summaryrefslogtreecommitdiff
path: root/absl/base/nullability.h
diff options
context:
space:
mode:
Diffstat (limited to 'absl/base/nullability.h')
-rw-r--r--absl/base/nullability.h18
1 files changed, 9 insertions, 9 deletions
diff --git a/absl/base/nullability.h b/absl/base/nullability.h
index 42525dd0..17553d0c 100644
--- a/absl/base/nullability.h
+++ b/absl/base/nullability.h
@@ -20,7 +20,7 @@
// expected nullability of pointers. These annotations allow you to designate
// pointers in one of three classification states:
//
-// * "Non-null" (for pointers annotated `NonNull<T>`), indicating that it is
+// * "Non-null" (for pointers annotated `Nonnull<T>`), indicating that it is
// invalid for the given pointer to ever be null.
// * "Nullable" (for pointers annotated `Nullable<T>`), indicating that it is
// valid for the given pointer to be null.
@@ -69,7 +69,7 @@
//
// It is important to note that these annotations are not distinct strong
// *types*. They are alias templates defined to be equal to the underlying
-// pointer type. A pointer annotated `NonNull<T*>`, for example, is simply a
+// pointer type. A pointer annotated `Nonnull<T*>`, for example, is simply a
// pointer of type `T*`. Each annotation acts as a form of documentation about
// the contract for the given pointer. Each annotation requires providers or
// consumers of these pointers across API boundaries to take appropriate steps
@@ -91,13 +91,13 @@
// Example:
//
// // PaySalary() requires the passed pointer to an `Employee` to be non-null.
-// void PaySalary(absl::NonNull<Employee *> e) {
+// void PaySalary(absl::Nonnull<Employee *> e) {
// pay(e->salary); // OK to dereference
// }
//
// // CompleteTransaction() guarantees the returned pointer to an `Account` to
// // be non-null.
-// absl::NonNull<Account *> balance CompleteTransaction(double fee) {
+// absl::Nonnull<Account *> balance CompleteTransaction(double fee) {
// ...
// }
//
@@ -144,8 +144,8 @@
// These nullability annotations are primarily a human readable signal about the
// intended contract of the pointer. They are not *types* and do not currently
// provide any correctness guarantees. For example, a pointer annotated as
-// `NonNull<T*>` is *not guaranteed* to be non-null, and the compiler won't
-// alert or prevent assignment of a `Nullable<T*>` to a `NonNull<T*>`.
+// `Nonnull<T*>` is *not guaranteed* to be non-null, and the compiler won't
+// alert or prevent assignment of a `Nullable<T*>` to a `Nonnull<T*>`.
// ===========================================================================
#ifndef ABSL_BASE_NULLABILITY_H_
#define ABSL_BASE_NULLABILITY_H_
@@ -154,7 +154,7 @@
namespace absl {
-// absl::NonNull
+// absl::Nonnull
//
// The indicated pointer is never null. It is the responsibility of the provider
// of this pointer across an API boundary to ensure that the pointer is never be
@@ -168,7 +168,7 @@ namespace absl {
// pay(*employee); // OK to dereference
// }
template <typename T>
-using NonNull = nullability_internal::NonNullImpl<T>;
+using Nonnull = nullability_internal::NonnullImpl<T>;
// absl::Nullable
//
@@ -195,7 +195,7 @@ using Nullable = nullability_internal::NullableImpl<T>;
// Consumers of these pointers across an API boundary should treat such pointers
// with the same caution they treat currently unannotated pointers. Most
// existing code will have "unknown" pointers, which should eventually be
-// migrated into one of the above two nullability states: `NonNull<T>` or
+// migrated into one of the above two nullability states: `Nonnull<T>` or
// `Nullable<T>`.
//
// NOTE: Because this annotation is the global default state, pointers without