summaryrefslogtreecommitdiff
path: root/theories/AAC.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/AAC.v')
-rw-r--r--theories/AAC.v901
1 files changed, 901 insertions, 0 deletions
diff --git a/theories/AAC.v b/theories/AAC.v
new file mode 100644
index 0000000..d7cc7a2
--- /dev/null
+++ b/theories/AAC.v
@@ -0,0 +1,901 @@
+(***************************************************************************)
+(* This is part of aac_tactics, it is distributed under the terms of the *)
+(* GNU Lesser General Public License version 3 *)
+(* (see file LICENSE for more details) *)
+(* *)
+(* Copyright 2009-2010: Thomas Braibant, Damien Pous. *)
+(***************************************************************************)
+
+(** * Theory file for the aac_rewrite tactic
+
+ We define several base classes to package associative and possibly
+ commutative operators, and define a data-type for reified (or
+ quoted) expressions (with morphisms).
+
+ We then define a reflexive decision procedure to decide the
+ equality of reified terms: first normalise reified terms, then
+ compare them. This allows us to close transitivity steps
+ automatically, in the [aac_rewrite] tactic.
+
+ We restrict ourselves to the case where all symbols operate on a
+ single fixed type. In particular, this means that we cannot handle
+ situations like
+
+ [H: forall x y, nat_of_pos (pos_of_nat (x) + y) + x = ....]
+
+ where one occurrence of [+] operates on nat while the other one
+ operates on positive. *)
+
+Require Import Arith NArith.
+Require Import List.
+Require Import FMapPositive FMapFacts.
+Require Import RelationClasses Equality.
+Require Export Morphisms.
+
+From AAC_tactics
+Require Import Utils.
+
+Set Implicit Arguments.
+Set Asymmetric Patterns.
+
+Local Open Scope signature_scope.
+
+(** * Environments for the reification process: we use positive maps to index elements *)
+
+Section sigma.
+ Definition sigma := PositiveMap.t.
+ Definition sigma_get A (null : A) (map : sigma A) (n : positive) : A :=
+ match PositiveMap.find n map with
+ | None => null
+ | Some x => x
+ end.
+ Definition sigma_add := @PositiveMap.add.
+ Definition sigma_empty := @PositiveMap.empty.
+End sigma.
+
+
+(** * Classes for properties of operators *)
+
+Class Associative (X:Type) (R:relation X) (dot: X -> X -> X) :=
+ law_assoc : forall x y z, R (dot x (dot y z)) (dot (dot x y) z).
+Class Commutative (X:Type) (R: relation X) (plus: X -> X -> X) :=
+ law_comm: forall x y, R (plus x y) (plus y x).
+Class Unit (X:Type) (R:relation X) (op : X -> X -> X) (unit:X) := {
+ law_neutral_left: forall x, R (op unit x) x;
+ law_neutral_right: forall x, R (op x unit) x
+}.
+
+
+(** Class used to find the equivalence relation on which operations
+ are A or AC, starting from the relation appearing in the goal *)
+
+Class AAC_lift X (R: relation X) (E : relation X) := {
+ aac_lift_equivalence : Equivalence E;
+ aac_list_proper : Proper (E ==> E ==> iff) R
+}.
+
+(** simple instances, when we have a subrelation, or an equivalence *)
+
+Instance aac_lift_subrelation {X} {R} {E} {HE: Equivalence E}
+ {HR: @Transitive X R} {HER: subrelation E R}: AAC_lift R E | 3.
+Proof.
+ constructor; trivial.
+ intros ? ? H ? ? H'. split; intro G.
+ rewrite <- H, G. apply HER, H'.
+ rewrite H, G. apply HER. symmetry. apply H'.
+Qed.
+
+Instance aac_lift_proper {X} {R : relation X} {E} {HE: Equivalence E}
+ {HR: Proper (E==>E==>iff) R}: AAC_lift R E | 4 := {}.
+
+
+
+Module Internal.
+(** * Utilities for the evaluation function *)
+
+Section copy.
+
+ Context {X} {R} {HR: @Equivalence X R} {plus}
+ (op: Associative R plus) (op': Commutative R plus) (po: Proper (R ==> R ==> R) plus).
+
+ (* copy n x = x+...+x (n times) *)
+ Fixpoint copy' n x := match n with
+ | xH => x
+ | xI n => let xn := copy' n x in plus (plus xn xn) x
+ | xO n => let xn := copy' n x in (plus xn xn)
+ end.
+ Definition copy n x := Prect (fun _ => X) x (fun _ xn => plus x xn) n.
+
+ Lemma copy_plus : forall n m x, R (copy (n+m) x) (plus (copy n x) (copy m x)).
+ Proof.
+ unfold copy.
+ induction n using Pind; intros m x.
+ rewrite Prect_base. rewrite <- Pplus_one_succ_l. rewrite Prect_succ. reflexivity.
+ rewrite Pplus_succ_permute_l. rewrite 2Prect_succ. rewrite IHn. apply op.
+ Qed.
+ Lemma copy_xH : forall x, R (copy 1 x) x.
+ Proof. intros; unfold copy; rewrite Prect_base. reflexivity. Qed.
+ Lemma copy_Psucc : forall n x, R (copy (Pos.succ n) x) (plus x (copy n x)).
+ Proof. intros; unfold copy; rewrite Prect_succ. reflexivity. Qed.
+
+ Global Instance copy_compat n: Proper (R ==> R) (copy n).
+ Proof.
+ unfold copy.
+ induction n using Pind; intros x y H.
+ rewrite 2Prect_base. assumption.
+ rewrite 2Prect_succ. apply po; auto.
+ Qed.
+
+End copy.
+
+(** * Packaging structures *)
+
+(** ** free symbols *)
+
+Module Sym.
+ Section t.
+ Context {X} {R : relation X} .
+
+ (** type of an arity *)
+ Fixpoint type_of (n: nat) :=
+ match n with
+ | O => X
+ | S n => X -> type_of n
+ end.
+
+ (** relation to be preserved at an arity *)
+ Fixpoint rel_of n : relation (type_of n) :=
+ match n with
+ | O => R
+ | S n => respectful R (rel_of n)
+ end.
+
+ (** a symbol package contains an arity,
+ a value of the corresponding type,
+ and a proof that the value is a proper morphism *)
+ Record pack : Type := mkPack {
+ ar : nat;
+ value :> type_of ar;
+ morph : Proper (rel_of ar) value
+ }.
+
+ (** helper to build default values, when filling reification environments *)
+ Definition null: pack := mkPack 1 (fun x => x) (fun _ _ H => H).
+
+ End t.
+
+End Sym.
+
+(** ** binary operations *)
+
+Module Bin.
+ Section t.
+ Context {X} {R: relation X}.
+
+ Record pack := mk_pack {
+ value:> X -> X -> X;
+ compat: Proper (R ==> R ==> R) value;
+ assoc: Associative R value;
+ comm: option (Commutative R value)
+ }.
+ End t.
+ (* See #<a href="Instances.html">Instances.v</a># for concrete instances of these classes. *)
+
+End Bin.
+
+
+(** * Reification, normalisation, and decision *)
+
+Section s.
+ Context {X} {R: relation X} {E: @Equivalence X R}.
+ Infix "==" := R (at level 80).
+
+ (* We use environments to store the various operators and the
+ morphisms.*)
+
+ Variable e_sym: idx -> @Sym.pack X R.
+ Variable e_bin: idx -> @Bin.pack X R.
+
+
+ (** packaging units (depends on e_bin) *)
+
+ Record unit_of u := mk_unit_for {
+ uf_idx: idx;
+ uf_desc: Unit R (Bin.value (e_bin uf_idx)) u
+ }.
+
+ Record unit_pack := mk_unit_pack {
+ u_value:> X;
+ u_desc: list (unit_of u_value)
+ }.
+ Variable e_unit: positive -> unit_pack.
+
+ Hint Resolve e_bin e_unit: typeclass_instances.
+
+ (** ** Almost normalised syntax
+ a term in [T] is in normal form if:
+ - sums do not contain sums
+ - products do not contain products
+ - there are no unary sums or products
+ - lists and msets are lexicographically sorted according to the order we define below
+
+ [vT n] denotes the set of term vectors of size [n] (the mutual dependency could be removed),
+
+ Note that [T] and [vT] depend on the [e_sym] environment (which
+ contains, among other things, the arity of symbols)
+ *)
+
+ Inductive T: Type :=
+ | sum: idx -> mset T -> T
+ | prd: idx -> nelist T -> T
+ | sym: forall i, vT (Sym.ar (e_sym i)) -> T
+ | unit : idx -> T
+ with vT: nat -> Type :=
+ | vnil: vT O
+ | vcons: forall n, T -> vT n -> vT (S n).
+
+
+ (** lexicographic rpo over the normalised syntax *)
+ Fixpoint compare (u v: T) :=
+ match u,v with
+ | sum i l, sum j vs => lex (idx_compare i j) (mset_compare compare l vs)
+ | prd i l, prd j vs => lex (idx_compare i j) (list_compare compare l vs)
+ | sym i l, sym j vs => lex (idx_compare i j) (vcompare l vs)
+ | unit i , unit j => idx_compare i j
+ | unit _ , _ => Lt
+ | _ , unit _ => Gt
+ | sum _ _, _ => Lt
+ | _ , sum _ _ => Gt
+ | prd _ _, _ => Lt
+ | _ , prd _ _ => Gt
+
+ end
+ with vcompare i j (us: vT i) (vs: vT j) :=
+ match us,vs with
+ | vnil, vnil => Eq
+ | vnil, _ => Lt
+ | _, vnil => Gt
+ | vcons _ u us, vcons _ v vs => lex (compare u v) (vcompare us vs)
+ end.
+
+
+
+ (** ** Evaluation from syntax to the abstract domain *)
+
+ Fixpoint eval u: X :=
+ match u with
+ | sum i l => let o := Bin.value (e_bin i) in
+ fold_map (fun un => let '(u,n):=un in @copy _ o n (eval u)) o l
+ | prd i l => fold_map eval (Bin.value (e_bin i)) l
+ | sym i v => eval_aux v (Sym.value (e_sym i))
+ | unit i => e_unit i
+ end
+ with eval_aux i (v: vT i): Sym.type_of i -> X :=
+ match v with
+ | vnil => fun f => f
+ | vcons _ u v => fun f => eval_aux v (f (eval u))
+ end.
+
+ (** we need to show that compare reflects equality (this is because
+ we work with msets rather than lists with arities) *)
+ Lemma tcompare_weak_spec: forall (u v : T), compare_weak_spec u v (compare u v)
+ with vcompare_reflect_eqdep: forall i us j vs (H: i=j), vcompare us vs = Eq -> cast vT H us = vs.
+ Proof.
+ induction u.
+ destruct v; simpl; try constructor.
+ case (pos_compare_weak_spec p p0); intros; try constructor.
+ case (mset_compare_weak_spec compare tcompare_weak_spec m m0); intros; try constructor.
+ destruct v; simpl; try constructor.
+ case (pos_compare_weak_spec p p0); intros; try constructor.
+ case (list_compare_weak_spec compare tcompare_weak_spec n n0); intros; try constructor.
+ destruct v0; simpl; try constructor.
+ case_eq (idx_compare i i0); intro Hi; try constructor.
+ apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. (* the [symmetry] is required ! *)
+ case_eq (vcompare v v0); intro Hv; try constructor.
+ rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor.
+ destruct v; simpl; try constructor.
+ case_eq (idx_compare p p0); intro Hi; try constructor.
+ apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. constructor.
+
+ induction us; destruct vs; simpl; intros H Huv; try discriminate.
+ apply cast_eq, eq_nat_dec.
+ injection H; intro Hn.
+ revert Huv; case (tcompare_weak_spec t t0); intros; try discriminate.
+ symmetry in Hn. subst. (* symmetry required *)
+ rewrite <- (IHus _ _ eq_refl Huv).
+ apply cast_eq, eq_nat_dec.
+ Qed.
+
+ Instance eval_aux_compat i (l: vT i): Proper (@Sym.rel_of X R i ==> R) (eval_aux l).
+ Proof.
+ induction l; simpl; repeat intro.
+ assumption.
+ apply IHl, H. reflexivity.
+ Qed.
+
+
+ (* is [i] a unit for [j] ? *)
+ Definition is_unit_of j i :=
+ List.existsb (fun p => eq_idx_bool j (uf_idx p)) (u_desc (e_unit i)).
+
+ (* is [i] commutative ? *)
+ Definition is_commutative i :=
+ match Bin.comm (e_bin i) with Some _ => true | None => false end.
+
+
+ (** ** Normalisation *)
+
+ Inductive discr {A} : Type :=
+ | Is_op : A -> discr
+ | Is_unit : idx -> discr
+ | Is_nothing : discr .
+
+ (* This is called sum in the std lib *)
+ Inductive m {A} {B} :=
+ | left : A -> m
+ | right : B -> m.
+
+ Definition comp A B (merge : B -> B -> B) (l : B) (l' : @m A B) : @m A B :=
+ match l' with
+ | left _ => right l
+ | right l' => right (merge l l')
+ end.
+
+ (** auxiliary functions, to clean up sums *)
+
+ Section sums.
+ Variable i : idx.
+ Variable is_unit : idx -> bool.
+
+ Definition sum' (u: mset T): T :=
+ match u with
+ | nil (u,xH) => u
+ | _ => sum i u
+ end.
+
+ Definition is_sum (u: T) : @discr (mset T) :=
+ match u with
+ | sum j l => if eq_idx_bool j i then Is_op l else Is_nothing
+ | unit j => if is_unit j then Is_unit j else Is_nothing
+ | u => Is_nothing
+ end.
+
+ Definition copy_mset n (l: mset T): mset T :=
+ match n with
+ | xH => l
+ | _ => nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l
+ end.
+
+ Definition return_sum u n :=
+ match is_sum u with
+ | Is_nothing => right (nil (u,n))
+ | Is_op l' => right (copy_mset n l')
+ | Is_unit j => left j
+ end.
+
+ Definition add_to_sum u n (l : @m idx (mset T)) :=
+ match is_sum u with
+ | Is_nothing => comp (merge_msets compare) (nil (u,n)) l
+ | Is_op l' => comp (merge_msets compare) (copy_mset n l') l
+ | Is_unit _ => l
+ end.
+
+
+ Definition norm_msets_ norm (l: mset T) :=
+ fold_map'
+ (fun un => let '(u,n) := un in return_sum (norm u) n)
+ (fun un l => let '(u,n) := un in add_to_sum (norm u) n l) l.
+
+
+ End sums.
+
+ (** similar functions for products *)
+
+ Section prds.
+
+ Variable i : idx.
+ Variable is_unit : idx -> bool.
+ Definition prd' (u: nelist T): T :=
+ match u with
+ | nil u => u
+ | _ => prd i u
+ end.
+
+ Definition is_prd (u: T) : @discr (nelist T) :=
+ match u with
+ | prd j l => if eq_idx_bool j i then Is_op l else Is_nothing
+ | unit j => if is_unit j then Is_unit j else Is_nothing
+ | u => Is_nothing
+ end.
+
+
+ Definition return_prd u :=
+ match is_prd u with
+ | Is_nothing => right (nil (u))
+ | Is_op l' => right (l')
+ | Is_unit j => left j
+ end.
+
+ Definition add_to_prd u (l : @m idx (nelist T)) :=
+ match is_prd u with
+ | Is_nothing => comp (@appne T) (nil (u)) l
+ | Is_op l' => comp (@appne T) (l') l
+ | Is_unit _ => l
+ end.
+
+ Definition norm_lists_ norm (l : nelist T) :=
+ fold_map'
+ (fun u => return_prd (norm u))
+ (fun u l => add_to_prd (norm u) l) l.
+
+
+ End prds.
+
+
+ Definition run_list x := match x with
+ | left n => nil (unit n)
+ | right l => l
+ end.
+
+ Definition norm_lists norm i l :=
+ let is_unit := is_unit_of i in
+ run_list (norm_lists_ i is_unit norm l).
+
+ Definition run_msets x := match x with
+ | left n => nil (unit n, xH)
+ | right l => l
+ end.
+
+ Definition norm_msets norm i l :=
+ let is_unit := is_unit_of i in
+ run_msets (norm_msets_ i is_unit norm l).
+
+ Fixpoint norm u {struct u}:=
+ match u with
+ | sum i l => if is_commutative i then sum' i (norm_msets norm i l) else u
+ | prd i l => prd' i (norm_lists norm i l)
+ | sym i l => sym i (vnorm l)
+ | unit i => unit i
+ end
+ with vnorm i (l: vT i): vT i :=
+ match l with
+ | vnil => vnil
+ | vcons _ u l => vcons (norm u) (vnorm l)
+ end.
+
+ (** ** Correctness *)
+
+ Lemma is_unit_of_Unit : forall i j : idx,
+ is_unit_of i j = true -> Unit R (Bin.value (e_bin i)) (eval (unit j)).
+ Proof.
+ intros. unfold is_unit_of in H.
+ rewrite existsb_exists in H.
+ destruct H as [x [H H']].
+ revert H' ; case (eq_idx_spec); [intros H' _ ; subst| intros _ H'; discriminate].
+ simpl. destruct x. simpl. auto.
+ Qed.
+
+ Instance Binvalue_Commutative i (H : is_commutative i = true) : Commutative R (@Bin.value _ _ (e_bin i) ).
+ Proof.
+ unfold is_commutative in H.
+ destruct (Bin.comm (e_bin i)); auto.
+ discriminate.
+ Qed.
+
+ Instance Binvalue_Associative i :Associative R (@Bin.value _ _ (e_bin i) ).
+ Proof.
+ destruct ((e_bin i)); auto.
+ Qed.
+
+ Instance Binvalue_Proper i : Proper (R ==> R ==> R) (@Bin.value _ _ (e_bin i) ).
+ Proof.
+ destruct ((e_bin i)); auto.
+ Qed.
+ Hint Resolve Binvalue_Proper Binvalue_Associative Binvalue_Commutative.
+
+ (** auxiliary lemmas about sums *)
+
+ Hint Resolve is_unit_of_Unit.
+ Section sum_correctness.
+ Variable i : idx.
+ Variable is_unit : idx -> bool.
+ Hypothesis is_unit_sum_Unit : forall j, is_unit j = true-> @Unit X R (Bin.value (e_bin i)) (eval (unit j)).
+
+ Inductive is_sum_spec_ind : T -> @discr (mset T) -> Prop :=
+ | is_sum_spec_op : forall j l, j = i -> is_sum_spec_ind (sum j l) (Is_op l)
+ | is_sum_spec_unit : forall j, is_unit j = true -> is_sum_spec_ind (unit j) (Is_unit j)
+ | is_sum_spec_nothing : forall u, is_sum_spec_ind u (Is_nothing).
+
+ Lemma is_sum_spec u : is_sum_spec_ind u (is_sum i is_unit u).
+ Proof.
+ unfold is_sum; case u; intros; try constructor.
+ case_eq (eq_idx_bool p i); intros; subst; try constructor; auto.
+ revert H. case eq_idx_spec; try discriminate. auto.
+ case_eq (is_unit p); intros; try constructor. auto.
+ Qed.
+
+ Instance assoc : @Associative X R (Bin.value (e_bin i)).
+ Proof.
+ destruct (e_bin i). simpl. assumption.
+ Qed.
+ Instance proper : Proper (R ==> R ==> R)(Bin.value (e_bin i)).
+ Proof.
+ destruct (e_bin i). simpl. assumption.
+ Qed.
+ Hypothesis comm : @Commutative X R (Bin.value (e_bin i)).
+
+ Lemma sum'_sum : forall (l: mset T), eval (sum' i l) ==eval (sum i l) .
+ Proof.
+ intros [[a n] | [a n] l]; destruct n; simpl; reflexivity.
+ Qed.
+
+ Lemma eval_sum_nil x:
+ eval (sum i (nil (x,xH))) == (eval x).
+ Proof. rewrite <- sum'_sum. reflexivity. Qed.
+
+ Lemma eval_sum_cons : forall n a (l: mset T),
+ (eval (sum i ((a,n)::l))) == (@Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval a)) (eval (sum i l))).
+ Proof.
+ intros n a [[? ? ]|[b m] l]; simpl; reflexivity.
+ Qed.
+
+ Inductive compat_sum_unit : @m idx (mset T) -> Prop :=
+ | csu_left : forall x, is_unit x = true-> compat_sum_unit (left x)
+ | csu_right : forall m, compat_sum_unit (right m)
+ .
+
+ Lemma compat_sum_unit_return x n : compat_sum_unit (return_sum i is_unit x n).
+ Proof.
+ unfold return_sum.
+ case is_sum_spec; intros; try constructor; auto.
+ Qed.
+
+ Lemma compat_sum_unit_add : forall x n h,
+ compat_sum_unit h
+ ->
+ compat_sum_unit
+ (add_to_sum i (is_unit_of i) x n
+ h).
+ Proof.
+ unfold add_to_sum;intros; inversion H;
+ case_eq (is_sum i (is_unit_of i) x);
+ intros; simpl; try constructor || eauto. apply H0.
+ Qed.
+
+ (* Hint Resolve copy_plus. : this lags because of the inference of the implicit arguments *)
+ Hint Extern 5 (copy (?n + ?m) (eval ?a) == Bin.value (copy ?n (eval ?a)) (copy ?m (eval ?a))) => apply copy_plus.
+ Hint Extern 5 (?x == ?x) => reflexivity.
+ Hint Extern 5 ( Bin.value ?x ?y == Bin.value ?y ?x) => apply Bin.comm.
+
+ Lemma eval_merge_bin : forall (h k: mset T),
+ eval (sum i (merge_msets compare h k)) == @Bin.value _ _ (e_bin i) (eval (sum i h)) (eval (sum i k)).
+ Proof.
+ induction h as [[a n]|[a n] h IHh]; intro k.
+ simpl.
+ induction k as [[b m]|[b m] k IHk]; simpl.
+ destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto. apply copy_plus; auto.
+
+ destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto.
+ rewrite copy_plus,law_assoc; auto.
+ rewrite IHk; clear IHk. rewrite 2 law_assoc. apply proper. apply law_comm. reflexivity.
+
+ induction k as [[b m]|[b m] k IHk]; simpl; simpl in IHh.
+ destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
+ rewrite (law_comm _ (copy m (eval a))), law_assoc, <- copy_plus, Pplus_comm; auto.
+ rewrite <- law_assoc, IHh. reflexivity.
+ rewrite law_comm. reflexivity.
+
+ simpl in IHk.
+ destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
+ rewrite IHh; clear IHh. rewrite 2 law_assoc. rewrite (law_comm _ (copy m (eval a))). rewrite law_assoc, <- copy_plus, Pplus_comm; auto.
+ rewrite IHh; clear IHh. simpl. rewrite law_assoc. reflexivity.
+ rewrite 2 (law_comm (copy m (eval b))). rewrite law_assoc. apply proper; [ | reflexivity].
+ rewrite <- IHk. reflexivity.
+ Qed.
+
+
+ Lemma copy_mset' n (l: mset T): copy_mset n l = nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l.
+ Proof.
+ unfold copy_mset. destruct n; try reflexivity.
+
+ simpl. induction l as [|[a l] IHl]; simpl; try congruence. destruct a. reflexivity.
+ Qed.
+
+
+ Lemma copy_mset_succ n (l: mset T): eval (sum i (copy_mset (Pos.succ n) l)) == @Bin.value _ _ (e_bin i) (eval (sum i l)) (eval (sum i (copy_mset n l))).
+ Proof.
+ rewrite 2 copy_mset'.
+
+ induction l as [[a m]|[a m] l IHl].
+ simpl eval. rewrite <- copy_plus; auto. rewrite Pmult_Sn_m. reflexivity.
+
+ simpl nelist_map. rewrite ! eval_sum_cons. rewrite IHl. clear IHl.
+ rewrite Pmult_Sn_m. rewrite copy_plus; auto. rewrite <- !law_assoc.
+ apply Binvalue_Proper; try reflexivity.
+ rewrite law_comm . rewrite <- !law_assoc. apply proper; try reflexivity.
+ apply law_comm.
+ Qed.
+
+ Lemma copy_mset_copy : forall n (m : mset T), eval (sum i (copy_mset n m)) == @copy _ (@Bin.value _ _ (e_bin i)) n (eval (sum i m)).
+ Proof.
+ induction n using Pind; intros.
+
+ unfold copy_mset. rewrite copy_xH. reflexivity.
+ rewrite copy_mset_succ. rewrite copy_Psucc. rewrite IHn. reflexivity.
+ Qed.
+
+ Instance compat_sum_unit_Unit : forall p, compat_sum_unit (left p) ->
+ @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
+ Proof.
+ intros.
+ inversion H. subst. auto.
+ Qed.
+
+ Lemma copy_n_unit : forall j n, is_unit j = true ->
+ eval (unit j) == @copy _ (Bin.value (e_bin i)) n (eval (unit j)).
+ Proof.
+ intros.
+ induction n using Prect.
+ rewrite copy_xH. reflexivity.
+ rewrite copy_Psucc. rewrite <- IHn. apply is_unit_sum_Unit in H. rewrite law_neutral_left. reflexivity.
+ Qed.
+
+
+ Lemma z0 l r (H : compat_sum_unit r):
+ eval (sum i (run_msets (comp (merge_msets compare) l r))) == eval (sum i ((merge_msets compare) (l) (run_msets r))).
+ Proof.
+ unfold comp. unfold run_msets.
+ case_eq r; intros; subst.
+ rewrite eval_merge_bin; auto.
+ rewrite eval_sum_nil.
+ apply compat_sum_unit_Unit in H. rewrite law_neutral_right. reflexivity.
+ reflexivity.
+ Qed.
+
+ Lemma z1 : forall n x,
+ eval (sum i (run_msets (return_sum i (is_unit) x n )))
+ == @copy _ (@Bin.value _ _ (e_bin i)) n (eval x).
+ Proof.
+ intros. unfold return_sum. unfold run_msets.
+ case (is_sum_spec); intros; subst.
+ rewrite copy_mset_copy.
+ reflexivity.
+
+ rewrite eval_sum_nil. apply copy_n_unit. auto.
+ reflexivity.
+ Qed.
+ Lemma z2 : forall u n x, compat_sum_unit x ->
+ eval (sum i ( run_msets
+ (add_to_sum i (is_unit) u n x)))
+ ==
+ @Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval u)) (eval (sum i (run_msets x))).
+ Proof.
+ intros u n x Hix .
+ unfold add_to_sum.
+ case is_sum_spec; intros; subst.
+
+ rewrite z0 by auto. rewrite eval_merge_bin. rewrite copy_mset_copy. reflexivity.
+ rewrite <- copy_n_unit by assumption.
+ apply is_unit_sum_Unit in H.
+ rewrite law_neutral_left. reflexivity.
+
+
+ rewrite z0 by auto. rewrite eval_merge_bin. reflexivity.
+ Qed.
+ End sum_correctness.
+ Lemma eval_norm_msets i norm
+ (Comm : Commutative R (Bin.value (e_bin i)))
+ (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (sum i (norm_msets norm i h)) == eval (sum i h).
+ Proof.
+ unfold norm_msets.
+ assert (H :
+ forall h : mset T,
+ eval (sum i (run_msets (norm_msets_ i (is_unit_of i) norm h))) == eval (sum i h) /\ compat_sum_unit (is_unit_of i) (norm_msets_ i (is_unit_of i) norm h)).
+
+ induction h as [[a n] | [a n] h [IHh IHh']]; simpl norm_msets_; split.
+ rewrite z1 by auto. rewrite Hnorm . reflexivity. auto.
+ apply compat_sum_unit_return.
+
+ rewrite z2 by auto. rewrite IHh.
+ rewrite eval_sum_cons. rewrite Hnorm. reflexivity. apply compat_sum_unit_add, IHh'.
+
+ apply H.
+ Defined.
+
+ (** auxiliary lemmas about products *)
+
+ Section prd_correctness.
+ Variable i : idx.
+ Variable is_unit : idx -> bool.
+ Hypothesis is_unit_prd_Unit : forall j, is_unit j = true-> @Unit X R (Bin.value (e_bin i)) (eval (unit j)).
+
+ Inductive is_prd_spec_ind : T -> @discr (nelist T) -> Prop :=
+ | is_prd_spec_op :
+ forall j l, j = i -> is_prd_spec_ind (prd j l) (Is_op l)
+ | is_prd_spec_unit :
+ forall j, is_unit j = true -> is_prd_spec_ind (unit j) (Is_unit j)
+ | is_prd_spec_nothing :
+ forall u, is_prd_spec_ind u (Is_nothing).
+
+ Lemma is_prd_spec u : is_prd_spec_ind u (is_prd i is_unit u).
+ Proof.
+ unfold is_prd; case u; intros; try constructor.
+ case (eq_idx_spec); intros; subst; try constructor; auto.
+ case_eq (is_unit p); intros; try constructor; auto.
+ Qed.
+
+ Lemma prd'_prd : forall (l: nelist T), eval (prd' i l) == eval (prd i l).
+ Proof.
+ intros [?|? [|? ?]]; simpl; reflexivity.
+ Qed.
+
+
+ Lemma eval_prd_nil x: eval (prd i (nil x)) == eval x.
+ Proof.
+ rewrite <- prd'_prd. simpl. reflexivity.
+ Qed.
+ Lemma eval_prd_cons a : forall (l: nelist T), eval (prd i (a::l)) == @Bin.value _ _ (e_bin i) (eval a) (eval (prd i l)).
+ Proof.
+ intros [|b l]; simpl; reflexivity.
+ Qed.
+ Lemma eval_prd_app : forall (h k: nelist T), eval (prd i (h++k)) == @Bin.value _ _ (e_bin i) (eval (prd i h)) (eval (prd i k)).
+ Proof.
+ induction h; intro k. simpl; try reflexivity.
+ simpl appne. rewrite 2 eval_prd_cons, IHh, law_assoc. reflexivity.
+ Qed.
+
+ Inductive compat_prd_unit : @m idx (nelist T) -> Prop :=
+ | cpu_left : forall x, is_unit x = true -> compat_prd_unit (left x)
+ | cpu_right : forall m, compat_prd_unit (right m)
+ .
+
+ Lemma compat_prd_unit_return x: compat_prd_unit (return_prd i is_unit x).
+ Proof.
+ unfold return_prd.
+ case (is_prd_spec); intros; try constructor; auto.
+ Qed.
+
+ Lemma compat_prd_unit_add : forall x h,
+ compat_prd_unit h
+ ->
+ compat_prd_unit
+ (add_to_prd i is_unit x
+ h).
+ Proof.
+ intros.
+ unfold add_to_prd.
+ unfold comp.
+ case (is_prd_spec); intros; try constructor; auto.
+ unfold comp; case h; try constructor.
+ unfold comp; case h; try constructor.
+ Qed.
+
+
+ Instance compat_prd_Unit : forall p, compat_prd_unit (left p) ->
+ @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
+ Proof.
+ intros.
+ inversion H; subst. apply is_unit_prd_Unit. assumption.
+ Qed.
+
+ Lemma z0' : forall l (r: @m idx (nelist T)), compat_prd_unit r ->
+ eval (prd i (run_list (comp (@appne T) l r))) == eval (prd i ((appne (l) (run_list r)))).
+ Proof.
+ intros.
+ unfold comp. unfold run_list. case_eq r; intros; auto; subst.
+ rewrite eval_prd_app.
+ rewrite eval_prd_nil.
+ apply compat_prd_Unit in H. rewrite law_neutral_right. reflexivity.
+ reflexivity.
+ Qed.
+
+ Lemma z1' a : eval (prd i (run_list (return_prd i is_unit a))) == eval (prd i (nil a)).
+ Proof.
+ intros. unfold return_prd. unfold run_list.
+ case (is_prd_spec); intros; subst; reflexivity.
+ Qed.
+ Lemma z2' : forall u x, compat_prd_unit x ->
+ eval (prd i ( run_list
+ (add_to_prd i is_unit u x))) == @Bin.value _ _ (e_bin i) (eval u) (eval (prd i (run_list x))).
+ Proof.
+ intros u x Hix.
+ unfold add_to_prd.
+ case (is_prd_spec); intros; subst.
+ rewrite z0' by auto. rewrite eval_prd_app. reflexivity.
+ apply is_unit_prd_Unit in H. rewrite law_neutral_left. reflexivity.
+ rewrite z0' by auto. rewrite eval_prd_app. reflexivity.
+ Qed.
+
+ End prd_correctness.
+
+
+
+
+ Lemma eval_norm_lists i (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (prd i (norm_lists norm i h)) == eval (prd i h).
+ Proof.
+ unfold norm_lists.
+ assert (H : forall h : nelist T,
+ eval (prd i (run_list (norm_lists_ i (is_unit_of i) norm h))) ==
+ eval (prd i h)
+ /\ compat_prd_unit (is_unit_of i) (norm_lists_ i (is_unit_of i) norm h)).
+
+
+ induction h as [a | a h [IHh IHh']]; simpl norm_lists_; split.
+ rewrite z1'. simpl. apply Hnorm.
+
+ apply compat_prd_unit_return.
+
+ rewrite z2'. rewrite IHh. rewrite eval_prd_cons. rewrite Hnorm. reflexivity. apply is_unit_of_Unit.
+ auto.
+
+ apply compat_prd_unit_add. auto.
+ apply H.
+ Defined.
+
+ (** correctness of the normalisation function *)
+
+ Theorem eval_norm: forall u, eval (norm u) == eval u
+ with eval_norm_aux: forall i (l: vT i) (f: Sym.type_of i),
+ Proper (@Sym.rel_of X R i) f -> eval_aux (vnorm l) f == eval_aux l f.
+ Proof.
+ induction u as [ p m | p l | ? | ?]; simpl norm.
+ case_eq (is_commutative p); intros.
+ rewrite sum'_sum.
+ apply eval_norm_msets; auto.
+ reflexivity.
+
+ rewrite prd'_prd.
+ apply eval_norm_lists; auto.
+
+ apply eval_norm_aux, Sym.morph.
+
+ reflexivity.
+
+ induction l; simpl; intros f Hf. reflexivity.
+ rewrite eval_norm. apply IHl, Hf; reflexivity.
+ Qed.
+
+
+ (** corollaries, for goal normalisation or decision *)
+
+ Lemma normalise : forall (u v: T), eval (norm u) == eval (norm v) -> eval u == eval v.
+ Proof. intros u v. rewrite 2 eval_norm. trivial. Qed.
+
+ Lemma compare_reflect_eq: forall u v, compare u v = Eq -> eval u == eval v.
+ Proof. intros u v. case (tcompare_weak_spec u v); intros; try congruence. reflexivity. Qed.
+
+ Lemma decide: forall (u v: T), compare (norm u) (norm v) = Eq -> eval u == eval v.
+ Proof. intros u v H. apply normalise. apply compare_reflect_eq. apply H. Qed.
+
+ Lemma lift_normalise {S} {H : AAC_lift S R}:
+ forall (u v: T), (let x := norm u in let y := norm v in
+ S (eval x) (eval y)) -> S (eval u) (eval v).
+ Proof. destruct H. intros u v; simpl; rewrite 2 eval_norm. trivial. Qed.
+
+End s.
+End Internal.
+
+Local Ltac internal_normalize :=
+ let x := fresh in let y := fresh in
+ intro x; intro y; vm_compute in x; vm_compute in y; unfold x; unfold y;
+ compute [Internal.eval Utils.fold_map Internal.copy Prect]; simpl.
+
+
+(** * Lemmas for performing transitivity steps
+ given an instance of AAC_lift *)
+
+Section t.
+ Context `{AAC_lift}.
+
+ Lemma lift_transitivity_left (y x z : X): E x y -> R y z -> R x z.
+ Proof. destruct H as [Hequiv Hproper]; intros G;rewrite G. trivial. Qed.
+
+ Lemma lift_transitivity_right (y x z : X): E y z -> R x y -> R x z.
+ Proof. destruct H as [Hequiv Hproper]; intros G. rewrite G. trivial. Qed.
+
+ Lemma lift_reflexivity {HR :Reflexive R}: forall x y, E x y -> R x y.
+ Proof. destruct H. intros ? ? G. rewrite G. reflexivity. Qed.
+
+End t.
+
+Declare ML Module "aac_plugin".