterator position, size_type n,
- const value_type& v);
+ const_reference v);
- template <typename InputIter>
- iterator InsertWithRange(const_iterator position, InputIter first,
- InputIter last, std::input_iterator_tag);
- template <typename ForwardIter>
- iterator InsertWithRange(const_iterator position, ForwardIter first,
- ForwardIter last, std::forward_iterator_tag);
+ template <typename ForwardIterator>
+ iterator InsertWithRange(const_iterator position, ForwardIterator first,
+ ForwardIterator last, std::forward_iterator_tag);
- AllocatorAndTag allocator_and_tag_;
+ template <typename InputIterator>
+ iterator InsertWithRange(const_iterator position, InputIterator first,
+ InputIterator last, std::input_iterator_tag);
- // Either the inlined or allocated representation
+ // Stores either the inlined or allocated representation
union Rep {
- // Use struct to perform indirection that solves a bizarre compilation
- // error on Visual Studio (all known versions).
- struct {
- typename std::aligned_storage<sizeof(value_type),
- alignof(value_type)>::type inlined[N];
- } inlined_storage;
- struct {
- typename std::aligned_storage<sizeof(Allocation),
- alignof(Allocation)>::type allocation;
- } allocation_storage;
- } rep_;
+ using ValueTypeBuffer =
+ absl::aligned_storage_t<sizeof(value_type), alignof(value_type)>;
+ using AllocationBuffer =
+ absl::aligned_storage_t<sizeof(Allocation), alignof(Allocation)>;
+
+ // Structs wrap the buffers to perform indirection that solves a bizarre
+ // compilation error on Visual Studio (all known versions).
+ struct InlinedRep {
+ ValueTypeBuffer inlined[N];
+ };
+ struct AllocatedRep {
+ AllocationBuffer allocation;
+ };
+
+ InlinedRep inlined_storage;
+ AllocatedRep allocation_storage;
+ };
+
+ AllocatorAndTag allocator_and_tag_;
+ Rep rep_;
};
// -----------------------------------------------------------------------------
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------
-// swap()
+// `swap()`
//
// Swaps the contents of two inlined vectors. This convenience function
-// simply calls InlinedVector::swap(other_inlined_vector).
+// simply calls `InlinedVector::swap()`.
template <typename T, size_t N, typename A>
void swap(InlinedVector<T, N, A>& a,
InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
-// operator==()
+// `operator==()`
//
// Tests the equivalency of the contents of two inlined vectors.
template <typename T, size_t N, typename A>
@@ -858,7 +916,7 @@ bool operator==(const InlinedVector<T, N, A>& a,
return absl::equal(a.begin(), a.end(), b.begin(), b.end());
}
-// operator!=()
+// `operator!=()`
//
// Tests the inequality of the contents of two inlined vectors.
template <typename T, size_t N, typename A>
@@ -867,7 +925,7 @@ bool operator!=(const InlinedVector<T, N, A>& a,
return !(a == b);
}
-// operator<()
+// `operator<()`
//
// Tests whether the contents of one inlined vector are less than the contents
// of another through a lexicographical comparison operation.
@@ -877,7 +935,7 @@ bool operator<(const InlinedVector<T, N, A>& a,
return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
}
-// operator>()
+// `operator>()`
//
// Tests whether the contents of one inlined vector are greater than the
// contents of another through a lexicographical comparison operation.
@@ -887,7 +945,7 @@ bool operator>(const InlinedVector<T, N, A>& a,
return b < a;
}
-// operator<=()
+// `operator<=()`
//
// Tests whether the contents of one inlined vector are less than or equal to
// the contents of another through a lexicographical comparison operation.
@@ -897,7 +955,7 @@ bool operator<=(const InlinedVector<T, N, A>& a,
return !(b < a);
}
-// operator>=()
+// `operator>=()`
//
// Tests whether the contents of one inlined vector are greater than or equal to
// the contents of another through a lexicographical comparison operation.
@@ -909,97 +967,99 @@ bool operator>=(const InlinedVector<T, N, A>& a,
// -----------------------------------------------------------------------------
// Implementation of InlinedVector
-// -----------------------------------------------------------------------------
//
-// Do not depend on any implementation details below this line.
+// Do not depend on any below implementation details!
+// -----------------------------------------------------------------------------
template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v)
- : allocator_and_tag_(v.allocator()) {
- reserve(v.size());
+InlinedVector<T, N, A>::InlinedVector(const InlinedVector& other)
+ : allocator_and_tag_(other.allocator()) {
+ reserve(other.size());
if (allocated()) {
- UninitializedCopy(v.begin(), v.end(), allocated_space());
- tag().set_allocated_size(v.size());
+ UninitializedCopy(other.begin(), other.end(), allocated_space());
+ tag().set_allocated_size(other.size());
} else {
- UninitializedCopy(v.begin(), v.end(), inlined_space());
- tag().set_inline_size(v.size());
+ UninitializedCopy(other.begin(), other.end(), inlined_space());
+ tag().set_inline_size(other.size());
}
}
template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(const InlinedVector& v,
+InlinedVector<T, N, A>::InlinedVector(const InlinedVector& other,
const allocator_type& alloc)
: allocator_and_tag_(alloc) {
- reserve(v.size());
+ reserve(other.size());
if (allocated()) {
- UninitializedCopy(v.begin(), v.end(), allocated_space());
- tag().set_allocated_size(v.size());
+ UninitializedCopy(other.begin(), other.end(), allocated_space());
+ tag().set_allocated_size(other.size());
} else {
- UninitializedCopy(v.begin(), v.end(), inlined_space());
- tag().set_inline_size(v.size());
+ UninitializedCopy(other.begin(), other.end(), inlined_space());
+ tag().set_inline_size(other.size());
}
}
template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(InlinedVector&& v) noexcept(
+InlinedVector<T, N, A>::InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
- : allocator_and_tag_(v.allocator_and_tag_) {
- if (v.allocated()) {
+ : allocator_and_tag_(other.allocator_and_tag_) {
+ if (other.allocated()) {
// We can just steal the underlying buffer from the source.
// That leaves the source empty, so we clear its size.
- init_allocation(v.allocation());
- v.tag() = Tag();
+ init_allocation(other.allocation());
+ other.tag() = Tag();
} else {
- UninitializedCopy(std::make_move_iterator(v.inlined_space()),
- std::make_move_iterator(v.inlined_space() + v.size()),
- inlined_space());
+ UninitializedCopy(
+ std::make_move_iterator(other.inlined_space()),
+ std::make_move_iterator(other.inlined_space() + other.size()),
+ inlined_space());
}
}
template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(
- InlinedVector&& v,
- const allocator_type&
- alloc) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
+InlinedVector<T, N, A>::InlinedVector(InlinedVector&& other,
+ const allocator_type& alloc) noexcept( //
+ absl::allocator_is_nothrow<allocator_type>::value)
: allocator_and_tag_(alloc) {
- if (v.allocated()) {
- if (alloc == v.allocator()) {
+ if (other.allocated()) {
+ if (alloc == other.allocator()) {
// We can just steal the allocation from the source.
- tag() = v.tag();
- init_allocation(v.allocation());
- v.tag() = Tag();
+ tag() = other.tag();
+ init_allocation(other.allocation());
+ other.tag() = Tag();
} else {
// We need to use our own allocator
- reserve(v.size());
- UninitializedCopy(std::make_move_iterator(v.begin()),
- std::make_move_iterator(v.end()), allocated_space());
- tag().set_allocated_size(v.size());
+ reserve(other.size());
+ UninitializedCopy(std::make_move_iterator(other.begin()),
+ std::make_move_iterator(other.end()),
+ allocated_space());
+ tag().set_allocated_size(other.size());
}
} else {
- UninitializedCopy(std::make_move_iterator(v.inlined_space()),
- std::make_move_iterator(v.inlined_space() + v.size()),
- inlined_space());
- tag().set_inline_size(v.size());
+ UninitializedCopy(
+ std::make_move_iterator(other.inlined_space()),
+ std::make_move_iterator(other.inlined_space() + other.size()),
+ inlined_space());
+ tag().set_inline_size(other.size());
}
}
template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::InitAssign(size_type n, const value_type& t) {
- if (n > static_cast<size_type>(N)) {
+void InlinedVector<T, N, A>::InitAssign(size_type n, const_reference v) {
+ if (n > inlined_capacity()) {
Allocation new_allocation(allocator(), n);
init_allocation(new_allocation);
- UninitializedFill(allocated_space(), allocated_space() + n, t);
+ UninitializedFill(allocated_space(), allocated_space() + n, v);
tag().set_allocated_size(n);
} else {
- UninitializedFill(inlined_space(), inlined_space() + n, t);
+ UninitializedFill(inlined_space(), inlined_space() + n, v);
tag().set_inline_size(n);
}
}
template <typename T, size_t N, typename A>
void InlinedVector<T, N, A>::InitAssign(size_type n) {
- if (n > static_cast<size_type>(N)) {
+ if (n > inlined_capacity()) {
Allocation new_allocation(allocator(), n);
init_allocation(new_allocation);
UninitializedFill(allocated_space(), allocated_space() + n);
@@ -1031,7 +1091,7 @@ void InlinedVector<T, N, A>::resize(size_type n) {
}
template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::resize(size_type n, const value_type& elem) {
+void InlinedVector<T, N, A>::resize(size_type n, const_reference v) {
size_type s = size();
if (n < s) {
erase(begin() + n, end());
@@ -1040,23 +1100,23 @@ void InlinedVector<T, N, A>::resize(size_type n, const value_type& elem) {
reserve(n);
assert(capacity() >= n);
- // Fill new space with copies of 'elem'.
+ // Fill new space with copies of 'v'.
if (allocated()) {
- UninitializedFill(allocated_space() + s, allocated_space() + n, elem);
+ UninitializedFill(allocated_space() + s, allocated_space() + n, v);
tag().set_allocated_size(n);
} else {
- UninitializedFill(inlined_space() + s, inlined_space() + n, elem);
+ UninitializedFill(inlined_space() + s, inlined_space() + n, v);
tag().set_inline_size(n);
}
}
template <typename T, size_t N, typename A>
template <typename... Args>
-typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::emplace(
- const_iterator position, Args&&... args) {
+auto InlinedVector<T, N, A>::emplace(const_iterator position, Args&&... args)
+ -> iterator {
assert(position >= begin());
assert(position <= end());
- if (position == end()) {
+ if (ABSL_PREDICT_FALSE(position == end())) {
emplace_back(std::forward<Args>(args)...);
return end() - 1;
}
@@ -1076,14 +1136,14 @@ typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::emplace(
}
template <typename T, size_t N, typename A>
-typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::erase(
- const_iterator first, const_iterator last) {
- assert(begin() <= first);
- assert(first <= last);
- assert(last <= end());
+auto InlinedVector<T, N, A>::erase(const_iterator from, const_iterator to)
+ -> iterator {
+ assert(begin() <= from);
+ assert(from <= to);
+ assert(to <= end());
- iterator range_start = const_cast<iterator>(first);
- iterator range_end = const_cast<iterator>(last);
+ iterator range_start = const_cast<iterator>(from);
+ iterator range_end = const_cast<iterator>(to);
size_type s = size();
ptrdiff_t erase_gap = std::distance(range_start, range_end);
@@ -1104,10 +1164,9 @@ typename InlinedVector<T, N, A>::iterator InlinedVector<T, N, A>::erase(
template <typename T, size_t N, typename A>
void InlinedVector<T, N, A>::swap(InlinedVector& other) {
- using std::swap; // Augment ADL with std::swap.
- if (&other == this) {
- return;
- }
+ using std::swap; // Augment ADL with `std::swap`.
+ if (ABSL_PREDICT_FALSE(this == &other)) return;
+
if (allocated() && other.allocated()) {
// Both out of line, so just swap the tag, allocation, and allocator.
swap(tag(), other.tag());
@@ -1126,12 +1185,12 @@ void InlinedVector<T, N, A>::swap(InlinedVector& other) {
const size_type a_size = a->size();
const size_type b_size = b->size();
assert(a_size >= b_size);
- // 'a' is larger. Swap the elements up to the smaller array size.
- std::swap_ranges(a->inlined_space(),
- a->inlined_space() + b_size,
+ // `a` is larger. Swap the elements up to the smaller array size.
+ std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,
b->inlined_space());
- // Move the remaining elements: A[b_size,a_size) -> B[b_size,a_size)
+ // Move the remaining elements:
+ // [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
b->UninitializedCopy(a->inlined_space() + b_size,
a->inlined_space() + a_size,
b->inlined_space() + b_size);
@@ -1143,6 +1202,7 @@ void InlinedVector<T, N, A>::swap(InlinedVector& other) {
assert(a->size() == b_size);
return;
}
+
// One is out of line, one is inline.
// We first move the elements from the inlined vector into the
// inlined space in the other vector. We then put the other vector's
@@ -1157,13 +1217,13 @@ void InlinedVector<T, N, A>::swap(InlinedVector& other) {
assert(b->allocated());
const size_type a_size = a->size();
const size_type b_size = b->size();
- // In an optimized build, b_size would be unused.
- (void)b_size;
+ // In an optimized build, `b_size` would be unused.
+ static_cast<void>(b_size);
- // Made Local copies of size(), don't need tag() accurate anymore
+ // Made Local copies of `size()`, don't need `tag()` accurate anymore
swap(a->tag(), b->tag());
- // Copy b_allocation out before b's union gets clobbered by inline_space.
+ // Copy `b_allocation` out before `b`'s union gets clobbered by `inline_space`
Allocation b_allocation = b->allocation();
b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
@@ -1185,7 +1245,7 @@ void InlinedVector<T, N, A>::EnlargeBy(size_type delta) {
const size_type s = size();
assert(s <= capacity());
- size_type target = std::max(static_cast<size_type>(N), s + delta);
+ size_type target = std::max(inlined_capacity(), s + delta);
// Compute new capacity by repeatedly doubling current capacity
// TODO(psrc): Check and avoid overflow?
@@ -1217,7 +1277,7 @@ auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n)
while (new_capacity < required_size) {
new_capacity <<= 1;
}
- // Move everyone into the new allocation, leaving a gap of n for the
+ // Move everyone into the new allocation, leaving a gap of `n` for the
// requested shift.
Allocation new_allocation(allocator(), new_capacity);
size_type index = position - begin();
@@ -1235,8 +1295,8 @@ auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n)
start_used = start_raw;
} else {
// If we had enough space, it's a two-part move. Elements going into
- // previously-unoccupied space need an UninitializedCopy. Elements
- // going into a previously-occupied space are just a move.
+ // previously-unoccupied space need an `UninitializedCopy()`. Elements
+ // going into a previously-occupied space are just a `std::move()`.
iterator pos = const_cast<iterator>(position);
iterator raw_space = end();
size_type slots_in_used_space = raw_space - pos;
@@ -1262,28 +1322,26 @@ auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n)
}
template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::Destroy(value_type* ptr, value_type* ptr_last) {
- for (value_type* p = ptr; p != ptr_last; ++p) {
- AllocatorTraits::destroy(allocator(), p);
+void InlinedVector<T, N, A>::Destroy(pointer from, pointer to) {
+ for (pointer cur = from; cur != to; ++cur) {
+ std::allocator_traits<allocator_type>::destroy(allocator(), cur);
}
-
- // Overwrite unused memory with 0xab so we can catch uninitialized usage.
- // Cast to void* to tell the compiler that we don't care that we might be
- // scribbling on a vtable pointer.
#ifndef NDEBUG
- if (ptr != ptr_last) {
- memset(reinterpret_cast<void*>(ptr), 0xab,
- sizeof(*ptr) * (ptr_last - ptr));
+ // Overwrite unused memory with `0xab` so we can catch uninitialized usage.
+ // Cast to `void*` to tell the compiler that we don't care that we might be
+ // scribbling on a vtable pointer.
+ if (from != to) {
+ auto len = sizeof(value_type) * std::distance(from, to);
+ std::memset(reinterpret_cast<void*>(from), 0xab, len);
}
#endif
}
template <typename T, size_t N, typename A>
-template <typename Iter>
-void InlinedVector<T, N, A>::AppendRange(Iter first, Iter last,
+template <typename Iterator>
+void InlinedVector<T, N, A>::AppendRange(Iterator first, Iterator last,
std::forward_iterator_tag) {
- using Length = typename std::iterator_traits<Iter>::difference_type;
- Length length = std::distance(first, last);
+ auto length = std::distance(first, last);
reserve(size() + length);
if (allocated()) {
UninitializedCopy(first, last, allocated_space() + size());
@@ -1295,24 +1353,17 @@ void InlinedVector<T, N, A>::AppendRange(Iter first, Iter last,
}
template <typename T, size_t N, typename A>
-template <typename Iter>
-void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last,
+template <typename Iterator>
+void InlinedVector<T, N, A>::AppendRange(Iterator first, Iterator last,
std::input_iterator_tag) {
- // Optimized to avoid reallocation.
- // Prefer reassignment to copy construction for elements.
- iterator out = begin();
- for ( ; first != last && out != end(); ++first, ++out)
- *out = *first;
- erase(out, end());
std::copy(first, last, std::back_inserter(*this));
}
template <typename T, size_t N, typename A>
-template <typename Iter>
-void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last,
+template <typename Iterator>
+void InlinedVector<T, N, A>::AssignRange(Iterator first, Iterator last,
std::forward_iterator_tag) {
- using Length = typename std::iterator_traits<Iter>::difference_type;
- Length length = std::distance(first, last);
+ auto length = std::distance(first, last);
// Prefer reassignment to copy construction for elements.
if (static_cast<size_type>(length) <= size()) {
erase(std::copy(first, last, begin()), end());
@@ -1331,11 +1382,25 @@ void InlinedVector<T, N, A>::AssignRange(Iter first, Iter last,
}
template <typename T, size_t N, typename A>
+template <typename Iterator>
+void InlinedVector<T, N, A>::AssignRange(Iterator first, Iterator last,
+ std::input_iterator_tag) {
+ // Optimized to avoid reallocation.
+ // Prefer reassignment to copy construction for elements.
+ iterator out = begin();
+ for (; first != last && out != end(); ++first, ++out) {
+ *out = *first;
+ }
+ erase(out, end());
+ std::copy(first, last, std::back_inserter(*this));
+}
+
+template <typename T, size_t N, typename A>
auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position,
- size_type n, const value_type& v)
+ size_type n, const_reference v)
-> iterator {
assert(position >= begin() && position <= end());
- if (n == 0) return const_cast<iterator>(position);
+ if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);
value_type copy = v;
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
@@ -1346,41 +1411,39 @@ auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position,
}
template <typename T, size_t N, typename A>
-template <typename InputIter>
+template <typename ForwardIterator>
auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
- InputIter first, InputIter last,
- std::input_iterator_tag)
- -> iterator {
- assert(position >= begin() && position <= end());
- size_type index = position - cbegin();
- size_type i = index;
- while (first != last) insert(begin() + i++, *first++);
- return begin() + index;
-}
-
-// Overload of InlinedVector::InsertWithRange()
-template <typename T, size_t N, typename A>
-template <typename ForwardIter>
-auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
- ForwardIter first,
- ForwardIter last,
+ ForwardIterator first,
+ ForwardIterator last,
std::forward_iterator_tag)
-> iterator {
assert(position >= begin() && position <= end());
- if (first == last) {
- return const_cast<iterator>(position);
- }
- using Length = typename std::iterator_traits<ForwardIter>::difference_type;
- Length n = std::distance(first, last);
+ if (ABSL_PREDICT_FALSE(first == last)) return const_cast<iterator>(position);
+
+ auto n = std::distance(first, last);
std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
size_type used_spots = it_pair.second - it_pair.first;
- ForwardIter open_spot = std::next(first, used_spots);
+ ForwardIterator open_spot = std::next(first, used_spots);
std::copy(first, open_spot, it_pair.first);
UninitializedCopy(open_spot, last, it_pair.second);
return it_pair.first;
}
-} // inline namespace lts_2018_06_20
+template <typename T, size_t N, typename A>
+template <typename InputIterator>
+auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
+ InputIterator first,
+ InputIterator last,
+ std::input_iterator_tag)
+ -> iterator {
+ assert(position >= begin() && position <= end());
+ size_type index = position - cbegin();
+ size_type i = index;
+ while (first != last) insert(begin() + i++, *first++);
+ return begin() + index;
+}
+
+} // inline namespace lts_2018_12_18
} // namespace absl
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_