summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CMake/AbseilHelpers.cmake4
-rw-r--r--CMake/AbseilInstallDirs.cmake4
-rw-r--r--absl/container/inlined_vector.h2
-rw-r--r--absl/flags/reflection.cc12
-rw-r--r--absl/random/internal/BUILD.bazel9
-rw-r--r--absl/random/internal/fast_uniform_bits.h202
-rw-r--r--absl/random/internal/fast_uniform_bits_test.cc318
-rw-r--r--absl/synchronization/mutex.h5
-rw-r--r--absl/time/internal/cctz/src/time_zone_format.cc22
-rw-r--r--absl/time/internal/cctz/src/time_zone_format_test.cc5
-rw-r--r--absl/time/internal/cctz/src/time_zone_libc.cc9
-rw-r--r--absl/time/internal/cctz/src/tzfile.h8
-rw-r--r--absl/types/CMakeLists.txt2
13 files changed, 340 insertions, 262 deletions
diff --git a/CMake/AbseilHelpers.cmake b/CMake/AbseilHelpers.cmake
index 86ff9eba..8b2925c5 100644
--- a/CMake/AbseilHelpers.cmake
+++ b/CMake/AbseilHelpers.cmake
@@ -23,7 +23,9 @@ include(AbseilInstallDirs)
# project that sets
# set_property(GLOBAL PROPERTY USE_FOLDERS ON)
# For example, Visual Studio supports folders.
-set(ABSL_IDE_FOLDER Abseil)
+if(NOT DEFINED ABSL_IDE_FOLDER)
+ set(ABSL_IDE_FOLDER Abseil)
+endif()
# absl_cc_library()
#
diff --git a/CMake/AbseilInstallDirs.cmake b/CMake/AbseilInstallDirs.cmake
index b67272f8..6fc914b6 100644
--- a/CMake/AbseilInstallDirs.cmake
+++ b/CMake/AbseilInstallDirs.cmake
@@ -10,11 +10,11 @@ if(absl_VERSION)
set(ABSL_SUBDIR "${PROJECT_NAME}_${PROJECT_VERSION}")
set(ABSL_INSTALL_BINDIR "${CMAKE_INSTALL_BINDIR}/${ABSL_SUBDIR}")
set(ABSL_INSTALL_CONFIGDIR "${CMAKE_INSTALL_LIBDIR}/cmake/${ABSL_SUBDIR}")
- set(ABSL_INSTALL_INCLUDEDIR "${CMAKE_INSTALL_INCLUDEDIR}/{ABSL_SUBDIR}")
+ set(ABSL_INSTALL_INCLUDEDIR "${CMAKE_INSTALL_INCLUDEDIR}/${ABSL_SUBDIR}")
set(ABSL_INSTALL_LIBDIR "${CMAKE_INSTALL_LIBDIR}/${ABSL_SUBDIR}")
else()
set(ABSL_INSTALL_BINDIR "${CMAKE_INSTALL_BINDIR}")
set(ABSL_INSTALL_CONFIGDIR "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}")
set(ABSL_INSTALL_INCLUDEDIR "${CMAKE_INSTALL_INCLUDEDIR}")
set(ABSL_INSTALL_LIBDIR "${CMAKE_INSTALL_LIBDIR}")
-endif() \ No newline at end of file
+endif()
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
index f18dd4c7..90bb96e8 100644
--- a/absl/container/inlined_vector.h
+++ b/absl/container/inlined_vector.h
@@ -64,7 +64,7 @@ ABSL_NAMESPACE_BEGIN
// `std::vector` for use cases where the vector's size is sufficiently small
// that it can be inlined. If the inlined vector does grow beyond its estimated
// capacity, it will trigger an initial allocation on the heap, and will behave
-// as a `std:vector`. The API of the `absl::InlinedVector` within this file is
+// as a `std::vector`. The API of the `absl::InlinedVector` within this file is
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
diff --git a/absl/flags/reflection.cc b/absl/flags/reflection.cc
index 02b7c06a..1b025835 100644
--- a/absl/flags/reflection.cc
+++ b/absl/flags/reflection.cc
@@ -58,10 +58,6 @@ class FlagRegistry {
// Will emit a warning if a 'retired' flag is specified.
CommandLineFlag* FindFlagLocked(absl::string_view name);
- // Returns the retired flag object for the specified name, or nullptr if not
- // found or not retired. Does not emit a warning.
- CommandLineFlag* FindRetiredFlagLocked(absl::string_view name);
-
static FlagRegistry& GlobalRegistry(); // returns a singleton registry
private:
@@ -88,14 +84,6 @@ CommandLineFlag* FlagRegistry::FindFlagLocked(absl::string_view name) {
if (i == flags_.end()) {
return nullptr;
}
- return i->second;
-}
-
-CommandLineFlag* FlagRegistry::FindRetiredFlagLocked(absl::string_view name) {
- FlagConstIterator i = flags_.find(name);
- if (i == flags_.end() || !i->second->IsRetired()) {
- return nullptr;
- }
return i->second;
}
diff --git a/absl/random/internal/BUILD.bazel b/absl/random/internal/BUILD.bazel
index d81477ff..a0eba5e8 100644
--- a/absl/random/internal/BUILD.bazel
+++ b/absl/random/internal/BUILD.bazel
@@ -59,7 +59,10 @@ cc_library(
],
copts = ABSL_DEFAULT_COPTS,
linkopts = ABSL_DEFAULT_LINKOPTS,
- deps = ["//absl/base:config"],
+ deps = [
+ "//absl/base:config",
+ "//absl/meta:type_traits",
+ ],
)
cc_library(
@@ -319,10 +322,6 @@ cc_library(
"//absl:windows": [],
"//conditions:default": ["-Wno-pass-failed"],
}),
- # copts in RANDEN_HWAES_COPTS can make this target unusable as a module
- # leading to a Clang diagnostic. Furthermore, it only has a private header
- # anyway and thus there wouldn't be any gain from using it as a module.
- features = ["-header_modules"],
linkopts = ABSL_DEFAULT_LINKOPTS,
deps = [
":platform",
diff --git a/absl/random/internal/fast_uniform_bits.h b/absl/random/internal/fast_uniform_bits.h
index f13c8729..425aaf7d 100644
--- a/absl/random/internal/fast_uniform_bits.h
+++ b/absl/random/internal/fast_uniform_bits.h
@@ -21,6 +21,7 @@
#include <type_traits>
#include "absl/base/config.h"
+#include "absl/meta/type_traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
@@ -38,28 +39,17 @@ constexpr bool IsPowerOfTwoOrZero(UIntType n) {
template <typename URBG>
constexpr typename URBG::result_type RangeSize() {
using result_type = typename URBG::result_type;
+ static_assert((URBG::max)() != (URBG::min)(), "URBG range cannot be 0.");
return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
(URBG::min)() == std::numeric_limits<result_type>::lowest())
? result_type{0}
- : (URBG::max)() - (URBG::min)() + result_type{1};
-}
-
-template <typename UIntType>
-constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
- return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
-}
-
-// Given a URBG generating values in the closed interval [Lo, Hi], returns the
-// largest power of two less than or equal to `Hi - Lo + 1`.
-template <typename URBG>
-constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
- return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
+ : ((URBG::max)() - (URBG::min)() + result_type{1});
}
// Computes the floor of the log. (i.e., std::floor(std::log2(N));
template <typename UIntType>
constexpr UIntType IntegerLog2(UIntType n) {
- return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
+ return (n <= 1) ? 0 : 1 + IntegerLog2(n >> 1);
}
// Returns the number of bits of randomness returned through
@@ -68,18 +58,23 @@ template <typename URBG>
constexpr size_t NumBits() {
return RangeSize<URBG>() == 0
? std::numeric_limits<typename URBG::result_type>::digits
- : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
+ : IntegerLog2(RangeSize<URBG>());
}
// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
// If `n == 0`, all bits are set.
template <typename UIntType>
-constexpr UIntType MaskFromShift(UIntType n) {
+constexpr UIntType MaskFromShift(size_t n) {
return ((n % std::numeric_limits<UIntType>::digits) == 0)
? ~UIntType{0}
: (UIntType{1} << n) - UIntType{1};
}
+// Tags used to dispatch FastUniformBits::generate to the simple or more complex
+// entropy extraction algorithm.
+struct SimplifiedLoopTag {};
+struct RejectionLoopTag {};
+
// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
@@ -107,50 +102,16 @@ class FastUniformBits {
"Class-template FastUniformBits<> must be parameterized using "
"an unsigned type.");
- // PowerOfTwoVariate() generates a single random variate, always returning a
- // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
- // the URBG already generates values in a power-of-two range, the generator
- // itself is used. Otherwise, we use rejection sampling on the largest
- // possible power-of-two-sized subrange.
- struct PowerOfTwoTag {};
- struct RejectionSamplingTag {};
- template <typename URBG>
- static typename URBG::result_type PowerOfTwoVariate(
- URBG& g) { // NOLINT(runtime/references)
- using tag =
- typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
- PowerOfTwoTag, RejectionSamplingTag>::type;
- return PowerOfTwoVariate(g, tag{});
- }
-
- template <typename URBG>
- static typename URBG::result_type PowerOfTwoVariate(
- URBG& g, // NOLINT(runtime/references)
- PowerOfTwoTag) {
- return g() - (URBG::min)();
- }
-
- template <typename URBG>
- static typename URBG::result_type PowerOfTwoVariate(
- URBG& g, // NOLINT(runtime/references)
- RejectionSamplingTag) {
- // Use rejection sampling to ensure uniformity across the range.
- typename URBG::result_type u;
- do {
- u = g() - (URBG::min)();
- } while (u >= PowerOfTwoSubRangeSize<URBG>());
- return u;
- }
-
// Generate() generates a random value, dispatched on whether
- // the underlying URBG must loop over multiple calls or not.
+ // the underlying URBG must use rejection sampling to generate a value,
+ // or whether a simplified loop will suffice.
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
- std::true_type /* avoid_looping */);
+ SimplifiedLoopTag);
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
- std::false_type /* avoid_looping */);
+ RejectionLoopTag);
};
template <typename UIntType>
@@ -162,31 +123,47 @@ FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
// Y = (2 ^ kRange) - 1
static_assert((URBG::max)() > (URBG::min)(),
"URBG::max and URBG::min may not be equal.");
- using urbg_result_type = typename URBG::result_type;
- constexpr urbg_result_type kRangeMask =
- RangeSize<URBG>() == 0
- ? (std::numeric_limits<urbg_result_type>::max)()
- : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
- return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
+
+ using tag = absl::conditional_t<IsPowerOfTwoOrZero(RangeSize<URBG>()),
+ SimplifiedLoopTag, RejectionLoopTag>;
+ return Generate(g, tag{});
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
- std::true_type /* avoid_looping */) {
- // The width of the result_type is less than than the width of the random bits
- // provided by URBG. Thus, generate a single value and then simply mask off
- // the required bits.
+ SimplifiedLoopTag) {
+ // The simplified version of FastUniformBits works only on URBGs that have
+ // a range that is a power of 2. In this case we simply loop and shift without
+ // attempting to balance the bits across calls.
+ static_assert(IsPowerOfTwoOrZero(RangeSize<URBG>()),
+ "incorrect Generate tag for URBG instance");
+
+ static constexpr size_t kResultBits =
+ std::numeric_limits<result_type>::digits;
+ static constexpr size_t kUrbgBits = NumBits<URBG>();
+ static constexpr size_t kIters =
+ (kResultBits / kUrbgBits) + (kResultBits % kUrbgBits != 0);
+ static constexpr size_t kShift = (kIters == 1) ? 0 : kUrbgBits;
+ static constexpr auto kMin = (URBG::min)();
- return PowerOfTwoVariate(g) & (max)();
+ result_type r = static_cast<result_type>(g() - kMin);
+ for (size_t n = 1; n < kIters; ++n) {
+ r = (r << kShift) + static_cast<result_type>(g() - kMin);
+ }
+ return r;
}
template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
- std::false_type /* avoid_looping */) {
+ RejectionLoopTag) {
+ static_assert(!IsPowerOfTwoOrZero(RangeSize<URBG>()),
+ "incorrect Generate tag for URBG instance");
+ using urbg_result_type = typename URBG::result_type;
+
// See [rand.adapt.ibits] for more details on the constants calculated below.
//
// It is preferable to use roughly the same number of bits from each generator
@@ -199,21 +176,44 @@ FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
// `kSmallIters` and `kLargeIters` times respectively such
// that
//
- // `kTotalWidth == kSmallIters * kSmallWidth
- // + kLargeIters * kLargeWidth`
+ // `kResultBits == kSmallIters * kSmallBits
+ // + kLargeIters * kLargeBits`
//
- // where `kTotalWidth` is the total number of bits in `result_type`.
+ // where `kResultBits` is the total number of bits in `result_type`.
//
- constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
- constexpr size_t kUrbgWidth = NumBits<URBG>();
- constexpr size_t kTotalIters =
- kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
- constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
- constexpr size_t kLargeWidth = kSmallWidth + 1;
+ static constexpr size_t kResultBits =
+ std::numeric_limits<result_type>::digits; // w
+ static constexpr urbg_result_type kUrbgRange = RangeSize<URBG>(); // R
+ static constexpr size_t kUrbgBits = NumBits<URBG>(); // m
+
+ // compute the initial estimate of the bits used.
+ // [rand.adapt.ibits] 2 (c)
+ static constexpr size_t kA = // ceil(w/m)
+ (kResultBits / kUrbgBits) + ((kResultBits % kUrbgBits) != 0); // n'
+
+ static constexpr size_t kABits = kResultBits / kA; // w0'
+ static constexpr urbg_result_type kARejection =
+ ((kUrbgRange >> kABits) << kABits); // y0'
+
+ // refine the selection to reduce the rejection frequency.
+ static constexpr size_t kTotalIters =
+ ((kUrbgRange - kARejection) <= (kARejection / kA)) ? kA : (kA + 1); // n
+
+ // [rand.adapt.ibits] 2 (b)
+ static constexpr size_t kSmallIters =
+ kTotalIters - (kResultBits % kTotalIters); // n0
+ static constexpr size_t kSmallBits = kResultBits / kTotalIters; // w0
+ static constexpr urbg_result_type kSmallRejection =
+ ((kUrbgRange >> kSmallBits) << kSmallBits); // y0
+
+ static constexpr size_t kLargeBits = kSmallBits + 1; // w0+1
+ static constexpr urbg_result_type kLargeRejection =
+ ((kUrbgRange >> kLargeBits) << kLargeBits); // y1
+
//
- // Because `kLargeWidth == kSmallWidth + 1`, it follows that
+ // Because `kLargeBits == kSmallBits + 1`, it follows that
//
- // `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
+ // `kResultBits == kSmallIters * kSmallBits + kLargeIters`
//
// and therefore
//
@@ -224,36 +224,40 @@ FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
// mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
// there would be no need for any large iterations (i.e., one loop would
// suffice), and indeed, in this case, `kLargeIters` would be zero.
- constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
- constexpr size_t kSmallIters =
- (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;
+ static_assert(kResultBits == kSmallIters * kSmallBits +
+ (kTotalIters - kSmallIters) * kLargeBits,
+ "Error in looping constant calculations.");
- static_assert(
- kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
- "Error in looping constant calculations.");
+ // The small shift is essentially small bits, but due to the potential
+ // of generating a smaller result_type from a larger urbg type, the actual
+ // shift might be 0.
+ static constexpr size_t kSmallShift = kSmallBits % kResultBits;
+ static constexpr auto kSmallMask =
+ MaskFromShift<urbg_result_type>(kSmallShift);
+ static constexpr size_t kLargeShift = kLargeBits % kResultBits;
+ static constexpr auto kLargeMask =
+ MaskFromShift<urbg_result_type>(kLargeShift);
- result_type s = 0;
+ static constexpr auto kMin = (URBG::min)();
- constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
- constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
+ result_type s = 0;
for (size_t n = 0; n < kSmallIters; ++n) {
- s = (s << kSmallShift) +
- (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
- }
+ urbg_result_type v;
+ do {
+ v = g() - kMin;
+ } while (v >= kSmallRejection);
- constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
- constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
- for (size_t n = 0; n < kLargeIters; ++n) {
- s = (s << kLargeShift) +
- (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
+ s = (s << kSmallShift) + static_cast<result_type>(v & kSmallMask);
}
- static_assert(
- kLargeShift == kSmallShift + 1 ||
- (kLargeShift == 0 &&
- kSmallShift == std::numeric_limits<result_type>::digits - 1),
- "Error in looping constant calculations");
+ for (size_t n = kSmallIters; n < kTotalIters; ++n) {
+ urbg_result_type v;
+ do {
+ v = g() - kMin;
+ } while (v >= kLargeRejection);
+ s = (s << kLargeShift) + static_cast<result_type>(v & kLargeMask);
+ }
return s;
}
diff --git a/absl/random/internal/fast_uniform_bits_test.cc b/absl/random/internal/fast_uniform_bits_test.cc
index f5b837e5..cee702df 100644
--- a/absl/random/internal/fast_uniform_bits_test.cc
+++ b/absl/random/internal/fast_uniform_bits_test.cc
@@ -34,8 +34,8 @@ TYPED_TEST(FastUniformBitsTypedTest, BasicTest) {
using Limits = std::numeric_limits<TypeParam>;
using FastBits = FastUniformBits<TypeParam>;
- EXPECT_EQ(0, FastBits::min());
- EXPECT_EQ(Limits::max(), FastBits::max());
+ EXPECT_EQ(0, (FastBits::min)());
+ EXPECT_EQ((Limits::max)(), (FastBits::max)());
constexpr int kIters = 10000;
std::random_device rd;
@@ -43,8 +43,8 @@ TYPED_TEST(FastUniformBitsTypedTest, BasicTest) {
FastBits fast;
for (int i = 0; i < kIters; i++) {
const auto v = fast(gen);
- EXPECT_LE(v, FastBits::max());
- EXPECT_GE(v, FastBits::min());
+ EXPECT_LE(v, (FastBits::max)());
+ EXPECT_GE(v, (FastBits::min)());
}
}
@@ -52,21 +52,26 @@ template <typename UIntType, UIntType Lo, UIntType Hi, UIntType Val = Lo>
struct FakeUrbg {
using result_type = UIntType;
+ FakeUrbg() = default;
+ explicit FakeUrbg(bool r) : reject(r) {}
+
static constexpr result_type(max)() { return Hi; }
static constexpr result_type(min)() { return Lo; }
- result_type operator()() { return Val; }
-};
+ result_type operator()() {
+ // when reject is set, return Hi half the time.
+ return ((++calls % 2) == 1 && reject) ? Hi : Val;
+ }
-using UrngOddbits = FakeUrbg<uint8_t, 1, 0xfe, 0x73>;
-using Urng4bits = FakeUrbg<uint8_t, 1, 0x10, 2>;
-using Urng31bits = FakeUrbg<uint32_t, 1, 0xfffffffe, 0x60070f03>;
-using Urng32bits = FakeUrbg<uint32_t, 0, 0xffffffff, 0x74010f01>;
+ bool reject = false;
+ size_t calls = 0;
+};
TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{0}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{1}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{2}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint8_t{3}));
+ EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{4}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint8_t{16}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint8_t{17}));
EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint8_t>::max)()));
@@ -75,6 +80,7 @@ TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{1}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{2}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint16_t{3}));
+ EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{4}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint16_t{16}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint16_t{17}));
EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint16_t>::max)()));
@@ -91,181 +97,237 @@ TEST(FastUniformBitsTest, IsPowerOfTwoOrZero) {
EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{1}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{2}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint64_t{3}));
+ EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{4}));
EXPECT_TRUE(IsPowerOfTwoOrZero(uint64_t{64}));
EXPECT_FALSE(IsPowerOfTwoOrZero(uint64_t{17}));
EXPECT_FALSE(IsPowerOfTwoOrZero((std::numeric_limits<uint64_t>::max)()));
}
TEST(FastUniformBitsTest, IntegerLog2) {
- EXPECT_EQ(IntegerLog2(uint16_t{0}), 0);
- EXPECT_EQ(IntegerLog2(uint16_t{1}), 0);
- EXPECT_EQ(IntegerLog2(uint16_t{2}), 1);
- EXPECT_EQ(IntegerLog2(uint16_t{3}), 1);
- EXPECT_EQ(IntegerLog2(uint16_t{4}), 2);
- EXPECT_EQ(IntegerLog2(uint16_t{5}), 2);
- EXPECT_EQ(IntegerLog2(std::numeric_limits<uint64_t>::max()), 63);
+ EXPECT_EQ(0, IntegerLog2(uint16_t{0}));
+ EXPECT_EQ(0, IntegerLog2(uint16_t{1}));
+ EXPECT_EQ(1, IntegerLog2(uint16_t{2}));
+ EXPECT_EQ(1, IntegerLog2(uint16_t{3}));
+ EXPECT_EQ(2, IntegerLog2(uint16_t{4}));
+ EXPECT_EQ(2, IntegerLog2(uint16_t{5}));
+ EXPECT_EQ(2, IntegerLog2(uint16_t{7}));
+ EXPECT_EQ(3, IntegerLog2(uint16_t{8}));
+ EXPECT_EQ(63, IntegerLog2((std::numeric_limits<uint64_t>::max)()));
}
TEST(FastUniformBitsTest, RangeSize) {
- EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 0, 3>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 2>>()), 1);
- EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 5>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 6>>()), 5);
- EXPECT_EQ((RangeSize<FakeUrbg<uint8_t, 2, 10>>()), 9);
+ EXPECT_EQ(2, (RangeSize<FakeUrbg<uint8_t, 0, 1>>()));
+ EXPECT_EQ(3, (RangeSize<FakeUrbg<uint8_t, 0, 2>>()));
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint8_t, 0, 3>>()));
+ // EXPECT_EQ(0, (RangeSize<FakeUrbg<uint8_t, 2, 2>>()));
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint8_t, 2, 5>>()));
+ EXPECT_EQ(5, (RangeSize<FakeUrbg<uint8_t, 2, 6>>()));
+ EXPECT_EQ(9, (RangeSize<FakeUrbg<uint8_t, 2, 10>>()));
EXPECT_EQ(
- (RangeSize<FakeUrbg<uint8_t, 0, std::numeric_limits<uint8_t>::max()>>()),
- 0);
-
- EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 0, 3>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 2>>()), 1);
- EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 5>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 2, 6>>()), 5);
- EXPECT_EQ((RangeSize<FakeUrbg<uint16_t, 1000, 1017>>()), 18);
- EXPECT_EQ((RangeSize<
- FakeUrbg<uint16_t, 0, std::numeric_limits<uint16_t>::max()>>()),
- 0);
-
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 0, 3>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 2>>()), 1);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 5>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 6>>()), 5);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1000, 1017>>()), 18);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()), 0);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()), 0xffffffff);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()), 0xfffffffe);
- EXPECT_EQ((RangeSize<FakeUrbg<uint32_t, 2, 0xfffffffe>>()), 0xfffffffd);
- EXPECT_EQ((RangeSize<
- FakeUrbg<uint32_t, 0, std::numeric_limits<uint32_t>::max()>>()),
- 0);
-
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 3>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 2>>()), 1);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 5>>()), 4);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 6>>()), 5);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1000, 1017>>()), 18);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()), 0x100000000ull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()), 0xffffffffull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()), 0xfffffffeull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffe>>()), 0xfffffffdull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffffull>>()), 0ull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffffull>>()),
- 0xffffffffffffffffull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffeull>>()),
- 0xfffffffffffffffeull);
- EXPECT_EQ((RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffffffffffeull>>()),
- 0xfffffffffffffffdull);
- EXPECT_EQ((RangeSize<
- FakeUrbg<uint64_t, 0, std::numeric_limits<uint64_t>::max()>>()),
- 0);
-}
+ 0, (RangeSize<
+ FakeUrbg<uint8_t, 0, (std::numeric_limits<uint8_t>::max)()>>()));
-TEST(FastUniformBitsTest, PowerOfTwoSubRangeSize) {
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 0, 3>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 2>>()), 1);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 5>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 6>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint8_t, 2, 10>>()), 8);
- EXPECT_EQ((PowerOfTwoSubRangeSize<
- FakeUrbg<uint8_t, 0, std::numeric_limits<uint8_t>::max()>>()),
- 0);
-
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 0, 3>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 2>>()), 1);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 5>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 2, 6>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint16_t, 1000, 1017>>()), 16);
- EXPECT_EQ((PowerOfTwoSubRangeSize<
- FakeUrbg<uint16_t, 0, std::numeric_limits<uint16_t>::max()>>()),
- 0);
-
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 0, 3>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 2>>()), 1);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 5>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 2, 6>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1000, 1017>>()), 16);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()), 0);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()),
- 0x80000000);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()),
- 0x80000000);
- EXPECT_EQ((PowerOfTwoSubRangeSize<
- FakeUrbg<uint32_t, 0, std::numeric_limits<uint32_t>::max()>>()),
- 0);
-
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 3>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 2>>()), 1);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 5>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 2, 6>>()), 4);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1000, 1017>>()), 16);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()),
- 0x100000000ull);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()),
- 0x80000000ull);
- EXPECT_EQ((PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()),
- 0x80000000ull);
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint16_t, 0, 3>>()));
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint16_t, 2, 5>>()));
+ EXPECT_EQ(5, (RangeSize<FakeUrbg<uint16_t, 2, 6>>()));
+ EXPECT_EQ(18, (RangeSize<FakeUrbg<uint16_t, 1000, 1017>>()));
EXPECT_EQ(
- (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffffull>>()),
- 0);
+ 0, (RangeSize<
+ FakeUrbg<uint16_t, 0, (std::numeric_limits<uint16_t>::max)()>>()));
+
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint32_t, 0, 3>>()));
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint32_t, 2, 5>>()));
+ EXPECT_EQ(5, (RangeSize<FakeUrbg<uint32_t, 2, 6>>()));
+ EXPECT_EQ(18, (RangeSize<FakeUrbg<uint32_t, 1000, 1017>>()));
+ EXPECT_EQ(0, (RangeSize<FakeUrbg<uint32_t, 0, 0xffffffff>>()));
+ EXPECT_EQ(0xffffffff, (RangeSize<FakeUrbg<uint32_t, 1, 0xffffffff>>()));
+ EXPECT_EQ(0xfffffffe, (RangeSize<FakeUrbg<uint32_t, 1, 0xfffffffe>>()));
+ EXPECT_EQ(0xfffffffd, (RangeSize<FakeUrbg<uint32_t, 2, 0xfffffffe>>()));
EXPECT_EQ(
- (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffffull>>()),
- 0x8000000000000000ull);
+ 0, (RangeSize<
+ FakeUrbg<uint32_t, 0, (std::numeric_limits<uint32_t>::max)()>>()));
+
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint64_t, 0, 3>>()));
+ EXPECT_EQ(4, (RangeSize<FakeUrbg<uint64_t, 2, 5>>()));
+ EXPECT_EQ(5, (RangeSize<FakeUrbg<uint64_t, 2, 6>>()));
+ EXPECT_EQ(18, (RangeSize<FakeUrbg<uint64_t, 1000, 1017>>()));
+ EXPECT_EQ(0x100000000, (RangeSize<FakeUrbg<uint64_t, 0, 0xffffffff>>()));
+ EXPECT_EQ(0xffffffff, (RangeSize<FakeUrbg<uint64_t, 1, 0xffffffff>>()));
+ EXPECT_EQ(0xfffffffe, (RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffe>>()));
+ EXPECT_EQ(0xfffffffd, (RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffe>>()));
+ EXPECT_EQ(0, (RangeSize<FakeUrbg<uint64_t, 0, 0xffffffffffffffff>>()));
+ EXPECT_EQ(0xffffffffffffffff,
+ (RangeSize<FakeUrbg<uint64_t, 1, 0xffffffffffffffff>>()));
+ EXPECT_EQ(0xfffffffffffffffe,
+ (RangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffe>>()));
+ EXPECT_EQ(0xfffffffffffffffd,
+ (RangeSize<FakeUrbg<uint64_t, 2, 0xfffffffffffffffe>>()));
EXPECT_EQ(
- (PowerOfTwoSubRangeSize<FakeUrbg<uint64_t, 1, 0xfffffffffffffffeull>>()),
- 0x8000000000000000ull);
- EXPECT_EQ((PowerOfTwoSubRangeSize<
- FakeUrbg<uint64_t, 0, std::numeric_limits<uint64_t>::max()>>()),
- 0);
+ 0, (RangeSize<
+ FakeUrbg<uint64_t, 0, (std::numeric_limits<uint64_t>::max)()>>()));
}
-TEST(FastUniformBitsTest, Urng4_VariousOutputs) {
+// The constants need to be choosen so that an infinite rejection loop doesn't
+// happen...
+using Urng1_5bit = FakeUrbg<uint8_t, 0, 2, 0>; // ~1.5 bits (range 3)
+using Urng4bits = FakeUrbg<uint8_t, 1, 0x10, 2>;
+using Urng22bits = FakeUrbg<uint32_t, 0, 0x3fffff, 0x301020>;
+using Urng31bits = FakeUrbg<uint32_t, 1, 0xfffffffe, 0x60070f03>; // ~31.9 bits
+using Urng32bits = FakeUrbg<uint32_t, 0, 0xffffffff, 0x74010f01>;
+using Urng33bits =
+ FakeUrbg<uint64_t, 1, 0x1ffffffff, 0x013301033>; // ~32.9 bits
+using Urng63bits = FakeUrbg<uint64_t, 1, 0xfffffffffffffffe,
+ 0xfedcba9012345678>; // ~63.9 bits
+using Urng64bits =
+ FakeUrbg<uint64_t, 0, 0xffffffffffffffff, 0x123456780fedcba9>;
+
+TEST(FastUniformBitsTest, OutputsUpTo32Bits) {
// Tests that how values are composed; the single-bit deltas should be spread
// across each invocation.
+ Urng1_5bit urng1_5;
Urng4bits urng4;
+ Urng22bits urng22;
Urng31bits urng31;
Urng32bits urng32;
+ Urng33bits urng33;
+ Urng63bits urng63;
+ Urng64bits urng64;
// 8-bit types
{
FastUniformBits<uint8_t> fast8;
+ EXPECT_EQ(0x0, fast8(urng1_5));
EXPECT_EQ(0x11, fast8(urng4));
+ EXPECT_EQ(0x20, fast8(urng22));
EXPECT_EQ(0x2, fast8(urng31));
EXPECT_EQ(0x1, fast8(urng32));
+ EXPECT_EQ(0x32, fast8(urng33));
+ EXPECT_EQ(0x77, fast8(urng63));
+ EXPECT_EQ(0xa9, fast8(urng64));
}
// 16-bit types
{
FastUniformBits<uint16_t> fast16;
+ EXPECT_EQ(0x0, fast16(urng1_5));
EXPECT_EQ(0x1111, fast16(urng4));
- EXPECT_EQ(0xf02, fast16(urng31));
- EXPECT_EQ(0xf01, fast16(urng32));
+ EXPECT_EQ(0x1020, fast16(urng22));
+ EXPECT_EQ(0x0f02, fast16(urng31));
+ EXPECT_EQ(0x0f01, fast16(urng32));
+ EXPECT_EQ(0x1032, fast16(urng33));
+ EXPECT_EQ(0x5677, fast16(urng63));
+ EXPECT_EQ(0xcba9, fast16(urng64));
}
// 32-bit types
{
FastUniformBits<uint32_t> fast32;
+ EXPECT_EQ(0x0, fast32(urng1_5));
EXPECT_EQ(0x11111111, fast32(urng4));
+ EXPECT_EQ(0x08301020, fast32(urng22));
EXPECT_EQ(0x0f020f02, fast32(urng31));
EXPECT_EQ(0x74010f01, fast32(urng32));
+ EXPECT_EQ(0x13301032, fast32(urng33));
+ EXPECT_EQ(0x12345677, fast32(urng63));
+ EXPECT_EQ(0x0fedcba9, fast32(urng64));
}
+}
+
+TEST(FastUniformBitsTest, Outputs64Bits) {
+ // Tests that how values are composed; the single-bit deltas should be spread
+ // across each invocation.
+ FastUniformBits<uint64_t> fast64;
- // 64-bit types
{
- FastUniformBits<uint64_t> fast64;
+ FakeUrbg<uint8_t, 0, 1, 0> urng0;
+ FakeUrbg<uint8_t, 0, 1, 1> urng1;
+ Urng4bits urng4;
+ Urng22bits urng22;
+ Urng31bits urng31;
+ Urng32bits urng32;
+ Urng33bits urng33;
+ Urng63bits urng63;
+ Urng64bits urng64;
+
+ // somewhat degenerate cases only create a single bit.
+ EXPECT_EQ(0x0, fast64(urng0));
+ EXPECT_EQ(64, urng0.calls);
+ EXPECT_EQ(0xffffffffffffffff, fast64(urng1));
+ EXPECT_EQ(64, urng1.calls);
+
+ // less degenerate cases.
EXPECT_EQ(0x1111111111111111, fast64(urng4));
+ EXPECT_EQ(16, urng4.calls);
+ EXPECT_EQ(0x01020c0408301020, fast64(urng22));
+ EXPECT_EQ(3, urng22.calls);
EXPECT_EQ(0x387811c3c0870f02, fast64(urng31));
+ EXPECT_EQ(3, urng31.calls);
EXPECT_EQ(0x74010f0174010f01, fast64(urng32));
+ EXPECT_EQ(2, urng32.calls);
+ EXPECT_EQ(0x808194040cb01032, fast64(urng33));
+ EXPECT_EQ(3, urng33.calls);
+ EXPECT_EQ(0x1234567712345677, fast64(urng63));
+ EXPECT_EQ(2, urng63.calls);
+ EXPECT_EQ(0x123456780fedcba9, fast64(urng64));
+ EXPECT_EQ(1, urng64.calls);
+ }
+
+ // The 1.5 bit case is somewhat interesting in that the algorithm refinement
+ // causes one extra small sample. Comments here reference the names used in
+ // [rand.adapt.ibits] that correspond to this case.
+ {
+ Urng1_5bit urng1_5;
+
+ // w = 64
+ // R = 3
+ // m = 1
+ // n' = 64
+ // w0' = 1
+ // y0' = 2
+ // n = (1 <= 0) > 64 : 65 = 65
+ // n0 = 65 - (64%65) = 1
+ // n1 = 64
+ // w0 = 0
+ // y0 = 3
+ // w1 = 1
+ // y1 = 2
+ EXPECT_EQ(0x0, fast64(urng1_5));
+ EXPECT_EQ(65, urng1_5.calls);
+ }
+
+ // Validate rejections for non-power-of-2 cases.
+ {
+ Urng1_5bit urng1_5(true);
+ Urng31bits urng31(true);
+ Urng33bits urng33(true);
+ Urng63bits urng63(true);
+
+ // For 1.5 bits, there would be 1+2*64, except the first
+ // value was accepted and shifted off the end.
+ EXPECT_EQ(0, fast64(urng1_5));
+ EXPECT_EQ(128, urng1_5.calls);
+ EXPECT_EQ(0x387811c3c0870f02, fast64(urng31));
+ EXPECT_EQ(6, urng31.calls);
+ EXPECT_EQ(0x808194040cb01032, fast64(urng33));
+ EXPECT_EQ(6, urng33.calls);
+ EXPECT_EQ(0x1234567712345677, fast64(urng63));
+ EXPECT_EQ(4, urng63.calls);
}
}
TEST(FastUniformBitsTest, URBG32bitRegression) {
// Validate with deterministic 32-bit std::minstd_rand
// to ensure that operator() performs as expected.
+
+ EXPECT_EQ(2147483646, RangeSize<std::minstd_rand>());
+ EXPECT_EQ(30, IntegerLog2(RangeSize<std::minstd_rand>()));
+
std::minstd_rand gen(1);
FastUniformBits<uint64_t> fast64;
- EXPECT_EQ(0x05e47095f847c122ull, fast64(gen));
- EXPECT_EQ(0x8f82c1ba30b64d22ull, fast64(gen));
- EXPECT_EQ(0x3b971a3558155039ull, fast64(gen));
+ EXPECT_EQ(0x05e47095f8791f45, fast64(gen));
+ EXPECT_EQ(0x028be17e3c07c122, fast64(gen));
+ EXPECT_EQ(0x55d2847c1626e8c2, fast64(gen));
}
} // namespace
diff --git a/absl/synchronization/mutex.h b/absl/synchronization/mutex.h
index 876698ca..52401fe3 100644
--- a/absl/synchronization/mutex.h
+++ b/absl/synchronization/mutex.h
@@ -685,6 +685,11 @@ class Condition {
// return processed_ >= current;
// };
// mu_.Await(Condition(&reached));
+ //
+ // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReadHeld()" in the
+ // lambda as it may be called when the mutex is being unlocked from a scope
+ // holding only a reader lock, which will make the assertion not fulfilled and
+ // crash the binary.
// See class comment for performance advice. In particular, if there
// might be more than one waiter for the same condition, make sure
diff --git a/absl/time/internal/cctz/src/time_zone_format.cc b/absl/time/internal/cctz/src/time_zone_format.cc
index 2e02233c..d8cb0474 100644
--- a/absl/time/internal/cctz/src/time_zone_format.cc
+++ b/absl/time/internal/cctz/src/time_zone_format.cc
@@ -654,14 +654,23 @@ const char* ParseTM(const char* dp, const char* fmt, std::tm* tm) {
}
// Sets year, tm_mon and tm_mday given the year, week_num, and tm_wday,
-// and the day on which weeks are defined to start.
-void FromWeek(int week_num, weekday week_start, year_t* year, std::tm* tm) {
+// and the day on which weeks are defined to start. Returns false if year
+// would need to move outside its bounds.
+bool FromWeek(int week_num, weekday week_start, year_t* year, std::tm* tm) {
const civil_year y(*year % 400);
civil_day cd = prev_weekday(y, week_start); // week 0
cd = next_weekday(cd - 1, FromTmWday(tm->tm_wday)) + (week_num * 7);
- *year += cd.year() - y.year();
+ if (const year_t shift = cd.year() - y.year()) {
+ if (shift > 0) {
+ if (*year > std::numeric_limits<year_t>::max() - shift) return false;
+ } else {
+ if (*year < std::numeric_limits<year_t>::min() - shift) return false;
+ }
+ *year += shift;
+ }
tm->tm_mon = cd.month() - 1;
tm->tm_mday = cd.day();
+ return true;
}
} // namespace
@@ -965,7 +974,12 @@ bool parse(const std::string& format, const std::string& input,
}
// Compute year, tm.tm_mon and tm.tm_mday if we parsed a week number.
- if (week_num != -1) FromWeek(week_num, week_start, &year, &tm);
+ if (week_num != -1) {
+ if (!FromWeek(week_num, week_start, &year, &tm)) {
+ if (err != nullptr) *err = "Out-of-range field";
+ return false;
+ }
+ }
const int month = tm.tm_mon + 1;
civil_second cs(year, month, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
diff --git a/absl/time/internal/cctz/src/time_zone_format_test.cc b/absl/time/internal/cctz/src/time_zone_format_test.cc
index e625a839..a11f93e2 100644
--- a/absl/time/internal/cctz/src/time_zone_format_test.cc
+++ b/absl/time/internal/cctz/src/time_zone_format_test.cc
@@ -1481,6 +1481,11 @@ TEST(Parse, WeekYearShift) {
EXPECT_EQ(exp, tp);
EXPECT_TRUE(parse("%Y-%W-%w", "2020-52-5", utc, &tp));
EXPECT_EQ(exp, tp);
+
+ // Slipping into the previous/following calendar years should fail when
+ // we're already at the extremes.
+ EXPECT_FALSE(parse("%Y-%U-%u", "-9223372036854775808-0-7", utc, &tp));
+ EXPECT_FALSE(parse("%Y-%U-%u", "9223372036854775807-53-7", utc, &tp));
}
TEST(Parse, MaxRange) {
diff --git a/absl/time/internal/cctz/src/time_zone_libc.cc b/absl/time/internal/cctz/src/time_zone_libc.cc
index 47cf84c6..3fcc75bd 100644
--- a/absl/time/internal/cctz/src/time_zone_libc.cc
+++ b/absl/time/internal/cctz/src/time_zone_libc.cc
@@ -223,11 +223,10 @@ time_zone::civil_lookup TimeZoneLibC::MakeTime(const civil_second& cs) const {
civil_second() + ToUnixSeconds(time_point<seconds>::min());
static const civil_second max_tp_cs =
civil_second() + ToUnixSeconds(time_point<seconds>::max());
- const time_point<seconds> tp =
- (cs < min_tp_cs)
- ? time_point<seconds>::min()
- : (cs > max_tp_cs) ? time_point<seconds>::max()
- : FromUnixSeconds(cs - civil_second());
+ const time_point<seconds> tp = (cs < min_tp_cs) ? time_point<seconds>::min()
+ : (cs > max_tp_cs)
+ ? time_point<seconds>::max()
+ : FromUnixSeconds(cs - civil_second());
return {time_zone::civil_lookup::UNIQUE, tp, tp, tp};
}
diff --git a/absl/time/internal/cctz/src/tzfile.h b/absl/time/internal/cctz/src/tzfile.h
index 269fa36c..659f84cf 100644
--- a/absl/time/internal/cctz/src/tzfile.h
+++ b/absl/time/internal/cctz/src/tzfile.h
@@ -108,15 +108,15 @@ struct tzhead {
#ifndef TZ_MAX_TYPES
/* This must be at least 17 for Europe/Samara and Europe/Vilnius. */
#define TZ_MAX_TYPES 256 /* Limited by what (unsigned char)'s can hold */
-#endif /* !defined TZ_MAX_TYPES */
+#endif /* !defined TZ_MAX_TYPES */
#ifndef TZ_MAX_CHARS
#define TZ_MAX_CHARS 50 /* Maximum number of abbreviation characters */
- /* (limited by what unsigned chars can hold) */
-#endif /* !defined TZ_MAX_CHARS */
+/* (limited by what unsigned chars can hold) */
+#endif /* !defined TZ_MAX_CHARS */
#ifndef TZ_MAX_LEAPS
#define TZ_MAX_LEAPS 50 /* Maximum number of leap second corrections */
-#endif /* !defined TZ_MAX_LEAPS */
+#endif /* !defined TZ_MAX_LEAPS */
#endif /* !defined TZFILE_H */
diff --git a/absl/types/CMakeLists.txt b/absl/types/CMakeLists.txt
index 0dc0d2c7..3f99ad8a 100644
--- a/absl/types/CMakeLists.txt
+++ b/absl/types/CMakeLists.txt
@@ -259,7 +259,7 @@ absl_cc_library(
absl::strings
absl::utility
gmock_main
- PUBLIC
+ TESTONLY
)
absl_cc_test(