summaryrefslogtreecommitdiff
path: root/absl/container/inlined_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/inlined_vector.h')
-rw-r--r--absl/container/inlined_vector.h1504
1 files changed, 451 insertions, 1053 deletions
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
index 37714baf..27186b15 100644
--- a/absl/container/inlined_vector.h
+++ b/absl/container/inlined_vector.h
@@ -1,10 +1,10 @@
-// Copyright 2018 The Abseil Authors.
+// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
-// http://www.apache.org/licenses/LICENSE-2.0
+// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
@@ -50,11 +50,11 @@
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
+#include "absl/container/internal/inlined_vector.h"
#include "absl/memory/memory.h"
namespace absl {
-inline namespace lts_2018_12_18 {
-
+inline namespace lts_2019_08_08 {
// -----------------------------------------------------------------------------
// InlinedVector
// -----------------------------------------------------------------------------
@@ -67,119 +67,181 @@ inline namespace lts_2018_12_18 {
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
- static_assert(N > 0, "InlinedVector requires inline capacity greater than 0");
- constexpr static typename A::size_type inlined_capacity() {
- return static_cast<typename A::size_type>(N);
- }
+ static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
- template <typename Iterator>
- using DisableIfIntegral =
- absl::enable_if_t<!std::is_integral<Iterator>::value>;
+ using Storage = inlined_vector_internal::Storage<T, N, A>;
+ using rvalue_reference = typename Storage::rvalue_reference;
+ using MoveIterator = typename Storage::MoveIterator;
+ using AllocatorTraits = typename Storage::AllocatorTraits;
+ using IsMemcpyOk = typename Storage::IsMemcpyOk;
template <typename Iterator>
- using EnableIfInputIterator = absl::enable_if_t<std::is_convertible<
- typename std::iterator_traits<Iterator>::iterator_category,
- std::input_iterator_tag>::value>;
+ using IteratorValueAdapter =
+ typename Storage::template IteratorValueAdapter<Iterator>;
+ using CopyValueAdapter = typename Storage::CopyValueAdapter;
+ using DefaultValueAdapter = typename Storage::DefaultValueAdapter;
template <typename Iterator>
- using IteratorCategory =
- typename std::iterator_traits<Iterator>::iterator_category;
-
- using rvalue_reference = typename A::value_type&&;
+ using EnableIfAtLeastForwardIterator = absl::enable_if_t<
+ inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
+ template <typename Iterator>
+ using DisableIfAtLeastForwardIterator = absl::enable_if_t<
+ !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
public:
- using allocator_type = A;
- using value_type = typename allocator_type::value_type;
- using pointer = typename allocator_type::pointer;
- using const_pointer = typename allocator_type::const_pointer;
- using reference = typename allocator_type::reference;
- using const_reference = typename allocator_type::const_reference;
- using size_type = typename allocator_type::size_type;
- using difference_type = typename allocator_type::difference_type;
- using iterator = pointer;
- using const_iterator = const_pointer;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ using allocator_type = typename Storage::allocator_type;
+ using value_type = typename Storage::value_type;
+ using pointer = typename Storage::pointer;
+ using const_pointer = typename Storage::const_pointer;
+ using reference = typename Storage::reference;
+ using const_reference = typename Storage::const_reference;
+ using size_type = typename Storage::size_type;
+ using difference_type = typename Storage::difference_type;
+ using iterator = typename Storage::iterator;
+ using const_iterator = typename Storage::const_iterator;
+ using reverse_iterator = typename Storage::reverse_iterator;
+ using const_reverse_iterator = typename Storage::const_reverse_iterator;
// ---------------------------------------------------------------------------
// InlinedVector Constructors and Destructor
// ---------------------------------------------------------------------------
- // Creates an empty inlined vector with a default initialized allocator.
- InlinedVector() noexcept(noexcept(allocator_type()))
- : allocator_and_tag_(allocator_type()) {}
+ // Creates an empty inlined vector with a value-initialized allocator.
+ InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
- // Creates an empty inlined vector with a specified allocator.
+ // Creates an empty inlined vector with a copy of `alloc`.
explicit InlinedVector(const allocator_type& alloc) noexcept
- : allocator_and_tag_(alloc) {}
+ : storage_(alloc) {}
// Creates an inlined vector with `n` copies of `value_type()`.
explicit InlinedVector(size_type n,
const allocator_type& alloc = allocator_type())
- : allocator_and_tag_(alloc) {
- InitAssign(n);
+ : storage_(alloc) {
+ storage_.Initialize(DefaultValueAdapter(), n);
}
// Creates an inlined vector with `n` copies of `v`.
InlinedVector(size_type n, const_reference v,
const allocator_type& alloc = allocator_type())
- : allocator_and_tag_(alloc) {
- InitAssign(n, v);
+ : storage_(alloc) {
+ storage_.Initialize(CopyValueAdapter(v), n);
}
- // Creates an inlined vector of copies of the values in `init_list`.
- InlinedVector(std::initializer_list<value_type> init_list,
+ // Creates an inlined vector with copies of the elements of `list`.
+ InlinedVector(std::initializer_list<value_type> list,
const allocator_type& alloc = allocator_type())
- : allocator_and_tag_(alloc) {
- AppendRange(init_list.begin(), init_list.end(),
- IteratorCategory<decltype(init_list.begin())>{});
- }
+ : InlinedVector(list.begin(), list.end(), alloc) {}
// Creates an inlined vector with elements constructed from the provided
- // Iterator range [`first`, `last`).
+ // forward iterator range [`first`, `last`).
//
- // NOTE: The `enable_if` prevents ambiguous interpretation between a call to
+ // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
// this constructor with two integral arguments and a call to the above
// `InlinedVector(size_type, const_reference)` constructor.
- template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
+ template <typename ForwardIterator,
+ EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ InlinedVector(ForwardIterator first, ForwardIterator last,
+ const allocator_type& alloc = allocator_type())
+ : storage_(alloc) {
+ storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
+ std::distance(first, last));
+ }
+
+ // Creates an inlined vector with elements constructed from the provided input
+ // iterator range [`first`, `last`).
+ template <typename InputIterator,
+ DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
InlinedVector(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type())
- : allocator_and_tag_(alloc) {
- AppendRange(first, last, IteratorCategory<InputIterator>{});
+ : storage_(alloc) {
+ std::copy(first, last, std::back_inserter(*this));
}
- // Creates a copy of `other` using `other`'s allocator.
- InlinedVector(const InlinedVector& other);
+ // Creates an inlined vector by copying the contents of `other` using
+ // `other`'s allocator.
+ InlinedVector(const InlinedVector& other)
+ : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
- // Creates a copy of `other` but with a specified allocator.
- InlinedVector(const InlinedVector& other, const allocator_type& alloc);
+ // Creates an inlined vector by copying the contents of `other` using `alloc`.
+ InlinedVector(const InlinedVector& other, const allocator_type& alloc)
+ : storage_(alloc) {
+ if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
+ storage_.MemcpyFrom(other.storage_);
+ } else {
+ storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
+ other.size());
+ }
+ }
- // Creates an inlined vector by moving in the contents of `other`.
+ // Creates an inlined vector by moving in the contents of `other` without
+ // allocating. If `other` contains allocated memory, the newly-created inlined
+ // vector will take ownership of that memory. However, if `other` does not
+ // contain allocated memory, the newly-created inlined vector will perform
+ // element-wise move construction of the contents of `other`.
//
- // NOTE: This move constructor does not allocate and only moves the underlying
- // objects, so its `noexcept` specification depends on whether moving the
- // underlying objects can throw or not. We assume:
- // a) move constructors should only throw due to allocation failure and
+ // NOTE: since no allocation is performed for the inlined vector in either
+ // case, the `noexcept(...)` specification depends on whether moving the
+ // underlying objects can throw. It is assumed assumed that...
+ // a) move constructors should only throw due to allocation failure.
// b) if `value_type`'s move constructor allocates, it uses the same
- // allocation function as the `InlinedVector`'s allocator, so the move
- // constructor is non-throwing if the allocator is non-throwing or
- // `value_type`'s move constructor is specified as `noexcept`.
- InlinedVector(InlinedVector&& v) noexcept(
+ // allocation function as the inlined vector's allocator.
+ // Thus, the move constructor is non-throwing if the allocator is non-throwing
+ // or `value_type`'s move constructor is specified as `noexcept`.
+ InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
- std::is_nothrow_move_constructible<value_type>::value);
+ std::is_nothrow_move_constructible<value_type>::value)
+ : storage_(*other.storage_.GetAllocPtr()) {
+ if (IsMemcpyOk::value) {
+ storage_.MemcpyFrom(other.storage_);
+
+ other.storage_.SetInlinedSize(0);
+ } else if (other.storage_.GetIsAllocated()) {
+ storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
+ other.storage_.GetAllocatedCapacity());
+ storage_.SetAllocatedSize(other.storage_.GetSize());
+
+ other.storage_.SetInlinedSize(0);
+ } else {
+ IteratorValueAdapter<MoveIterator> other_values(
+ MoveIterator(other.storage_.GetInlinedData()));
+
+ inlined_vector_internal::ConstructElements(
+ storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
+ other.storage_.GetSize());
- // Creates an inlined vector by moving in the contents of `other`.
+ storage_.SetInlinedSize(other.storage_.GetSize());
+ }
+ }
+
+ // Creates an inlined vector by moving in the contents of `other` with a copy
+ // of `alloc`.
//
- // NOTE: This move constructor allocates and subsequently moves the underlying
- // objects, so its `noexcept` specification depends on whether the allocation
- // can throw and whether moving the underlying objects can throw. Based on the
- // same assumptions as above, the `noexcept` specification is dominated by
- // whether the allocation can throw regardless of whether `value_type`'s move
- // constructor is specified as `noexcept`.
- InlinedVector(InlinedVector&& v, const allocator_type& alloc) noexcept(
- absl::allocator_is_nothrow<allocator_type>::value);
+ // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
+ // contains allocated memory, this move constructor will still allocate. Since
+ // allocation is performed, this constructor can only be `noexcept` if the
+ // specified allocator is also `noexcept`.
+ InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
+ absl::allocator_is_nothrow<allocator_type>::value)
+ : storage_(alloc) {
+ if (IsMemcpyOk::value) {
+ storage_.MemcpyFrom(other.storage_);
+
+ other.storage_.SetInlinedSize(0);
+ } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
+ other.storage_.GetIsAllocated()) {
+ storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
+ other.storage_.GetAllocatedCapacity());
+ storage_.SetAllocatedSize(other.storage_.GetSize());
+
+ other.storage_.SetInlinedSize(0);
+ } else {
+ storage_.Initialize(
+ IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
+ other.size());
+ }
+ }
- ~InlinedVector() { clear(); }
+ ~InlinedVector() {}
// ---------------------------------------------------------------------------
// InlinedVector Member Accessors
@@ -187,87 +249,102 @@ class InlinedVector {
// `InlinedVector::empty()`
//
- // Checks if the inlined vector has no elements.
+ // Returns whether the inlined vector contains no elements.
bool empty() const noexcept { return !size(); }
// `InlinedVector::size()`
//
// Returns the number of elements in the inlined vector.
- size_type size() const noexcept { return tag().size(); }
+ size_type size() const noexcept { return storage_.GetSize(); }
// `InlinedVector::max_size()`
//
- // Returns the maximum number of elements the vector can hold.
+ // Returns the maximum number of elements the inlined vector can hold.
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
- // vector is allocated. As a result, the maximum size of the container that
- // we can express is half of the max for `size_type`.
+ // vector contains allocated memory. As a result, the maximum size that the
+ // inlined vector can express is half of the max for `size_type`.
return (std::numeric_limits<size_type>::max)() / 2;
}
// `InlinedVector::capacity()`
//
- // Returns the number of elements that can be stored in the inlined vector
- // without requiring a reallocation of underlying memory.
+ // Returns the number of elements that could be stored in the inlined vector
+ // without requiring a reallocation.
//
- // NOTE: For most inlined vectors, `capacity()` should equal
- // `inlined_capacity()`. For inlined vectors which exceed this capacity, they
- // will no longer be inlined and `capacity()` will equal its capacity on the
- // allocated heap.
+ // NOTE: for most inlined vectors, `capacity()` should be equal to the
+ // template parameter `N`. For inlined vectors which exceed this capacity,
+ // they will no longer be inlined and `capacity()` will equal the capactity of
+ // the allocated memory.
size_type capacity() const noexcept {
- return allocated() ? allocation().capacity() : inlined_capacity();
+ return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
+ : storage_.GetInlinedCapacity();
}
// `InlinedVector::data()`
//
- // Returns a `pointer` to elements of the inlined vector. This pointer can be
- // used to access and modify the contained elements.
- // Only results within the range [`0`, `size()`) are defined.
+ // Returns a `pointer` to the elements of the inlined vector. This pointer
+ // can be used to access and modify the contained elements.
+ //
+ // NOTE: only elements within [`data()`, `data() + size()`) are valid.
pointer data() noexcept {
- return allocated() ? allocated_space() : inlined_space();
+ return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
+ : storage_.GetInlinedData();
}
- // Overload of `InlinedVector::data()` to return a `const_pointer` to elements
- // of the inlined vector. This pointer can be used to access (but not modify)
- // the contained elements.
+ // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
+ // elements of the inlined vector. This pointer can be used to access but not
+ // modify the contained elements.
+ //
+ // NOTE: only elements within [`data()`, `data() + size()`) are valid.
const_pointer data() const noexcept {
- return allocated() ? allocated_space() : inlined_space();
+ return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
+ : storage_.GetInlinedData();
}
- // `InlinedVector::operator[]()`
+ // `InlinedVector::operator[](...)`
//
- // Returns a `reference` to the `i`th element of the inlined vector using the
- // array operator.
+ // Returns a `reference` to the `i`th element of the inlined vector.
reference operator[](size_type i) {
assert(i < size());
+
return data()[i];
}
- // Overload of `InlinedVector::operator[]()` to return a `const_reference` to
- // the `i`th element of the inlined vector.
+ // Overload of `InlinedVector::operator[](...)` that returns a
+ // `const_reference` to the `i`th element of the inlined vector.
const_reference operator[](size_type i) const {
assert(i < size());
+
return data()[i];
}
- // `InlinedVector::at()`
+ // `InlinedVector::at(...)`
//
// Returns a `reference` to the `i`th element of the inlined vector.
+ //
+ // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+ // in both debug and non-debug builds, `std::out_of_range` will be thrown.
reference at(size_type i) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
- "InlinedVector::at() failed bounds check");
+ "`InlinedVector::at(size_type)` failed bounds check");
}
+
return data()[i];
}
- // Overload of `InlinedVector::at()` to return a `const_reference` to the
- // `i`th element of the inlined vector.
+ // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
+ // the `i`th element of the inlined vector.
+ //
+ // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+ // in both debug and non-debug builds, `std::out_of_range` will be thrown.
const_reference at(size_type i) const {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
- "InlinedVector::at() failed bounds check");
+ "`InlinedVector::at(size_type) const` failed bounds check");
}
+
return data()[i];
}
@@ -276,13 +353,15 @@ class InlinedVector {
// Returns a `reference` to the first element of the inlined vector.
reference front() {
assert(!empty());
+
return at(0);
}
- // Overload of `InlinedVector::front()` returns a `const_reference` to the
- // first element of the inlined vector.
+ // Overload of `InlinedVector::front()` that returns a `const_reference` to
+ // the first element of the inlined vector.
const_reference front() const {
assert(!empty());
+
return at(0);
}
@@ -291,13 +370,15 @@ class InlinedVector {
// Returns a `reference` to the last element of the inlined vector.
reference back() {
assert(!empty());
+
return at(size() - 1);
}
- // Overload of `InlinedVector::back()` to return a `const_reference` to the
+ // Overload of `InlinedVector::back()` that returns a `const_reference` to the
// last element of the inlined vector.
const_reference back() const {
assert(!empty());
+
return at(size() - 1);
}
@@ -306,7 +387,7 @@ class InlinedVector {
// Returns an `iterator` to the beginning of the inlined vector.
iterator begin() noexcept { return data(); }
- // Overload of `InlinedVector::begin()` to return a `const_iterator` to
+ // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
// the beginning of the inlined vector.
const_iterator begin() const noexcept { return data(); }
@@ -315,7 +396,7 @@ class InlinedVector {
// Returns an `iterator` to the end of the inlined vector.
iterator end() noexcept { return data() + size(); }
- // Overload of `InlinedVector::end()` to return a `const_iterator` to the
+ // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
// end of the inlined vector.
const_iterator end() const noexcept { return data() + size(); }
@@ -334,7 +415,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the end of the inlined vector.
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
- // Overload of `InlinedVector::rbegin()` to return a
+ // Overload of `InlinedVector::rbegin()` that returns a
// `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
@@ -345,7 +426,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the beginning of the inlined vector.
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
- // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
+ // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
// from the beginning of the inlined vector.
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
@@ -364,1086 +445,403 @@ class InlinedVector {
// `InlinedVector::get_allocator()`
//
- // Returns a copy of the allocator of the inlined vector.
- allocator_type get_allocator() const { return allocator(); }
+ // Returns a copy of the inlined vector's allocator.
+ allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
// ---------------------------------------------------------------------------
- // `InlinedVector::operator=()`
+ // `InlinedVector::operator=(...)`
//
- // Replaces the contents of the inlined vector with copies of the elements in
- // the provided `std::initializer_list`.
- InlinedVector& operator=(std::initializer_list<value_type> init_list) {
- AssignRange(init_list.begin(), init_list.end(),
- IteratorCategory<decltype(init_list.begin())>{});
+ // Replaces the elements of the inlined vector with copies of the elements of
+ // `list`.
+ InlinedVector& operator=(std::initializer_list<value_type> list) {
+ assign(list.begin(), list.end());
+
return *this;
}
- // Overload of `InlinedVector::operator=()` to replace the contents of the
- // inlined vector with the contents of `other`.
+ // Overload of `InlinedVector::operator=(...)` that replaces the elements of
+ // the inlined vector with copies of the elements of `other`.
InlinedVector& operator=(const InlinedVector& other) {
- if (ABSL_PREDICT_FALSE(this == &other)) return *this;
-
- // Optimized to avoid reallocation.
- // Prefer reassignment to copy construction for elements.
- if (size() < other.size()) { // grow
- reserve(other.size());
- std::copy(other.begin(), other.begin() + size(), begin());
- std::copy(other.begin() + size(), other.end(), std::back_inserter(*this));
- } else { // maybe shrink
- erase(begin() + other.size(), end());
- std::copy(other.begin(), other.end(), begin());
+ if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
+ const_pointer other_data = other.data();
+ assign(other_data, other_data + other.size());
}
+
return *this;
}
- // Overload of `InlinedVector::operator=()` to replace the contents of the
- // inlined vector with the contents of `other`.
+ // Overload of `InlinedVector::operator=(...)` that moves the elements of
+ // `other` into the inlined vector.
//
- // NOTE: As a result of calling this overload, `other` may be empty or it's
- // contents may be left in a moved-from state.
+ // NOTE: as a result of calling this overload, `other` is left in a valid but
+ // unspecified state.
InlinedVector& operator=(InlinedVector&& other) {
- if (ABSL_PREDICT_FALSE(this == &other)) return *this;
-
- if (other.allocated()) {
- clear();
- tag().set_allocated_size(other.size());
- init_allocation(other.allocation());
- other.tag() = Tag();
- } else {
- if (allocated()) clear();
- // Both are inlined now.
- if (size() < other.size()) {
- auto mid = std::make_move_iterator(other.begin() + size());
- std::copy(std::make_move_iterator(other.begin()), mid, begin());
- UninitializedCopy(mid, std::make_move_iterator(other.end()), end());
+ if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
+ if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
+ inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
+ size());
+ storage_.DeallocateIfAllocated();
+ storage_.MemcpyFrom(other.storage_);
+
+ other.storage_.SetInlinedSize(0);
} else {
- auto new_end = std::copy(std::make_move_iterator(other.begin()),
- std::make_move_iterator(other.end()), begin());
- Destroy(new_end, end());
+ storage_.Assign(IteratorValueAdapter<MoveIterator>(
+ MoveIterator(other.storage_.GetInlinedData())),
+ other.size());
}
- tag().set_inline_size(other.size());
}
+
return *this;
}
- // `InlinedVector::assign()`
+ // `InlinedVector::assign(...)`
//
// Replaces the contents of the inlined vector with `n` copies of `v`.
void assign(size_type n, const_reference v) {
- if (n <= size()) { // Possibly shrink
- std::fill_n(begin(), n, v);
- erase(begin() + n, end());
- return;
- }
- // Grow
- reserve(n);
- std::fill_n(begin(), size(), v);
- if (allocated()) {
- UninitializedFill(allocated_space() + size(), allocated_space() + n, v);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space() + size(), inlined_space() + n, v);
- tag().set_inline_size(n);
- }
+ storage_.Assign(CopyValueAdapter(v), n);
+ }
+
+ // Overload of `InlinedVector::assign(...)` that replaces the contents of the
+ // inlined vector with copies of the elements of `list`.
+ void assign(std::initializer_list<value_type> list) {
+ assign(list.begin(), list.end());
}
- // Overload of `InlinedVector::assign()` to replace the contents of the
- // inlined vector with copies of the values in the provided
- // `std::initializer_list`.
- void assign(std::initializer_list<value_type> init_list) {
- AssignRange(init_list.begin(), init_list.end(),
- IteratorCategory<decltype(init_list.begin())>{});
+ // Overload of `InlinedVector::assign(...)` to replace the contents of the
+ // inlined vector with the range [`first`, `last`).
+ //
+ // NOTE: this overload is for iterators that are "forward" category or better.
+ template <typename ForwardIterator,
+ EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ void assign(ForwardIterator first, ForwardIterator last) {
+ storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
+ std::distance(first, last));
}
- // Overload of `InlinedVector::assign()` to replace the contents of the
- // inlined vector with values constructed from the range [`first`, `last`).
- template <typename InputIterator, DisableIfIntegral<InputIterator>* = nullptr>
+ // Overload of `InlinedVector::assign(...)` to replace the contents of the
+ // inlined vector with the range [`first`, `last`).
+ //
+ // NOTE: this overload is for iterators that are "input" category.
+ template <typename InputIterator,
+ DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
void assign(InputIterator first, InputIterator last) {
- AssignRange(first, last, IteratorCategory<InputIterator>{});
+ size_type i = 0;
+ for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
+ at(i) = *first;
+ }
+
+ erase(data() + i, data() + size());
+
+ std::copy(first, last, std::back_inserter(*this));
}
- // `InlinedVector::resize()`
+ // `InlinedVector::resize(...)`
+ //
+ // Resizes the inlined vector to contain `n` elements.
//
- // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
- // the inlined vector's current size, extra elements are destroyed. If `n` is
- // larger than the initial size, new elements are value-initialized.
- void resize(size_type n);
+ // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+ // is larger than `size()`, new elements are value-initialized.
+ void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }
- // Overload of `InlinedVector::resize()` to resize the inlined vector to
- // contain `n` elements where, if `n` is larger than `size()`, the new values
- // will be copy-constructed from `v`.
- void resize(size_type n, const_reference v);
+ // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
+ // contain `n` elements.
+ //
+ // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+ // is larger than `size()`, new elements are copied-constructed from `v`.
+ void resize(size_type n, const_reference v) {
+ storage_.Resize(CopyValueAdapter(v), n);
+ }
- // `InlinedVector::insert()`
+ // `InlinedVector::insert(...)`
//
- // Copies `v` into `position`, returning an `iterator` pointing to the newly
+ // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
// inserted element.
- iterator insert(const_iterator position, const_reference v) {
- return emplace(position, v);
+ iterator insert(const_iterator pos, const_reference v) {
+ return emplace(pos, v);
}
- // Overload of `InlinedVector::insert()` for moving `v` into `position`,
- // returning an iterator pointing to the newly inserted element.
- iterator insert(const_iterator position, rvalue_reference v) {
- return emplace(position, std::move(v));
+ // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
+ // move semantics, returning an `iterator` to the newly inserted element.
+ iterator insert(const_iterator pos, rvalue_reference v) {
+ return emplace(pos, std::move(v));
}
- // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
- // of `v` starting at `position`. Returns an `iterator` pointing to the first
- // of the newly inserted elements.
- iterator insert(const_iterator position, size_type n, const_reference v) {
- return InsertWithCount(position, n, v);
+ // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
+ // of `v` starting at `pos`, returning an `iterator` pointing to the first of
+ // the newly inserted elements.
+ iterator insert(const_iterator pos, size_type n, const_reference v) {
+ assert(pos >= begin());
+ assert(pos <= end());
+
+ if (ABSL_PREDICT_TRUE(n != 0)) {
+ value_type dealias = v;
+ return storage_.Insert(pos, CopyValueAdapter(dealias), n);
+ } else {
+ return const_cast<iterator>(pos);
+ }
}
- // Overload of `InlinedVector::insert()` for copying the contents of the
- // `std::initializer_list` into the vector starting at `position`. Returns an
- // `iterator` pointing to the first of the newly inserted elements.
- iterator insert(const_iterator position,
- std::initializer_list<value_type> init_list) {
- return insert(position, init_list.begin(), init_list.end());
+ // Overload of `InlinedVector::insert(...)` that inserts copies of the
+ // elements of `list` starting at `pos`, returning an `iterator` pointing to
+ // the first of the newly inserted elements.
+ iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
+ return insert(pos, list.begin(), list.end());
+ }
+
+ // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+ // `last`) starting at `pos`, returning an `iterator` pointing to the first
+ // of the newly inserted elements.
+ //
+ // NOTE: this overload is for iterators that are "forward" category or better.
+ template <typename ForwardIterator,
+ EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ iterator insert(const_iterator pos, ForwardIterator first,
+ ForwardIterator last) {
+ assert(pos >= begin());
+ assert(pos <= end());
+
+ if (ABSL_PREDICT_TRUE(first != last)) {
+ return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
+ std::distance(first, last));
+ } else {
+ return const_cast<iterator>(pos);
+ }
}
- // Overload of `InlinedVector::insert()` for inserting elements constructed
- // from the range [`first`, `last`). Returns an `iterator` pointing to the
- // first of the newly inserted elements.
+ // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+ // `last`) starting at `pos`, returning an `iterator` pointing to the first
+ // of the newly inserted elements.
//
- // NOTE: The `enable_if` is intended to disambiguate the two three-argument
- // overloads of `insert()`.
+ // NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
- typename = EnableIfInputIterator<InputIterator>>
- iterator insert(const_iterator position, InputIterator first,
- InputIterator last) {
- return InsertWithRange(position, first, last,
- IteratorCategory<InputIterator>());
+ DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
+ iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
+ assert(pos >= begin());
+ assert(pos <= end());
+
+ size_type index = std::distance(cbegin(), pos);
+ for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
+ insert(data() + i, *first);
+ }
+
+ return iterator(data() + index);
}
- // `InlinedVector::emplace()`
+ // `InlinedVector::emplace(...)`
//
- // Constructs and inserts an object in the inlined vector at the given
- // `position`, returning an `iterator` pointing to the newly emplaced element.
+ // Constructs and inserts an element using `args...` in the inlined vector at
+ // `pos`, returning an `iterator` pointing to the newly emplaced element.
template <typename... Args>
- iterator emplace(const_iterator position, Args&&... args);
+ iterator emplace(const_iterator pos, Args&&... args) {
+ assert(pos >= begin());
+ assert(pos <= end());
- // `InlinedVector::emplace_back()`
+ value_type dealias(std::forward<Args>(args)...);
+ return storage_.Insert(pos,
+ IteratorValueAdapter<MoveIterator>(
+ MoveIterator(std::addressof(dealias))),
+ 1);
+ }
+
+ // `InlinedVector::emplace_back(...)`
//
- // Constructs and appends a new element to the end of the inlined vector,
- // returning a `reference` to the emplaced element.
+ // Constructs and inserts an element using `args...` in the inlined vector at
+ // `end()`, returning a `reference` to the newly emplaced element.
template <typename... Args>
reference emplace_back(Args&&... args) {
- size_type s = size();
- assert(s <= capacity());
- if (ABSL_PREDICT_FALSE(s == capacity())) {
- return GrowAndEmplaceBack(std::forward<Args>(args)...);
- }
- assert(s < capacity());
-
- pointer space;
- if (allocated()) {
- tag().set_allocated_size(s + 1);
- space = allocated_space();
- } else {
- tag().set_inline_size(s + 1);
- space = inlined_space();
- }
- return Construct(space + s, std::forward<Args>(args)...);
+ return storage_.EmplaceBack(std::forward<Args>(args)...);
}
- // `InlinedVector::push_back()`
+ // `InlinedVector::push_back(...)`
//
- // Appends a copy of `v` to the end of the inlined vector.
+ // Inserts a copy of `v` in the inlined vector at `end()`.
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
- // Overload of `InlinedVector::push_back()` for moving `v` into a newly
- // appended element.
+ // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
+ // using move semantics.
void push_back(rvalue_reference v) {
static_cast<void>(emplace_back(std::move(v)));
}
// `InlinedVector::pop_back()`
//
- // Destroys the element at the end of the inlined vector and shrinks the size
- // by `1` (unless the inlined vector is empty, in which case this is a no-op).
+ // Destroys the element at `back()`, reducing the size by `1`.
void pop_back() noexcept {
assert(!empty());
- size_type s = size();
- if (allocated()) {
- Destroy(allocated_space() + s - 1, allocated_space() + s);
- tag().set_allocated_size(s - 1);
- } else {
- Destroy(inlined_space() + s - 1, inlined_space() + s);
- tag().set_inline_size(s - 1);
- }
+
+ AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
+ storage_.SubtractSize(1);
}
- // `InlinedVector::erase()`
+ // `InlinedVector::erase(...)`
//
- // Erases the element at `position` of the inlined vector, returning an
- // `iterator` pointing to the first element following the erased element.
+ // Erases the element at `pos`, returning an `iterator` pointing to where the
+ // erased element was located.
//
- // NOTE: May return the end iterator, which is not dereferencable.
- iterator erase(const_iterator position) {
- assert(position >= begin());
- assert(position < end());
-
- iterator pos = const_cast<iterator>(position);
- std::move(pos + 1, end(), pos);
- pop_back();
- return pos;
+ // NOTE: may return `end()`, which is not dereferencable.
+ iterator erase(const_iterator pos) {
+ assert(pos >= begin());
+ assert(pos < end());
+
+ return storage_.Erase(pos, pos + 1);
}
- // Overload of `InlinedVector::erase()` for erasing all elements in the
- // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
- // to the first element following the range erased or the end iterator if `to`
- // was the end iterator.
- iterator erase(const_iterator from, const_iterator to);
+ // Overload of `InlinedVector::erase(...)` that erases every element in the
+ // range [`from`, `to`), returning an `iterator` pointing to where the first
+ // erased element was located.
+ //
+ // NOTE: may return `end()`, which is not dereferencable.
+ iterator erase(const_iterator from, const_iterator to) {
+ assert(from >= begin());
+ assert(from <= to);
+ assert(to <= end());
+
+ if (ABSL_PREDICT_TRUE(from != to)) {
+ return storage_.Erase(from, to);
+ } else {
+ return const_cast<iterator>(from);
+ }
+ }
// `InlinedVector::clear()`
//
- // Destroys all elements in the inlined vector, sets the size of `0` and
- // deallocates the heap allocation if the inlined vector was allocated.
+ // Destroys all elements in the inlined vector, setting the size to `0` and
+ // deallocating any held memory.
void clear() noexcept {
- size_type s = size();
- if (allocated()) {
- Destroy(allocated_space(), allocated_space() + s);
- allocation().Dealloc(allocator());
- } else if (s != 0) { // do nothing for empty vectors
- Destroy(inlined_space(), inlined_space() + s);
- }
- tag() = Tag();
+ inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
+ size());
+ storage_.DeallocateIfAllocated();
+ storage_.SetInlinedSize(0);
}
- // `InlinedVector::reserve()`
+ // `InlinedVector::reserve(...)`
//
- // Enlarges the underlying representation of the inlined vector so it can hold
- // at least `n` elements. This method does not change `size()` or the actual
- // contents of the vector.
- //
- // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
- // effects. Otherwise, `reserve()` will reallocate, performing an n-time
- // element-wise move of everything contained.
- void reserve(size_type n) {
- if (n > capacity()) {
- // Make room for new elements
- EnlargeBy(n - size());
- }
- }
+ // Ensures that there is enough room for at least `n` elements.
+ void reserve(size_type n) { storage_.Reserve(n); }
// `InlinedVector::shrink_to_fit()`
//
- // Reduces memory usage by freeing unused memory. After this call, calls to
- // `capacity()` will be equal to `(std::max)(inlined_capacity(), size())`.
+ // Reduces memory usage by freeing unused memory. After being called, calls to
+ // `capacity()` will be equal to `max(N, size())`.
//
- // If `size() <= inlined_capacity()` and the elements are currently stored on
- // the heap, they will be moved to the inlined storage and the heap memory
+ // If `size() <= N` and the inlined vector contains allocated memory, the
+ // elements will all be moved to the inlined space and the allocated memory
// will be deallocated.
//
- // If `size() > inlined_capacity()` and `size() < capacity()` the elements
- // will be moved to a smaller heap allocation.
+ // If `size() > N` and `size() < capacity()`, the elements will be moved to a
+ // smaller allocation.
void shrink_to_fit() {
- const auto s = size();
- if (ABSL_PREDICT_FALSE(!allocated() || s == capacity())) return;
-
- if (s <= inlined_capacity()) {
- // Move the elements to the inlined storage.
- // We have to do this using a temporary, because `inlined_storage` and
- // `allocation_storage` are in a union field.
- auto temp = std::move(*this);
- assign(std::make_move_iterator(temp.begin()),
- std::make_move_iterator(temp.end()));
- return;
+ if (storage_.GetIsAllocated()) {
+ storage_.ShrinkToFit();
}
-
- // Reallocate storage and move elements.
- // We can't simply use the same approach as above, because `assign()` would
- // call into `reserve()` internally and reserve larger capacity than we need
- Allocation new_allocation(allocator(), s);
- UninitializedCopy(std::make_move_iterator(allocated_space()),
- std::make_move_iterator(allocated_space() + s),
- new_allocation.buffer());
- ResetAllocation(new_allocation, s);
}
- // `InlinedVector::swap()`
+ // `InlinedVector::swap(...)`
//
- // Swaps the contents of this inlined vector with the contents of `other`.
- void swap(InlinedVector& other);
-
- template <typename Hash>
- friend Hash AbslHashValue(Hash hash, const InlinedVector& inlined_vector) {
- const_pointer p = inlined_vector.data();
- size_type n = inlined_vector.size();
- return Hash::combine(Hash::combine_contiguous(std::move(hash), p, n), n);
- }
-
- private:
- // Holds whether the vector is allocated or not in the lowest bit and the size
- // in the high bits:
- // `size_ = (size << 1) | is_allocated;`
- class Tag {
- public:
- Tag() : size_(0) {}
- size_type size() const { return size_ / 2; }
- void add_size(size_type n) { size_ += n * 2; }
- void set_inline_size(size_type n) { size_ = n * 2; }
- void set_allocated_size(size_type n) { size_ = (n * 2) + 1; }
- bool allocated() const { return size_ % 2; }
-
- private:
- size_type size_;
- };
-
- // Derives from `allocator_type` to use the empty base class optimization.
- // If the `allocator_type` is stateless, we can store our instance for free.
- class AllocatorAndTag : private allocator_type {
- public:
- explicit AllocatorAndTag(const allocator_type& a) : allocator_type(a) {}
-
- Tag& tag() { return tag_; }
- const Tag& tag() const { return tag_; }
-
- allocator_type& allocator() { return *this; }
- const allocator_type& allocator() const { return *this; }
-
- private:
- Tag tag_;
- };
-
- class Allocation {
- public:
- Allocation(allocator_type& a, size_type capacity)
- : capacity_(capacity), buffer_(Create(a, capacity)) {}
-
- void Dealloc(allocator_type& a) {
- std::allocator_traits<allocator_type>::deallocate(a, buffer_, capacity_);
- }
-
- size_type capacity() const { return capacity_; }
-
- const_pointer buffer() const { return buffer_; }
-
- pointer buffer() { return buffer_; }
-
- private:
- static pointer Create(allocator_type& a, size_type n) {
- return std::allocator_traits<allocator_type>::allocate(a, n);
+ // Swaps the contents of the inlined vector with `other`.
+ void swap(InlinedVector& other) {
+ if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
+ storage_.Swap(std::addressof(other.storage_));
}
-
- size_type capacity_;
- pointer buffer_;
- };
-
- const Tag& tag() const { return allocator_and_tag_.tag(); }
-
- Tag& tag() { return allocator_and_tag_.tag(); }
-
- Allocation& allocation() {
- return reinterpret_cast<Allocation&>(rep_.allocation_storage.allocation);
- }
-
- const Allocation& allocation() const {
- return reinterpret_cast<const Allocation&>(
- rep_.allocation_storage.allocation);
- }
-
- void init_allocation(const Allocation& allocation) {
- new (&rep_.allocation_storage.allocation) Allocation(allocation);
- }
-
- // TODO(absl-team): investigate whether the reinterpret_cast is appropriate.
- pointer inlined_space() {
- return reinterpret_cast<pointer>(
- std::addressof(rep_.inlined_storage.inlined[0]));
- }
-
- const_pointer inlined_space() const {
- return reinterpret_cast<const_pointer>(
- std::addressof(rep_.inlined_storage.inlined[0]));
- }
-
- pointer allocated_space() { return allocation().buffer(); }
-
- const_pointer allocated_space() const { return allocation().buffer(); }
-
- const allocator_type& allocator() const {
- return allocator_and_tag_.allocator();
}
- allocator_type& allocator() { return allocator_and_tag_.allocator(); }
-
- bool allocated() const { return tag().allocated(); }
-
- // Enlarge the underlying representation so we can store `size_ + delta` elems
- // in allocated space. The size is not changed, and any newly added memory is
- // not initialized.
- void EnlargeBy(size_type delta);
-
- // Shift all elements from `position` to `end()` by `n` places to the right.
- // If the vector needs to be enlarged, memory will be allocated.
- // Returns `iterator`s pointing to the start of the previously-initialized
- // portion and the start of the uninitialized portion of the created gap.
- // The number of initialized spots is `pair.second - pair.first`. The number
- // of raw spots is `n - (pair.second - pair.first)`.
- //
- // Updates the size of the InlinedVector internally.
- std::pair<iterator, iterator> ShiftRight(const_iterator position,
- size_type n);
-
- void ResetAllocation(Allocation new_allocation, size_type new_size) {
- if (allocated()) {
- Destroy(allocated_space(), allocated_space() + size());
- assert(begin() == allocated_space());
- allocation().Dealloc(allocator());
- allocation() = new_allocation;
- } else {
- Destroy(inlined_space(), inlined_space() + size());
- init_allocation(new_allocation); // bug: only init once
- }
- tag().set_allocated_size(new_size);
- }
-
- template <typename... Args>
- reference GrowAndEmplaceBack(Args&&... args) {
- assert(size() == capacity());
- const size_type s = size();
-
- Allocation new_allocation(allocator(), 2 * capacity());
-
- reference new_element =
- Construct(new_allocation.buffer() + s, std::forward<Args>(args)...);
- UninitializedCopy(std::make_move_iterator(data()),
- std::make_move_iterator(data() + s),
- new_allocation.buffer());
-
- ResetAllocation(new_allocation, s + 1);
-
- return new_element;
- }
-
- void InitAssign(size_type n);
-
- void InitAssign(size_type n, const_reference v);
-
- template <typename... Args>
- reference Construct(pointer p, Args&&... args) {
- std::allocator_traits<allocator_type>::construct(
- allocator(), p, std::forward<Args>(args)...);
- return *p;
- }
-
- template <typename Iterator>
- void UninitializedCopy(Iterator src, Iterator src_last, pointer dst) {
- for (; src != src_last; ++dst, ++src) Construct(dst, *src);
- }
-
- template <typename... Args>
- void UninitializedFill(pointer dst, pointer dst_last, const Args&... args) {
- for (; dst != dst_last; ++dst) Construct(dst, args...);
- }
-
- // Destroy [`from`, `to`) in place.
- void Destroy(pointer from, pointer to);
-
- template <typename Iterator>
- void AppendRange(Iterator first, Iterator last, std::forward_iterator_tag);
-
- template <typename Iterator>
- void AppendRange(Iterator first, Iterator last, std::input_iterator_tag);
-
- template <typename Iterator>
- void AssignRange(Iterator first, Iterator last, std::forward_iterator_tag);
+ private:
+ template <typename H, typename TheT, size_t TheN, typename TheA>
+ friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
- template <typename Iterator>
- void AssignRange(Iterator first, Iterator last, std::input_iterator_tag);
-
- iterator InsertWithCount(const_iterator position, size_type n,
- const_reference v);
-
- template <typename ForwardIterator>
- iterator InsertWithRange(const_iterator position, ForwardIterator first,
- ForwardIterator last, std::forward_iterator_tag);
-
- template <typename InputIterator>
- iterator InsertWithRange(const_iterator position, InputIterator first,
- InputIterator last, std::input_iterator_tag);
-
- // Stores either the inlined or allocated representation
- union Rep {
- using ValueTypeBuffer =
- absl::aligned_storage_t<sizeof(value_type), alignof(value_type)>;
- using AllocationBuffer =
- absl::aligned_storage_t<sizeof(Allocation), alignof(Allocation)>;
-
- // Structs wrap the buffers to perform indirection that solves a bizarre
- // compilation error on Visual Studio (all known versions).
- struct InlinedRep {
- ValueTypeBuffer inlined[N];
- };
- struct AllocatedRep {
- AllocationBuffer allocation;
- };
-
- InlinedRep inlined_storage;
- AllocatedRep allocation_storage;
- };
-
- AllocatorAndTag allocator_and_tag_;
- Rep rep_;
+ Storage storage_;
};
// -----------------------------------------------------------------------------
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------
-// `swap()`
+// `swap(...)`
//
-// Swaps the contents of two inlined vectors. This convenience function
-// simply calls `InlinedVector::swap()`.
+// Swaps the contents of two inlined vectors.
template <typename T, size_t N, typename A>
-void swap(InlinedVector<T, N, A>& a,
- InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
+void swap(absl::InlinedVector<T, N, A>& a,
+ absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
-// `operator==()`
+// `operator==(...)`
//
-// Tests the equivalency of the contents of two inlined vectors.
+// Tests for value-equality of two inlined vectors.
template <typename T, size_t N, typename A>
-bool operator==(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
- return absl::equal(a.begin(), a.end(), b.begin(), b.end());
+bool operator==(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
+ auto a_data = a.data();
+ auto b_data = b.data();
+ return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
}
-// `operator!=()`
+// `operator!=(...)`
//
-// Tests the inequality of the contents of two inlined vectors.
+// Tests for value-inequality of two inlined vectors.
template <typename T, size_t N, typename A>
-bool operator!=(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
+bool operator!=(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
return !(a == b);
}
-// `operator<()`
+// `operator<(...)`
//
-// Tests whether the contents of one inlined vector are less than the contents
-// of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than the value of
+// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
-bool operator<(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
- return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
+bool operator<(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
+ auto a_data = a.data();
+ auto b_data = b.data();
+ return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
+ b_data + b.size());
}
-// `operator>()`
+// `operator>(...)`
//
-// Tests whether the contents of one inlined vector are greater than the
-// contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than the value of
+// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
-bool operator>(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
+bool operator>(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
return b < a;
}
-// `operator<=()`
+// `operator<=(...)`
//
-// Tests whether the contents of one inlined vector are less than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
-bool operator<=(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
+bool operator<=(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
return !(b < a);
}
-// `operator>=()`
+// `operator>=(...)`
//
-// Tests whether the contents of one inlined vector are greater than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
-bool operator>=(const InlinedVector<T, N, A>& a,
- const InlinedVector<T, N, A>& b) {
+bool operator>=(const absl::InlinedVector<T, N, A>& a,
+ const absl::InlinedVector<T, N, A>& b) {
return !(a < b);
}
-// -----------------------------------------------------------------------------
-// Implementation of InlinedVector
+// `AbslHashValue(...)`
//
-// Do not depend on any below implementation details!
-// -----------------------------------------------------------------------------
-
-template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(const InlinedVector& other)
- : allocator_and_tag_(other.allocator()) {
- reserve(other.size());
- if (allocated()) {
- UninitializedCopy(other.begin(), other.end(), allocated_space());
- tag().set_allocated_size(other.size());
- } else {
- UninitializedCopy(other.begin(), other.end(), inlined_space());
- tag().set_inline_size(other.size());
- }
-}
-
-template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(const InlinedVector& other,
- const allocator_type& alloc)
- : allocator_and_tag_(alloc) {
- reserve(other.size());
- if (allocated()) {
- UninitializedCopy(other.begin(), other.end(), allocated_space());
- tag().set_allocated_size(other.size());
- } else {
- UninitializedCopy(other.begin(), other.end(), inlined_space());
- tag().set_inline_size(other.size());
- }
-}
-
-template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(InlinedVector&& other) noexcept(
- absl::allocator_is_nothrow<allocator_type>::value ||
- std::is_nothrow_move_constructible<value_type>::value)
- : allocator_and_tag_(other.allocator_and_tag_) {
- if (other.allocated()) {
- // We can just steal the underlying buffer from the source.
- // That leaves the source empty, so we clear its size.
- init_allocation(other.allocation());
- other.tag() = Tag();
- } else {
- UninitializedCopy(
- std::make_move_iterator(other.inlined_space()),
- std::make_move_iterator(other.inlined_space() + other.size()),
- inlined_space());
- }
-}
-
-template <typename T, size_t N, typename A>
-InlinedVector<T, N, A>::InlinedVector(InlinedVector&& other,
- const allocator_type& alloc) noexcept( //
- absl::allocator_is_nothrow<allocator_type>::value)
- : allocator_and_tag_(alloc) {
- if (other.allocated()) {
- if (alloc == other.allocator()) {
- // We can just steal the allocation from the source.
- tag() = other.tag();
- init_allocation(other.allocation());
- other.tag() = Tag();
- } else {
- // We need to use our own allocator
- reserve(other.size());
- UninitializedCopy(std::make_move_iterator(other.begin()),
- std::make_move_iterator(other.end()),
- allocated_space());
- tag().set_allocated_size(other.size());
- }
- } else {
- UninitializedCopy(
- std::make_move_iterator(other.inlined_space()),
- std::make_move_iterator(other.inlined_space() + other.size()),
- inlined_space());
- tag().set_inline_size(other.size());
- }
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::InitAssign(size_type n, const_reference v) {
- if (n > inlined_capacity()) {
- Allocation new_allocation(allocator(), n);
- init_allocation(new_allocation);
- UninitializedFill(allocated_space(), allocated_space() + n, v);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space(), inlined_space() + n, v);
- tag().set_inline_size(n);
- }
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::InitAssign(size_type n) {
- if (n > inlined_capacity()) {
- Allocation new_allocation(allocator(), n);
- init_allocation(new_allocation);
- UninitializedFill(allocated_space(), allocated_space() + n);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space(), inlined_space() + n);
- tag().set_inline_size(n);
- }
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::resize(size_type n) {
- size_type s = size();
- if (n < s) {
- erase(begin() + n, end());
- return;
- }
- reserve(n);
- assert(capacity() >= n);
-
- // Fill new space with elements constructed in-place.
- if (allocated()) {
- UninitializedFill(allocated_space() + s, allocated_space() + n);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space() + s, inlined_space() + n);
- tag().set_inline_size(n);
- }
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::resize(size_type n, const_reference v) {
- size_type s = size();
- if (n < s) {
- erase(begin() + n, end());
- return;
- }
- reserve(n);
- assert(capacity() >= n);
-
- // Fill new space with copies of 'v'.
- if (allocated()) {
- UninitializedFill(allocated_space() + s, allocated_space() + n, v);
- tag().set_allocated_size(n);
- } else {
- UninitializedFill(inlined_space() + s, inlined_space() + n, v);
- tag().set_inline_size(n);
- }
-}
-
-template <typename T, size_t N, typename A>
-template <typename... Args>
-auto InlinedVector<T, N, A>::emplace(const_iterator position, Args&&... args)
- -> iterator {
- assert(position >= begin());
- assert(position <= end());
- if (ABSL_PREDICT_FALSE(position == end())) {
- emplace_back(std::forward<Args>(args)...);
- return end() - 1;
- }
-
- T new_t = T(std::forward<Args>(args)...);
-
- auto range = ShiftRight(position, 1);
- if (range.first == range.second) {
- // constructing into uninitialized memory
- Construct(range.first, std::move(new_t));
- } else {
- // assigning into moved-from object
- *range.first = T(std::move(new_t));
- }
-
- return range.first;
-}
-
-template <typename T, size_t N, typename A>
-auto InlinedVector<T, N, A>::erase(const_iterator from, const_iterator to)
- -> iterator {
- assert(begin() <= from);
- assert(from <= to);
- assert(to <= end());
-
- iterator range_start = const_cast<iterator>(from);
- iterator range_end = const_cast<iterator>(to);
-
- size_type s = size();
- ptrdiff_t erase_gap = std::distance(range_start, range_end);
- if (erase_gap > 0) {
- pointer space;
- if (allocated()) {
- space = allocated_space();
- tag().set_allocated_size(s - erase_gap);
- } else {
- space = inlined_space();
- tag().set_inline_size(s - erase_gap);
- }
- std::move(range_end, space + s, range_start);
- Destroy(space + s - erase_gap, space + s);
- }
- return range_start;
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::swap(InlinedVector& other) {
- using std::swap; // Augment ADL with `std::swap`.
- if (ABSL_PREDICT_FALSE(this == &other)) return;
-
- if (allocated() && other.allocated()) {
- // Both out of line, so just swap the tag, allocation, and allocator.
- swap(tag(), other.tag());
- swap(allocation(), other.allocation());
- swap(allocator(), other.allocator());
- return;
- }
- if (!allocated() && !other.allocated()) {
- // Both inlined: swap up to smaller size, then move remaining elements.
- InlinedVector* a = this;
- InlinedVector* b = &other;
- if (size() < other.size()) {
- swap(a, b);
- }
-
- const size_type a_size = a->size();
- const size_type b_size = b->size();
- assert(a_size >= b_size);
- // `a` is larger. Swap the elements up to the smaller array size.
- std::swap_ranges(a->inlined_space(), a->inlined_space() + b_size,
- b->inlined_space());
-
- // Move the remaining elements:
- // [`b_size`, `a_size`) from `a` -> [`b_size`, `a_size`) from `b`
- b->UninitializedCopy(a->inlined_space() + b_size,
- a->inlined_space() + a_size,
- b->inlined_space() + b_size);
- a->Destroy(a->inlined_space() + b_size, a->inlined_space() + a_size);
-
- swap(a->tag(), b->tag());
- swap(a->allocator(), b->allocator());
- assert(b->size() == a_size);
- assert(a->size() == b_size);
- return;
- }
-
- // One is out of line, one is inline.
- // We first move the elements from the inlined vector into the
- // inlined space in the other vector. We then put the other vector's
- // pointer/capacity into the originally inlined vector and swap
- // the tags.
- InlinedVector* a = this;
- InlinedVector* b = &other;
- if (a->allocated()) {
- swap(a, b);
- }
- assert(!a->allocated());
- assert(b->allocated());
- const size_type a_size = a->size();
- const size_type b_size = b->size();
- // In an optimized build, `b_size` would be unused.
- static_cast<void>(b_size);
-
- // Made Local copies of `size()`, don't need `tag()` accurate anymore
- swap(a->tag(), b->tag());
-
- // Copy `b_allocation` out before `b`'s union gets clobbered by `inline_space`
- Allocation b_allocation = b->allocation();
-
- b->UninitializedCopy(a->inlined_space(), a->inlined_space() + a_size,
- b->inlined_space());
- a->Destroy(a->inlined_space(), a->inlined_space() + a_size);
-
- a->allocation() = b_allocation;
-
- if (a->allocator() != b->allocator()) {
- swap(a->allocator(), b->allocator());
- }
-
- assert(b->size() == a_size);
- assert(a->size() == b_size);
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::EnlargeBy(size_type delta) {
- const size_type s = size();
- assert(s <= capacity());
-
- size_type target = std::max(inlined_capacity(), s + delta);
-
- // Compute new capacity by repeatedly doubling current capacity
- // TODO(psrc): Check and avoid overflow?
- size_type new_capacity = capacity();
- while (new_capacity < target) {
- new_capacity <<= 1;
- }
-
- Allocation new_allocation(allocator(), new_capacity);
-
- UninitializedCopy(std::make_move_iterator(data()),
- std::make_move_iterator(data() + s),
- new_allocation.buffer());
-
- ResetAllocation(new_allocation, s);
-}
-
-template <typename T, size_t N, typename A>
-auto InlinedVector<T, N, A>::ShiftRight(const_iterator position, size_type n)
- -> std::pair<iterator, iterator> {
- iterator start_used = const_cast<iterator>(position);
- iterator start_raw = const_cast<iterator>(position);
- size_type s = size();
- size_type required_size = s + n;
-
- if (required_size > capacity()) {
- // Compute new capacity by repeatedly doubling current capacity
- size_type new_capacity = capacity();
- while (new_capacity < required_size) {
- new_capacity <<= 1;
- }
- // Move everyone into the new allocation, leaving a gap of `n` for the
- // requested shift.
- Allocation new_allocation(allocator(), new_capacity);
- size_type index = position - begin();
- UninitializedCopy(std::make_move_iterator(data()),
- std::make_move_iterator(data() + index),
- new_allocation.buffer());
- UninitializedCopy(std::make_move_iterator(data() + index),
- std::make_move_iterator(data() + s),
- new_allocation.buffer() + index + n);
- ResetAllocation(new_allocation, s);
-
- // New allocation means our iterator is invalid, so we'll recalculate.
- // Since the entire gap is in new space, there's no used space to reuse.
- start_raw = begin() + index;
- start_used = start_raw;
- } else {
- // If we had enough space, it's a two-part move. Elements going into
- // previously-unoccupied space need an `UninitializedCopy()`. Elements
- // going into a previously-occupied space are just a `std::move()`.
- iterator pos = const_cast<iterator>(position);
- iterator raw_space = end();
- size_type slots_in_used_space = raw_space - pos;
- size_type new_elements_in_used_space = std::min(n, slots_in_used_space);
- size_type new_elements_in_raw_space = n - new_elements_in_used_space;
- size_type old_elements_in_used_space =
- slots_in_used_space - new_elements_in_used_space;
-
- UninitializedCopy(std::make_move_iterator(pos + old_elements_in_used_space),
- std::make_move_iterator(raw_space),
- raw_space + new_elements_in_raw_space);
- std::move_backward(pos, pos + old_elements_in_used_space, raw_space);
-
- // If the gap is entirely in raw space, the used space starts where the raw
- // space starts, leaving no elements in used space. If the gap is entirely
- // in used space, the raw space starts at the end of the gap, leaving all
- // elements accounted for within the used space.
- start_used = pos;
- start_raw = pos + new_elements_in_used_space;
- }
- tag().add_size(n);
- return std::make_pair(start_used, start_raw);
-}
-
-template <typename T, size_t N, typename A>
-void InlinedVector<T, N, A>::Destroy(pointer from, pointer to) {
- for (pointer cur = from; cur != to; ++cur) {
- std::allocator_traits<allocator_type>::destroy(allocator(), cur);
- }
-#ifndef NDEBUG
- // Overwrite unused memory with `0xab` so we can catch uninitialized usage.
- // Cast to `void*` to tell the compiler that we don't care that we might be
- // scribbling on a vtable pointer.
- if (from != to) {
- auto len = sizeof(value_type) * std::distance(from, to);
- std::memset(reinterpret_cast<void*>(from), 0xab, len);
- }
-#endif
-}
-
-template <typename T, size_t N, typename A>
-template <typename Iterator>
-void InlinedVector<T, N, A>::AppendRange(Iterator first, Iterator last,
- std::forward_iterator_tag) {
- auto length = std::distance(first, last);
- reserve(size() + length);
- if (allocated()) {
- UninitializedCopy(first, last, allocated_space() + size());
- tag().set_allocated_size(size() + length);
- } else {
- UninitializedCopy(first, last, inlined_space() + size());
- tag().set_inline_size(size() + length);
- }
-}
-
-template <typename T, size_t N, typename A>
-template <typename Iterator>
-void InlinedVector<T, N, A>::AppendRange(Iterator first, Iterator last,
- std::input_iterator_tag) {
- std::copy(first, last, std::back_inserter(*this));
-}
-
-template <typename T, size_t N, typename A>
-template <typename Iterator>
-void InlinedVector<T, N, A>::AssignRange(Iterator first, Iterator last,
- std::forward_iterator_tag) {
- auto length = std::distance(first, last);
- // Prefer reassignment to copy construction for elements.
- if (static_cast<size_type>(length) <= size()) {
- erase(std::copy(first, last, begin()), end());
- return;
- }
- reserve(length);
- iterator out = begin();
- for (; out != end(); ++first, ++out) *out = *first;
- if (allocated()) {
- UninitializedCopy(first, last, out);
- tag().set_allocated_size(length);
- } else {
- UninitializedCopy(first, last, out);
- tag().set_inline_size(length);
- }
-}
-
-template <typename T, size_t N, typename A>
-template <typename Iterator>
-void InlinedVector<T, N, A>::AssignRange(Iterator first, Iterator last,
- std::input_iterator_tag) {
- // Optimized to avoid reallocation.
- // Prefer reassignment to copy construction for elements.
- iterator out = begin();
- for (; first != last && out != end(); ++first, ++out) {
- *out = *first;
- }
- erase(out, end());
- std::copy(first, last, std::back_inserter(*this));
-}
-
-template <typename T, size_t N, typename A>
-auto InlinedVector<T, N, A>::InsertWithCount(const_iterator position,
- size_type n, const_reference v)
- -> iterator {
- assert(position >= begin() && position <= end());
- if (ABSL_PREDICT_FALSE(n == 0)) return const_cast<iterator>(position);
-
- value_type copy = v;
- std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
- std::fill(it_pair.first, it_pair.second, copy);
- UninitializedFill(it_pair.second, it_pair.first + n, copy);
-
- return it_pair.first;
-}
-
-template <typename T, size_t N, typename A>
-template <typename ForwardIterator>
-auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
- ForwardIterator first,
- ForwardIterator last,
- std::forward_iterator_tag)
- -> iterator {
- assert(position >= begin() && position <= end());
- if (ABSL_PREDICT_FALSE(first == last)) return const_cast<iterator>(position);
-
- auto n = std::distance(first, last);
- std::pair<iterator, iterator> it_pair = ShiftRight(position, n);
- size_type used_spots = it_pair.second - it_pair.first;
- ForwardIterator open_spot = std::next(first, used_spots);
- std::copy(first, open_spot, it_pair.first);
- UninitializedCopy(open_spot, last, it_pair.second);
- return it_pair.first;
-}
-
-template <typename T, size_t N, typename A>
-template <typename InputIterator>
-auto InlinedVector<T, N, A>::InsertWithRange(const_iterator position,
- InputIterator first,
- InputIterator last,
- std::input_iterator_tag)
- -> iterator {
- assert(position >= begin() && position <= end());
- size_type index = position - cbegin();
- size_type i = index;
- while (first != last) insert(begin() + i++, *first++);
- return begin() + index;
+// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
+// call this directly.
+template <typename H, typename T, size_t N, typename A>
+H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
+ auto size = a.size();
+ return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
}
-} // inline namespace lts_2018_12_18
+} // inline namespace lts_2019_08_08
} // namespace absl
#endif // ABSL_CONTAINER_INLINED_VECTOR_H_