summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGravatar Abseil Team <absl-team@google.com>2019-08-07 15:25:26 -0700
committerGravatar CJ Johnson <johnsoncj@google.com>2019-08-08 11:25:03 -0400
commit8efba58a3b656e9b41fb0471ae6453425a61c520 (patch)
treecbf508ad433c030e577afb87b89faba36539549b
parentb49b8d16b67ec6912899684b732e6367f258cfdb (diff)
Export of internal Abseil changes
-- 38bc0644e17bf9fe4d78d3db92cd06f585b99ba7 by Andy Soffer <asoffer@google.com>: Change benchmark to be cc_binary instead of cc_test, and fix a bug in the zipf_distribution benchmark in which arguments were passed in the wrong order. PiperOrigin-RevId: 262227159 -- 3b5411d8f285a758a1713f7ef0dbfa3518f2b38b by CJ Johnson <johnsoncj@google.com>: Updates Simple<*>() overload to match the name schema of the others PiperOrigin-RevId: 262211217 -- 0cb6812cb8b6e3bf0386b9354189ffcf46c4c094 by Andy Soffer <asoffer@google.com>: Removing period in trailing namespace comments. PiperOrigin-RevId: 262210952 -- c903feae3a881be81adf37e9fccd558ee3ed1e64 by CJ Johnson <johnsoncj@google.com>: This is a cleanup on the public header of InlinedVector to be more presentable PiperOrigin-RevId: 262207691 -- 9a94384dc79cdcf38f6153894f337ebb744e2d76 by Tom Manshreck <shreck@google.com>: Fix incorrect doc on operator()[] for flat_hash_set PiperOrigin-RevId: 262206962 -- 17e88ee10b727af82c04f8150b6d246eaac836cb by Derek Mauro <dmauro@google.com>: Fix gcc-5 build error PiperOrigin-RevId: 262198236 GitOrigin-RevId: 38bc0644e17bf9fe4d78d3db92cd06f585b99ba7 Change-Id: I77cababa47ba3ee8b6cebb2c2cfc9f60a331f6b7
-rw-r--r--absl/container/flat_hash_set.h6
-rw-r--r--absl/container/inlined_vector.h391
-rw-r--r--absl/container/internal/inlined_vector.h61
-rw-r--r--absl/random/BUILD.bazel4
-rw-r--r--absl/random/benchmarks.cc12
-rw-r--r--absl/random/distributions.h2
-rw-r--r--absl/random/internal/seed_material_test.cc3
-rw-r--r--absl/random/zipf_distribution.h2
-rw-r--r--absl/strings/numbers.h6
9 files changed, 238 insertions, 249 deletions
diff --git a/absl/container/flat_hash_set.h b/absl/container/flat_hash_set.h
index 6bf51833..2a51c341 100644
--- a/absl/container/flat_hash_set.h
+++ b/absl/container/flat_hash_set.h
@@ -55,9 +55,9 @@ struct FlatHashSetPolicy;
// following notable differences:
//
// * Requires keys that are CopyConstructible
-// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
-// `insert()`, provided that the set is provided a compatible heterogeneous
-// hashing function and equality operator.
+// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
+// that the set is provided a compatible heterogeneous hashing function and
+// equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element
diff --git a/absl/container/inlined_vector.h b/absl/container/inlined_vector.h
index 2381e65f..25af1658 100644
--- a/absl/container/inlined_vector.h
+++ b/absl/container/inlined_vector.h
@@ -66,8 +66,7 @@ namespace absl {
// designed to cover the same API footprint as covered by `std::vector`.
template <typename T, size_t N, typename A = std::allocator<T>>
class InlinedVector {
- static_assert(
- N > 0, "InlinedVector cannot be instantiated with `0` inlined elements.");
+ static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
using Storage = inlined_vector_internal::Storage<T, N, A>;
using rvalue_reference = typename Storage::rvalue_reference;
@@ -84,7 +83,6 @@ class InlinedVector {
template <typename Iterator>
using EnableIfAtLeastForwardIterator = absl::enable_if_t<
inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
-
template <typename Iterator>
using DisableIfAtLeastForwardIterator = absl::enable_if_t<
!inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
@@ -110,7 +108,7 @@ class InlinedVector {
// Creates an empty inlined vector with a value-initialized allocator.
InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
- // Creates an empty inlined vector with a specified allocator.
+ // Creates an empty inlined vector with a copy of `alloc`.
explicit InlinedVector(const allocator_type& alloc) noexcept
: storage_(alloc) {}
@@ -128,7 +126,7 @@ class InlinedVector {
storage_.Initialize(CopyValueAdapter(v), n);
}
- // Creates an inlined vector of copies of the values in `list`.
+ // Creates an inlined vector with copies of the elements of `list`.
InlinedVector(std::initializer_list<value_type> list,
const allocator_type& alloc = allocator_type())
: InlinedVector(list.begin(), list.end(), alloc) {}
@@ -136,7 +134,7 @@ class InlinedVector {
// Creates an inlined vector with elements constructed from the provided
// forward iterator range [`first`, `last`).
//
- // NOTE: The `enable_if` prevents ambiguous interpretation between a call to
+ // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
// this constructor with two integral arguments and a call to the above
// `InlinedVector(size_type, const_reference)` constructor.
template <typename ForwardIterator,
@@ -158,11 +156,12 @@ class InlinedVector {
std::copy(first, last, std::back_inserter(*this));
}
- // Creates a copy of an `other` inlined vector using `other`'s allocator.
+ // Creates an inlined vector by copying the contents of `other` using
+ // `other`'s allocator.
InlinedVector(const InlinedVector& other)
: InlinedVector(other, *other.storage_.GetAllocPtr()) {}
- // Creates a copy of an `other` inlined vector using a specified allocator.
+ // Creates an inlined vector by copying the contents of `other` using `alloc`.
InlinedVector(const InlinedVector& other, const allocator_type& alloc)
: storage_(alloc) {
if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
@@ -173,67 +172,66 @@ class InlinedVector {
}
}
- // Creates an inlined vector by moving in the contents of an `other` inlined
- // vector without performing any allocations. If `other` contains allocated
- // memory, the newly-created instance will take ownership of that memory
- // (leaving `other` empty). However, if `other` does not contain allocated
- // memory (i.e. is inlined), the new inlined vector will perform element-wise
- // move construction of `other`'s elements.
+ // Creates an inlined vector by moving in the contents of `other` without
+ // allocating. If `other` contains allocated memory, the newly-created inlined
+ // vector will take ownership of that memory. However, if `other` does not
+ // contain allocated memory, the newly-created inlined vector will perform
+ // element-wise move construction of the contents of `other`.
//
// NOTE: since no allocation is performed for the inlined vector in either
// case, the `noexcept(...)` specification depends on whether moving the
- // underlying objects can throw. We assume:
- // a) Move constructors should only throw due to allocation failure.
- // b) If `value_type`'s move constructor allocates, it uses the same
- // allocation function as the `InlinedVector`'s allocator. Thus, the move
- // constructor is non-throwing if the allocator is non-throwing or
- // `value_type`'s move constructor is specified as `noexcept`.
+ // underlying objects can throw. It is assumed assumed that...
+ // a) move constructors should only throw due to allocation failure.
+ // b) if `value_type`'s move constructor allocates, it uses the same
+ // allocation function as the inlined vector's allocator.
+ // Thus, the move constructor is non-throwing if the allocator is non-throwing
+ // or `value_type`'s move constructor is specified as `noexcept`.
InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
: storage_(*other.storage_.GetAllocPtr()) {
if (IsMemcpyOk::value) {
storage_.MemcpyFrom(other.storage_);
+
other.storage_.SetInlinedSize(0);
} else if (other.storage_.GetIsAllocated()) {
storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
other.storage_.GetAllocatedCapacity());
storage_.SetAllocatedSize(other.storage_.GetSize());
+
other.storage_.SetInlinedSize(0);
} else {
IteratorValueAdapter<MoveIterator> other_values(
MoveIterator(other.storage_.GetInlinedData()));
+
inlined_vector_internal::ConstructElements(
storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
other.storage_.GetSize());
+
storage_.SetInlinedSize(other.storage_.GetSize());
}
}
- // Creates an inlined vector by moving in the contents of an `other` inlined
- // vector, performing allocations with the specified `alloc` allocator. If
- // `other`'s allocator is not equal to `alloc` and `other` contains allocated
- // memory, this move constructor will create a new allocation.
+ // Creates an inlined vector by moving in the contents of `other` with a copy
+ // of `alloc`.
//
- // NOTE: since allocation is performed in this case, this constructor can
- // only be `noexcept` if the specified allocator is also `noexcept`. If this
- // is the case, or if `other` contains allocated memory, this constructor
- // performs element-wise move construction of its contents.
- //
- // Only in the case where `other`'s allocator is equal to `alloc` and `other`
- // contains allocated memory will the newly created inlined vector take
- // ownership of `other`'s allocated memory.
+ // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
+ // contains allocated memory, this move constructor will still allocate. Since
+ // allocation is performed, this constructor can only be `noexcept` if the
+ // specified allocator is also `noexcept`.
InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
absl::allocator_is_nothrow<allocator_type>::value)
: storage_(alloc) {
if (IsMemcpyOk::value) {
storage_.MemcpyFrom(other.storage_);
+
other.storage_.SetInlinedSize(0);
} else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
other.storage_.GetIsAllocated()) {
storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
other.storage_.GetAllocatedCapacity());
storage_.SetAllocatedSize(other.storage_.GetSize());
+
other.storage_.SetInlinedSize(0);
} else {
storage_.Initialize(
@@ -250,7 +248,7 @@ class InlinedVector {
// `InlinedVector::empty()`
//
- // Checks if the inlined vector has no elements.
+ // Returns whether the inlined vector contains no elements.
bool empty() const noexcept { return !size(); }
// `InlinedVector::size()`
@@ -260,23 +258,23 @@ class InlinedVector {
// `InlinedVector::max_size()`
//
- // Returns the maximum number of elements the vector can hold.
+ // Returns the maximum number of elements the inlined vector can hold.
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
- // vector is allocated. As a result, the maximum size of the container that
- // we can express is half of the max for `size_type`.
+ // vector contains allocated memory. As a result, the maximum size that the
+ // inlined vector can express is half of the max for `size_type`.
return (std::numeric_limits<size_type>::max)() / 2;
}
// `InlinedVector::capacity()`
//
- // Returns the number of elements that can be stored in the inlined vector
- // without requiring a reallocation of underlying memory.
+ // Returns the number of elements that could be stored in the inlined vector
+ // without requiring a reallocation.
//
- // NOTE: For most inlined vectors, `capacity()` should equal the template
- // parameter `N`. For inlined vectors which exceed this capacity, they
- // will no longer be inlined and `capacity()` will equal its capacity on the
- // allocated heap.
+ // NOTE: for most inlined vectors, `capacity()` should be equal to the
+ // template parameter `N`. For inlined vectors which exceed this capacity,
+ // they will no longer be inlined and `capacity()` will equal the capactity of
+ // the allocated memory.
size_type capacity() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
: storage_.GetInlinedCapacity();
@@ -284,56 +282,68 @@ class InlinedVector {
// `InlinedVector::data()`
//
- // Returns a `pointer` to elements of the inlined vector. This pointer can be
- // used to access and modify the contained elements.
- // Only results within the range [`0`, `size()`) are defined.
+ // Returns a `pointer` to the elements of the inlined vector. This pointer
+ // can be used to access and modify the contained elements.
+ //
+ // NOTE: only elements within [`data()`, `data() + size()`) are valid.
pointer data() noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
- // Overload of `InlinedVector::data()` to return a `const_pointer` to elements
- // of the inlined vector. This pointer can be used to access (but not modify)
- // the contained elements.
+ // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
+ // elements of the inlined vector. This pointer can be used to access but not
+ // modify the contained elements.
+ //
+ // NOTE: only elements within [`data()`, `data() + size()`) are valid.
const_pointer data() const noexcept {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
- // `InlinedVector::operator[]()`
+ // `InlinedVector::operator[](...)`
//
- // Returns a `reference` to the `i`th element of the inlined vector using the
- // array operator.
+ // Returns a `reference` to the `i`th element of the inlined vector.
reference operator[](size_type i) {
assert(i < size());
+
return data()[i];
}
- // Overload of `InlinedVector::operator[]()` to return a `const_reference` to
- // the `i`th element of the inlined vector.
+ // Overload of `InlinedVector::operator[](...)` that returns a
+ // `const_reference` to the `i`th element of the inlined vector.
const_reference operator[](size_type i) const {
assert(i < size());
+
return data()[i];
}
- // `InlinedVector::at()`
+ // `InlinedVector::at(...)`
//
// Returns a `reference` to the `i`th element of the inlined vector.
+ //
+ // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+ // in both debug and non-debug builds, `std::out_of_range` will be thrown.
reference at(size_type i) {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type)` failed bounds check");
}
+
return data()[i];
}
- // Overload of `InlinedVector::at()` to return a `const_reference` to the
- // `i`th element of the inlined vector.
+ // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
+ // the `i`th element of the inlined vector.
+ //
+ // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
+ // in both debug and non-debug builds, `std::out_of_range` will be thrown.
const_reference at(size_type i) const {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type) const` failed bounds check");
}
+
return data()[i];
}
@@ -342,13 +352,15 @@ class InlinedVector {
// Returns a `reference` to the first element of the inlined vector.
reference front() {
assert(!empty());
+
return at(0);
}
- // Overload of `InlinedVector::front()` returns a `const_reference` to the
- // first element of the inlined vector.
+ // Overload of `InlinedVector::front()` that returns a `const_reference` to
+ // the first element of the inlined vector.
const_reference front() const {
assert(!empty());
+
return at(0);
}
@@ -357,13 +369,15 @@ class InlinedVector {
// Returns a `reference` to the last element of the inlined vector.
reference back() {
assert(!empty());
+
return at(size() - 1);
}
- // Overload of `InlinedVector::back()` to return a `const_reference` to the
+ // Overload of `InlinedVector::back()` that returns a `const_reference` to the
// last element of the inlined vector.
const_reference back() const {
assert(!empty());
+
return at(size() - 1);
}
@@ -372,7 +386,7 @@ class InlinedVector {
// Returns an `iterator` to the beginning of the inlined vector.
iterator begin() noexcept { return data(); }
- // Overload of `InlinedVector::begin()` to return a `const_iterator` to
+ // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
// the beginning of the inlined vector.
const_iterator begin() const noexcept { return data(); }
@@ -381,7 +395,7 @@ class InlinedVector {
// Returns an `iterator` to the end of the inlined vector.
iterator end() noexcept { return data() + size(); }
- // Overload of `InlinedVector::end()` to return a `const_iterator` to the
+ // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
// end of the inlined vector.
const_iterator end() const noexcept { return data() + size(); }
@@ -400,7 +414,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the end of the inlined vector.
reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
- // Overload of `InlinedVector::rbegin()` to return a
+ // Overload of `InlinedVector::rbegin()` that returns a
// `const_reverse_iterator` from the end of the inlined vector.
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
@@ -411,7 +425,7 @@ class InlinedVector {
// Returns a `reverse_iterator` from the beginning of the inlined vector.
reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
- // Overload of `InlinedVector::rend()` to return a `const_reverse_iterator`
+ // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
// from the beginning of the inlined vector.
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
@@ -430,71 +444,75 @@ class InlinedVector {
// `InlinedVector::get_allocator()`
//
- // Returns a copy of the allocator of the inlined vector.
+ // Returns a copy of the inlined vector's allocator.
allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
// ---------------------------------------------------------------------------
- // `InlinedVector::operator=()`
+ // `InlinedVector::operator=(...)`
//
- // Replaces the contents of the inlined vector with copies of the elements in
- // the provided `std::initializer_list`.
+ // Replaces the elements of the inlined vector with copies of the elements of
+ // `list`.
InlinedVector& operator=(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
+
return *this;
}
- // Overload of `InlinedVector::operator=()` to replace the contents of the
- // inlined vector with the contents of `other`.
+ // Overload of `InlinedVector::operator=(...)` that replaces the elements of
+ // the inlined vector with copies of the elements of `other`.
InlinedVector& operator=(const InlinedVector& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
const_pointer other_data = other.data();
assign(other_data, other_data + other.size());
}
+
return *this;
}
- // Overload of `InlinedVector::operator=()` to replace the contents of the
- // inlined vector with the contents of `other`.
+ // Overload of `InlinedVector::operator=(...)` that moves the elements of
+ // `other` into the inlined vector.
//
- // NOTE: As a result of calling this overload, `other` may be empty or it's
- // contents may be left in a moved-from state.
+ // NOTE: as a result of calling this overload, `other` is left in a valid but
+ // unspecified state.
InlinedVector& operator=(InlinedVector&& other) {
- if (ABSL_PREDICT_FALSE(this == std::addressof(other))) return *this;
-
- if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
- inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
- size());
- storage_.DeallocateIfAllocated();
- storage_.MemcpyFrom(other.storage_);
- other.storage_.SetInlinedSize(0);
- } else {
- storage_.Assign(IteratorValueAdapter<MoveIterator>(
- MoveIterator(other.storage_.GetInlinedData())),
- other.size());
+ if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
+ if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
+ inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
+ size());
+ storage_.DeallocateIfAllocated();
+ storage_.MemcpyFrom(other.storage_);
+
+ other.storage_.SetInlinedSize(0);
+ } else {
+ storage_.Assign(IteratorValueAdapter<MoveIterator>(
+ MoveIterator(other.storage_.GetInlinedData())),
+ other.size());
+ }
}
return *this;
}
- // `InlinedVector::assign()`
+ // `InlinedVector::assign(...)`
//
// Replaces the contents of the inlined vector with `n` copies of `v`.
void assign(size_type n, const_reference v) {
storage_.Assign(CopyValueAdapter(v), n);
}
- // Overload of `InlinedVector::assign()` to replace the contents of the
- // inlined vector with copies of the values in the provided
- // `std::initializer_list`.
+ // Overload of `InlinedVector::assign(...)` that replaces the contents of the
+ // inlined vector with copies of the elements of `list`.
void assign(std::initializer_list<value_type> list) {
assign(list.begin(), list.end());
}
- // Overload of `InlinedVector::assign()` to replace the contents of the
- // inlined vector with the forward iterator range [`first`, `last`).
+ // Overload of `InlinedVector::assign(...)` to replace the contents of the
+ // inlined vector with the range [`first`, `last`).
+ //
+ // NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
void assign(ForwardIterator first, ForwardIterator last) {
@@ -502,8 +520,10 @@ class InlinedVector {
std::distance(first, last));
}
- // Overload of `InlinedVector::assign()` to replace the contents of the
- // inlined vector with the input iterator range [`first`, `last`).
+ // Overload of `InlinedVector::assign(...)` to replace the contents of the
+ // inlined vector with the range [`first`, `last`).
+ //
+ // NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
void assign(InputIterator first, InputIterator last) {
@@ -517,36 +537,39 @@ class InlinedVector {
std::copy(first, last, std::back_inserter(*this));
}
- // `InlinedVector::resize()`
+ // `InlinedVector::resize(...)`
//
- // Resizes the inlined vector to contain `n` elements. If `n` is smaller than
- // the inlined vector's current size, extra elements are destroyed. If `n` is
- // larger than the initial size, new elements are value-initialized.
+ // Resizes the inlined vector to contain `n` elements.
+ //
+ // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+ // is larger than `size()`, new elements are value-initialized.
void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }
- // Overload of `InlinedVector::resize()` to resize the inlined vector to
- // contain `n` elements where, if `n` is larger than `size()`, the new values
- // will be copy-constructed from `v`.
+ // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
+ // contain `n` elements.
+ //
+ // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
+ // is larger than `size()`, new elements are copied-constructed from `v`.
void resize(size_type n, const_reference v) {
storage_.Resize(CopyValueAdapter(v), n);
}
- // `InlinedVector::insert()`
+ // `InlinedVector::insert(...)`
//
- // Copies `v` into `pos`, returning an `iterator` pointing to the newly
+ // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
// inserted element.
iterator insert(const_iterator pos, const_reference v) {
return emplace(pos, v);
}
- // Overload of `InlinedVector::insert()` for moving `v` into `pos`, returning
- // an iterator pointing to the newly inserted element.
+ // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
+ // move semantics, returning an `iterator` to the newly inserted element.
iterator insert(const_iterator pos, rvalue_reference v) {
return emplace(pos, std::move(v));
}
- // Overload of `InlinedVector::insert()` for inserting `n` contiguous copies
- // of `v` starting at `pos`. Returns an `iterator` pointing to the first of
+ // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
+ // of `v` starting at `pos`, returning an `iterator` pointing to the first of
// the newly inserted elements.
iterator insert(const_iterator pos, size_type n, const_reference v) {
assert(pos >= begin());
@@ -560,19 +583,18 @@ class InlinedVector {
}
}
- // Overload of `InlinedVector::insert()` for copying the contents of the
- // `std::initializer_list` into the vector starting at `pos`. Returns an
- // `iterator` pointing to the first of the newly inserted elements.
+ // Overload of `InlinedVector::insert(...)` that inserts copies of the
+ // elements of `list` starting at `pos`, returning an `iterator` pointing to
+ // the first of the newly inserted elements.
iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
return insert(pos, list.begin(), list.end());
}
- // Overload of `InlinedVector::insert()` for inserting elements constructed
- // from the forward iterator range [`first`, `last`). Returns an `iterator`
- // pointing to the first of the newly inserted elements.
+ // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+ // `last`) starting at `pos`, returning an `iterator` pointing to the first
+ // of the newly inserted elements.
//
- // NOTE: The `enable_if` is intended to disambiguate the two three-argument
- // overloads of `insert()`.
+ // NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
iterator insert(const_iterator pos, ForwardIterator first,
@@ -588,9 +610,11 @@ class InlinedVector {
}
}
- // Overload of `InlinedVector::insert()` for inserting elements constructed
- // from the input iterator range [`first`, `last`). Returns an `iterator`
- // pointing to the first of the newly inserted elements.
+ // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
+ // `last`) starting at `pos`, returning an `iterator` pointing to the first
+ // of the newly inserted elements.
+ //
+ // NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
@@ -605,10 +629,10 @@ class InlinedVector {
return iterator(data() + index);
}
- // `InlinedVector::emplace()`
+ // `InlinedVector::emplace(...)`
//
- // Constructs and inserts an object in the inlined vector at the given `pos`,
- // returning an `iterator` pointing to the newly emplaced element.
+ // Constructs and inserts an element using `args...` in the inlined vector at
+ // `pos`, returning an `iterator` pointing to the newly emplaced element.
template <typename... Args>
iterator emplace(const_iterator pos, Args&&... args) {
assert(pos >= begin());
@@ -621,30 +645,29 @@ class InlinedVector {
1);
}
- // `InlinedVector::emplace_back()`
+ // `InlinedVector::emplace_back(...)`
//
- // Constructs and appends a new element to the end of the inlined vector,
- // returning a `reference` to the emplaced element.
+ // Constructs and inserts an element using `args...` in the inlined vector at
+ // `end()`, returning a `reference` to the newly emplaced element.
template <typename... Args>
reference emplace_back(Args&&... args) {
return storage_.EmplaceBack(std::forward<Args>(args)...);
}
- // `InlinedVector::push_back()`
+ // `InlinedVector::push_back(...)`
//
- // Appends a copy of `v` to the end of the inlined vector.
+ // Inserts a copy of `v` in the inlined vector at `end()`.
void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
- // Overload of `InlinedVector::push_back()` for moving `v` into a newly
- // appended element.
+ // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
+ // using move semantics.
void push_back(rvalue_reference v) {
static_cast<void>(emplace_back(std::move(v)));
}
// `InlinedVector::pop_back()`
//
- // Destroys the element at the end of the inlined vector and shrinks the size
- // by `1` (unless the inlined vector is empty, in which case this is a no-op).
+ // Destroys the element at `back()`, reducing the size by `1`.
void pop_back() noexcept {
assert(!empty());
@@ -652,12 +675,12 @@ class InlinedVector {
storage_.SubtractSize(1);
}
- // `InlinedVector::erase()`
+ // `InlinedVector::erase(...)`
//
- // Erases the element at `pos` of the inlined vector, returning an `iterator`
- // pointing to the first element following the erased element.
+ // Erases the element at `pos`, returning an `iterator` pointing to where the
+ // erased element was located.
//
- // NOTE: May return the end iterator, which is not dereferencable.
+ // NOTE: may return `end()`, which is not dereferencable.
iterator erase(const_iterator pos) {
assert(pos >= begin());
assert(pos < end());
@@ -665,10 +688,11 @@ class InlinedVector {
return storage_.Erase(pos, pos + 1);
}
- // Overload of `InlinedVector::erase()` for erasing all elements in the
- // range [`from`, `to`) in the inlined vector. Returns an `iterator` pointing
- // to the first element following the range erased or the end iterator if `to`
- // was the end iterator.
+ // Overload of `InlinedVector::erase(...)` that erases every element in the
+ // range [`from`, `to`), returning an `iterator` pointing to where the first
+ // erased element was located.
+ //
+ // NOTE: may return `end()`, which is not dereferencable.
iterator erase(const_iterator from, const_iterator to) {
assert(from >= begin());
assert(from <= to);
@@ -683,8 +707,8 @@ class InlinedVector {
// `InlinedVector::clear()`
//
- // Destroys all elements in the inlined vector, sets the size of `0` and
- // deallocates the heap allocation if the inlined vector was allocated.
+ // Destroys all elements in the inlined vector, setting the size to `0` and
+ // deallocating any held memory.
void clear() noexcept {
inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
size());
@@ -692,37 +716,31 @@ class InlinedVector {
storage_.SetInlinedSize(0);
}
- // `InlinedVector::reserve()`
+ // `InlinedVector::reserve(...)`
//
- // Enlarges the underlying representation of the inlined vector so it can hold
- // at least `n` elements. This method does not change `size()` or the actual
- // contents of the vector.
- //
- // NOTE: If `n` does not exceed `capacity()`, `reserve()` will have no
- // effects. Otherwise, `reserve()` will reallocate, performing an n-time
- // element-wise move of everything contained.
+ // Ensures that there is enough room for at least `n` elements.
void reserve(size_type n) { storage_.Reserve(n); }
// `InlinedVector::shrink_to_fit()`
//
- // Reduces memory usage by freeing unused memory. After this call, calls to
+ // Reduces memory usage by freeing unused memory. After being called, calls to
// `capacity()` will be equal to `max(N, size())`.
//
- // If `size() <= N` and the elements are currently stored on the heap, they
- // will be moved to the inlined storage and the heap memory will be
- // deallocated.
+ // If `size() <= N` and the inlined vector contains allocated memory, the
+ // elements will all be moved to the inlined space and the allocated memory
+ // will be deallocated.
//
- // If `size() > N` and `size() < capacity()` the elements will be moved to a
- // smaller heap allocation.
+ // If `size() > N` and `size() < capacity()`, the elements will be moved to a
+ // smaller allocation.
void shrink_to_fit() {
if (storage_.GetIsAllocated()) {
storage_.ShrinkToFit();
}
}
- // `InlinedVector::swap()`
+ // `InlinedVector::swap(...)`
//
- // Swaps the contents of this inlined vector with the contents of `other`.
+ // Swaps the contents of the inlined vector with `other`.
void swap(InlinedVector& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
storage_.Swap(std::addressof(other.storage_));
@@ -740,93 +758,86 @@ class InlinedVector {
// InlinedVector Non-Member Functions
// -----------------------------------------------------------------------------
-// `swap()`
+// `swap(...)`
//
-// Swaps the contents of two inlined vectors. This convenience function
-// simply calls `InlinedVector::swap()`.
+// Swaps the contents of two inlined vectors.
template <typename T, size_t N, typename A>
void swap(absl::InlinedVector<T, N, A>& a,
absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
-// `operator==()`
+// `operator==(...)`
//
-// Tests the equivalency of the contents of two inlined vectors.
+// Tests for value-equality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator==(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
- auto a_size = a.size();
auto b_data = b.data();
- auto b_size = b.size();
- return absl::equal(a_data, a_data + a_size, b_data, b_data + b_size);
+ return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
}
-// `operator!=()`
+// `operator!=(...)`
//
-// Tests the inequality of the contents of two inlined vectors.
+// Tests for value-inequality of two inlined vectors.
template <typename T, size_t N, typename A>
bool operator!=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a == b);
}
-// `operator<()`
+// `operator<(...)`
//
-// Tests whether the contents of one inlined vector are less than the contents
-// of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than the value of
+// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
- auto a_size = a.size();
auto b_data = b.data();
- auto b_size = b.size();
- return std::lexicographical_compare(a_data, a_data + a_size, b_data,
- b_data + b_size);
+ return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
+ b_data + b.size());
}
-// `operator>()`
+// `operator>(...)`
//
-// Tests whether the contents of one inlined vector are greater than the
-// contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than the value of
+// another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return b < a;
}
-// `operator<=()`
+// `operator<=(...)`
//
-// Tests whether the contents of one inlined vector are less than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is less than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator<=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(b < a);
}
-// `operator>=()`
+// `operator>=(...)`
//
-// Tests whether the contents of one inlined vector are greater than or equal to
-// the contents of another through a lexicographical comparison operation.
+// Tests whether the value of an inlined vector is greater than or equal to the
+// value of another inlined vector using a lexicographical comparison algorithm.
template <typename T, size_t N, typename A>
bool operator>=(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
return !(a < b);
}
-// `AbslHashValue()`
+// `AbslHashValue(...)`
//
-// Provides `absl::Hash` support for `absl::InlinedVector`. You do not normally
-// call this function directly.
-template <typename H, typename TheT, size_t TheN, typename TheA>
-H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a) {
- auto a_data = a.data();
- auto a_size = a.size();
- return H::combine(H::combine_contiguous(std::move(h), a_data, a_size),
- a_size);
+// Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
+// call this directly.
+template <typename H, typename T, size_t N, typename A>
+H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
+ auto size = a.size();
+ return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
}
} // namespace absl
diff --git a/absl/container/internal/inlined_vector.h b/absl/container/internal/inlined_vector.h
index b241d0e0..17e203e5 100644
--- a/absl/container/internal/inlined_vector.h
+++ b/absl/container/internal/inlined_vector.h
@@ -71,14 +71,12 @@ template <typename AllocatorType, typename ValueType, typename ValueAdapter,
typename SizeType>
void ConstructElements(AllocatorType* alloc_ptr, ValueType* construct_first,
ValueAdapter* values_ptr, SizeType construct_size) {
- // If any construction fails, all completed constructions are rolled back.
for (SizeType i = 0; i < construct_size; ++i) {
ABSL_INTERNAL_TRY {
values_ptr->ConstructNext(alloc_ptr, construct_first + i);
}
ABSL_INTERNAL_CATCH_ANY {
inlined_vector_internal::DestroyElements(alloc_ptr, construct_first, i);
-
ABSL_INTERNAL_RETHROW;
}
}
@@ -171,6 +169,12 @@ class AllocationTransaction {
explicit AllocationTransaction(AllocatorType* alloc_ptr)
: alloc_data_(*alloc_ptr, nullptr) {}
+ ~AllocationTransaction() {
+ if (DidAllocate()) {
+ AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
+ }
+ }
+
AllocationTransaction(const AllocationTransaction&) = delete;
void operator=(const AllocationTransaction&) = delete;
@@ -185,12 +189,6 @@ class AllocationTransaction {
return GetData();
}
- ~AllocationTransaction() {
- if (DidAllocate()) {
- AllocatorTraits::deallocate(GetAllocator(), GetData(), GetCapacity());
- }
- }
-
private:
container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
size_type capacity_ = 0;
@@ -205,9 +203,21 @@ class ConstructionTransaction {
explicit ConstructionTransaction(AllocatorType* alloc_ptr)
: alloc_data_(*alloc_ptr, nullptr) {}
+ ~ConstructionTransaction() {
+ if (DidConstruct()) {
+ inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
+ GetData(), GetSize());
+ }
+ }
+
ConstructionTransaction(const ConstructionTransaction&) = delete;
void operator=(const ConstructionTransaction&) = delete;
+ AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
+ pointer& GetData() { return alloc_data_.template get<1>(); }
+ size_type& GetSize() { return size_; }
+
+ bool DidConstruct() { return GetData() != nullptr; }
template <typename ValueAdapter>
void Construct(pointer data, ValueAdapter* values_ptr, size_type size) {
inlined_vector_internal::ConstructElements(std::addressof(GetAllocator()),
@@ -220,18 +230,7 @@ class ConstructionTransaction {
GetSize() = 0;
}
- ~ConstructionTransaction() {
- if (GetData() != nullptr) {
- inlined_vector_internal::DestroyElements(std::addressof(GetAllocator()),
- GetData(), GetSize());
- }
- }
-
private:
- AllocatorType& GetAllocator() { return alloc_data_.template get<0>(); }
- pointer& GetData() { return alloc_data_.template get<1>(); }
- size_type& GetSize() { return size_; }
-
container_internal::CompressedTuple<AllocatorType, pointer> alloc_data_;
size_type size_ = 0;
};
@@ -345,6 +344,7 @@ class Storage {
void SubtractSize(size_type count) {
assert(count <= GetSize());
+
GetSizeAndIsAllocated() -= count << 1;
}
@@ -533,22 +533,14 @@ auto Storage<T, N, A>::Resize(ValueAdapter values, size_type new_size) -> void {
if (new_size > storage_view.capacity) {
size_type new_capacity = ComputeCapacity(storage_view.capacity, new_size);
pointer new_data = allocation_tx.Allocate(new_capacity);
-
- // Construct new objects in `new_data`
construct_loop = {new_data + storage_view.size,
new_size - storage_view.size};
-
- // Move all existing objects into `new_data`
move_construct_loop = {new_data, storage_view.size};
-
- // Destroy all existing objects in `storage_view.data`
destroy_loop = {storage_view.data, storage_view.size};
} else if (new_size > storage_view.size) {
- // Construct new objects in `storage_view.data`
construct_loop = {storage_view.data + storage_view.size,
new_size - storage_view.size};
} else {
- // Destroy end `storage_view.size - new_size` objects in `storage_view.data`
destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
}
@@ -797,8 +789,6 @@ auto Storage<T, N, A>::ShrinkToFit() -> void {
&move_values, storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
- // Writing to inlined data will trample on the existing state, thus it needs
- // to be restored when a construction fails.
SetAllocatedData(storage_view.data, storage_view.capacity);
ABSL_INTERNAL_RETHROW;
}
@@ -822,13 +812,8 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
assert(this != other_storage_ptr);
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
- // Both are allocated, thus we can swap the allocations at the top level.
-
swap(data_.allocated, other_storage_ptr->data_.allocated);
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
- // Both are inlined, thus element-wise swap up to smaller size, then move
- // the remaining elements.
-
Storage* small_ptr = this;
Storage* large_ptr = other_storage_ptr;
if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr);
@@ -850,11 +835,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
large_ptr->GetInlinedData() + small_ptr->GetSize(),
large_ptr->GetSize() - small_ptr->GetSize());
} else {
- // One is allocated and the other is inlined, thus we first move the
- // elements from the inlined instance to the inlined space in the allocated
- // instance and then we can finish by having the other vector take on the
- // allocation.
-
Storage* allocated_ptr = this;
Storage* inlined_ptr = other_storage_ptr;
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
@@ -872,8 +852,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
&move_values, inlined_ptr->GetSize());
}
ABSL_INTERNAL_CATCH_ANY {
- // Writing to inlined data will trample on the existing state, thus it
- // needs to be restored when a construction fails.
allocated_ptr->SetAllocatedData(allocated_storage_view.data,
allocated_storage_view.capacity);
ABSL_INTERNAL_RETHROW;
@@ -887,7 +865,6 @@ auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
allocated_storage_view.capacity);
}
- // All cases swap the size, `is_allocated` boolean and the allocator.
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
swap(*GetAllocPtr(), *other_storage_ptr->GetAllocPtr());
}
diff --git a/absl/random/BUILD.bazel b/absl/random/BUILD.bazel
index 00d42c9d..f7587bf9 100644
--- a/absl/random/BUILD.bazel
+++ b/absl/random/BUILD.bazel
@@ -368,9 +368,9 @@ BENCHMARK_TAGS = [
]
# Benchmarks for various methods / test utilities
-cc_test(
+cc_binary(
name = "benchmarks",
- size = "small",
+ testonly = 1,
srcs = [
"benchmarks.cc",
],
diff --git a/absl/random/benchmarks.cc b/absl/random/benchmarks.cc
index 265d54d7..87bbb981 100644
--- a/absl/random/benchmarks.cc
+++ b/absl/random/benchmarks.cc
@@ -25,7 +25,6 @@
#include <type_traits>
#include <vector>
-#include "benchmark/benchmark.h"
#include "absl/base/macros.h"
#include "absl/meta/type_traits.h"
#include "absl/random/bernoulli_distribution.h"
@@ -40,6 +39,7 @@
#include "absl/random/uniform_int_distribution.h"
#include "absl/random/uniform_real_distribution.h"
#include "absl/random/zipf_distribution.h"
+#include "benchmark/benchmark.h"
namespace {
@@ -221,12 +221,12 @@ void BM_Poisson(benchmark::State& state) {
BM_Dist<Engine, Dist>(state, a);
}
-template <typename Engine, typename Dist, int V = 1, int Q = 2>
+template <typename Engine, typename Dist, int Q = 2, int V = 1>
void BM_Zipf(benchmark::State& state) {
using value_type = typename Dist::result_type;
- volatile double v = V;
volatile double q = Q;
- BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), v, q);
+ volatile double v = V;
+ BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);
}
template <typename Engine, typename Dist>
@@ -333,8 +333,8 @@ void BM_Thread(benchmark::State& state) {
absl::log_uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \
- BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 3, \
- 2); \
+ BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2, \
+ 3); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \
257305); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \
diff --git a/absl/random/distributions.h b/absl/random/distributions.h
index c37b7347..d8ba3cdb 100644
--- a/absl/random/distributions.h
+++ b/absl/random/distributions.h
@@ -437,6 +437,6 @@ IntType Zipf(URBG&& urbg, // NOLINT(runtime/references)
distribution_t, format_t>(&urbg, hi, q, v);
}
-} // namespace absl.
+} // namespace absl
#endif // ABSL_RANDOM_DISTRIBUTIONS_H_
diff --git a/absl/random/internal/seed_material_test.cc b/absl/random/internal/seed_material_test.cc
index 0de6c4c6..6db2820e 100644
--- a/absl/random/internal/seed_material_test.cc
+++ b/absl/random/internal/seed_material_test.cc
@@ -28,7 +28,8 @@
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, ".*")
#else
-#define ABSL_EXPECT_DEATH_IF_SUPPORTED EXPECT_DEATH_IF_SUPPORTED
+#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
+ EXPECT_DEATH_IF_SUPPORTED(statement, regex)
#endif
namespace {
diff --git a/absl/random/zipf_distribution.h b/absl/random/zipf_distribution.h
index 1e4dba8b..d7b4ac38 100644
--- a/absl/random/zipf_distribution.h
+++ b/absl/random/zipf_distribution.h
@@ -264,6 +264,6 @@ std::basic_istream<CharT, Traits>& operator>>(
return is;
}
-} // namespace absl.
+} // namespace absl
#endif // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
diff --git a/absl/strings/numbers.h b/absl/strings/numbers.h
index e0f96df9..100839b0 100644
--- a/absl/strings/numbers.h
+++ b/absl/strings/numbers.h
@@ -47,7 +47,7 @@ namespace absl {
// integer type. If any errors are encountered, this function returns `false`,
// leaving `out` in an unspecified state.
template <typename int_type>
-ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out);
+ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out);
// SimpleAtof()
//
@@ -180,8 +180,8 @@ ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s, int_type* out,
// preceded by ASCII whitespace, with a value in the range of the corresponding
// integer type.
template <typename int_type>
-ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view s, int_type* out) {
- return numbers_internal::safe_strtoi_base(s, out, 10);
+ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str, int_type* out) {
+ return numbers_internal::safe_strtoi_base(str, out, 10);
}
} // namespace absl