summaryrefslogtreecommitdiff
path: root/evm_compute.ml
blob: b10a9cd146253ac1a6828af1013d914a57928cd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(*i camlp4deps: "parsing/grammar.cma" i*)
(*i camlp4use: "pa_extend.cmp" i*)


let pp_constr fmt x = Pp.pp_with fmt (Printer.pr_constr x)
let pp_list pp fmt l = List.iter (fun x -> Format.fprintf fmt "%a; " pp x) l
let pp_list_nl pp fmt l = List.iter (fun x -> Format.fprintf fmt "%a;\n" pp x) l
let pp_constrs fmt l = (pp_list pp_constr) fmt l

type constr = Term.constr

module Replace (X : sig val eq: Term.constr -> Term.constr -> bool 
			val subst : (Term.constr * Term.constr) list end) =
  struct

    (* assumes that [c] and [t] have no outer casts, and all
       applications have been flattened *)    
    let rec find l (t: constr) =
      match l with 
      | [] -> None
      | (c,c') :: q -> 
	begin 
	  match Term.kind_of_term c, Term.kind_of_term t with 
	  | Term.App (f1,args1), Term.App (f2, args2) -> 
	    let l1 = Array.length args1 in 
	    let l2 = Array.length args2 in 
	    if l1 <= l2 && X.eq c (Term.mkApp (f2, Array.sub args2 0 l1)) 
	    then
	      (* we must return the array of arguments, to make the
		 substitution in them too *)
	      Some (c',Array.sub args2 l1 (l2 - l1))
	    else 
	      find q t
	  | _, _ -> 
	    if X.eq c t 
	    then Some (c', [| |]) 
	    else find q t	      
	end
	  
	  
    let replace_terms t = 
      let rec aux (k:int) t =
	match find X.subst t with 
	| Some (t',v) -> 
	  let v' = Array.map (Term.map_constr_with_binders (succ) aux k) v in
	  Term.mkApp (Term.lift k t', v')
	| None -> 
	  Term.map_constr_with_binders succ aux k t
      in aux 0 t
	  
  end

let nowhere =
  { Tacexpr.onhyps = Some [];
    Tacexpr.concl_occs = Glob_term.no_occurrences_expr
  }

let mk_letin
    (name:string)
    (c: constr)
    (k : Names .identifier -> Proof_type.tactic)
: Proof_type.tactic =
  fun goal ->
    let name = (Names.id_of_string name) in
    let name =  Tactics.fresh_id [] name goal in
    let letin = (Tactics.letin_tac None  (Names.Name name) c None nowhere) in
      Tacticals.tclTHEN letin (k name) goal

let assert_tac
    (name:string)
    (c: constr)
    (by:Proof_type.tactic)
    (k : Names.identifier -> Proof_type.tactic)
: Proof_type.tactic =
  fun goal ->
    let name = (Names.id_of_string name) in
    let name =  Tactics.fresh_id [] name goal in
    let t = (Tactics.assert_tac  (Names.Name name) c) in
      Tacticals.tclTHENS t [by; (k name)] goal


(* The contrib name is used to locate errors when loading constrs *)
let contrib_name = "evm_compute"

(* Getting constrs (primitive Coq terms) from existing Coq
   libraries. *)
let find_constant contrib dir s =
  Libnames.constr_of_global (Coqlib.find_reference contrib dir s)

let init_constant dir s = find_constant contrib_name dir s

module Leibniz = struct
  let path = ["Coq"; "Init"; "Logic"]
    
  let eq_refl t x= 
    Term.mkApp (init_constant path "eq_refl", [| t; x|])

  let eq t x y = 
    Term.mkApp (init_constant path "eq", [| t; x ; y|])
      
  let eq_ind_r ty x p px y yx =
    Term.mkApp (init_constant path "eq_ind_r", [|ty;x;p;px;y;yx|])
end

let mk_vm_cast t c = Term.mkCast (c,Term.VMcast,t)

let mk_let  
    (name:Names.identifier)
    (c: constr)
    (t: constr)
    (k : Names.identifier -> constr) =
  Term.mkNamedLetIn name c t (Term.subst_vars [name] (k name))

let mk_fun
    (name:Names.identifier)
    (t: constr)
    (k : Names.identifier -> constr) =
  Term.mkNamedLambda name t (Term.subst_vars [name] (k name))

let rec has_evar x =
  match Term.kind_of_term x with
    | Term.Evar _ -> true
    | Term.Rel _ | Term.Var _ | Term.Meta _ | Term.Sort _ | Term.Const _ | Term.Ind _ | Term.Construct _ ->
      false
    | Term.Cast (t1, _, t2) | Term.Prod (_, t1, t2) | Term.Lambda (_, t1, t2) ->
      has_evar t1 || has_evar t2
    | Term.LetIn (_, t1, t2, t3) ->
      has_evar t1 || has_evar t2 || has_evar t3
    | Term.App (t1, ts) ->
      has_evar t1 || has_evar_array ts
    | Term.Case (_, t1, t2, ts) ->
      has_evar t1 || has_evar t2 || has_evar_array ts
    | Term.Fix ((_, tr)) | Term.CoFix ((_, tr)) ->
      has_evar_prec tr
and has_evar_array x =
  Util.array_exists has_evar x
and has_evar_prec (_, ts1, ts2) =
  Util.array_exists has_evar ts1 || Util.array_exists has_evar ts2

let evm_compute eq blacklist = fun gl -> 
  (* the type of the conclusion of the goal is [concl] *)
  let concl = Tacmach.pf_concl gl in 

  let extra = 
    List.fold_left (fun acc (id,body,ty) -> 
      match body with 
	| None -> acc
	| Some body -> if has_evar body then (Term.mkVar id :: acc) else acc)
      [] (Tacmach.pf_hyps gl) in 

  (* the set of evars that appear in the goal *)
  let evars = Evd.evar_list (Tacmach.project gl) concl in 
  
  (* the arguments of the function are: the constr that are blacklisted, then the evars  *)
  let args = extra @ blacklist @ (List.map (fun x -> Term.mkEvar x) evars) in 
  
  let argsv = Array.of_list args in 

  let context = (Termops.rel_list 0 (List.length args)) in 

  (* we associate to each argument the proper de bruijn index *)
  let (subst: (Term.constr * Term.constr) list) = List.combine args context in 
  
  let module R = Replace(struct let eq = eq let subst = subst end) in 
  
  let t = R.replace_terms concl in 
  
  (* we have to retype both the blacklist and the evars to know how to build the final product *)
  let rel_context = List.map (fun x -> Names.Anonymous, None, Tacmach.pf_type_of gl x) args in 
  
  (* the abstraction *)
  let t = Term.it_mkLambda_or_LetIn t (List.rev rel_context) in 
  
  let typeof_t = (Tacmach.pf_type_of gl t) in 

  (* the normal form of the head function *)
  let nft = Vnorm.cbv_vm (Tacmach.pf_env gl) t typeof_t in 
  

  let (!!) x = Tactics.fresh_id [] ((Names.id_of_string x)) gl in

  (* p = [fun x => x a_i] which corresponds to the type of the goal when applied to [t] *)
  let p = mk_fun (!! "x") typeof_t (fun x -> Term.mkApp (Term.mkVar x,argsv)) in 
  
  let proof_term pnft = begin  
    mk_let (!! "nft") nft typeof_t (fun nft -> let nft' = Term.mkVar nft in
    mk_let (!! "t") t typeof_t (fun t -> let t' = Term.mkVar t in 	
    mk_let (!! "H") (mk_vm_cast (Leibniz.eq typeof_t t' nft') (Leibniz.eq_refl typeof_t nft')) (Leibniz.eq typeof_t t' nft')
   (fun h -> 
    (* typeof_t -> Prop *)
    let body = Leibniz.eq_ind_r typeof_t 
      nft' p pnft t' (Term.mkVar h) 
    in 
    Term.mkCast (body, Term.DEFAULTcast, Term.mkApp (t', argsv))
  )))
  end in 
  
  try 
    assert_tac "subgoal" (Term.mkApp (p,[| nft |]))
      Tacticals.tclIDTAC
      (fun subgoal -> 
	(* We use the tactic [exact_no_check]. It has two consequences:
	- first, it means that in theory we could produce ill typed proof terms, that fail to type check at Qed; 
	- second, it means that we are able to use vm_compute and vm_compute casts, that will be checkable at Qed time when all evars have been instantiated. 
	*)
	Tactics.exact_no_check (proof_term (Term.mkVar subgoal))  
      ) gl
  with 
    | e ->
      Tacticals.tclFAIL 0 (Pp.str (Printf.sprintf "evm_compute failed with an exception %s" (Printexc.to_string e))) gl
      
;;

let evm_compute_in eq blacklist h = fun gl -> 
  let concl = Tacmach.pf_concl gl in 
  Tacticals.tclTHENLIST
    [Tactics.revert [h];
     evm_compute eq (concl :: blacklist);
     Tactics.introduction h
    ]
    gl