summaryrefslogtreecommitdiff
path: root/matcher.ml
diff options
context:
space:
mode:
Diffstat (limited to 'matcher.ml')
-rw-r--r--matcher.ml980
1 files changed, 0 insertions, 980 deletions
diff --git a/matcher.ml b/matcher.ml
deleted file mode 100644
index 176b660..0000000
--- a/matcher.ml
+++ /dev/null
@@ -1,980 +0,0 @@
-(***************************************************************************)
-(* This is part of aac_tactics, it is distributed under the terms of the *)
-(* GNU Lesser General Public License version 3 *)
-(* (see file LICENSE for more details) *)
-(* *)
-(* Copyright 2009-2010: Thomas Braibant, Damien Pous. *)
-(***************************************************************************)
-
-(** This module defines our matching functions, modulo associativity
- and commutativity (AAC).
-
- The basic idea is to find a substitution [env] such that the
- pattern [p] instantiated by [env] is equal to [t] modulo AAC.
-
- We proceed by structural decomposition of the pattern, and try all
- possible non-deterministic split of the subject when needed. The
- function {!matcher} is limited to top-level matching, that is, the
- subject must make a perfect match against the pattern ([x+x] do
- not match [a+a+b] ). We use a search monad {!Search} to perform
- non-deterministic splits in an almost transparent way. We also
- provide a function {!subterm} for finding a match that is a
- subterm modulo AAC of the subject. Therefore, we are able to solve
- the aforementioned case [x+x] against [a+b+a].
-
- This file is structured as follows. First, we define the search
- monad. Then,we define the two representations of terms (one
- representing the AST, and one in normal form ), and environments
- from variables to terms. Then, we use these parts to solve
- matching problem. Finally, we wrap this function {!matcher} into
- {!subterm}
-*)
-
-
-let debug = false
-let time = false
-
-
-let time f x fmt =
- if time then
- let t = Sys.time() in
- let r = f x in
- Printf.printf fmt (Sys.time () -. t);
- r
- else f x
-
-
-
-type symbol = int
-type var = int
-
-
-(****************)
-(* Search Monad *)
-(****************)
-
-
-(** The {!Search} module contains a search monad that allows to
- express, in a legible maner, programs that solves combinatorial
- problems
-
- @see <http://spivey.oriel.ox.ac.uk/mike/search-jfp.pdf> the
- inspiration of this module
-*)
-module Search : sig
- (** A data type that represent a collection of ['a] *)
- type 'a m
- (** bind and return *)
- val ( >> ) : 'a m -> ('a -> 'b m) -> 'b m
- val return : 'a -> 'a m
- (** non-deterministic choice *)
- val ( >>| ) : 'a m -> 'a m -> 'a m
- (** failure *)
- val fail : unit -> 'a m
- (** folding through the collection *)
- val fold : ('a -> 'b -> 'b) -> 'a m -> 'b -> 'b
- (** derived facilities *)
- val sprint : ('a -> string) -> 'a m -> string
- val count : 'a m -> int
- val choose : 'a m -> 'a option
- val to_list : 'a m -> 'a list
- val sort : ('a -> 'a -> int) -> 'a m -> 'a m
- val is_empty: 'a m -> bool
-end
-= struct
-
- type 'a m = | F of 'a
- | N of 'a m list
-
- let fold (f : 'a -> 'b -> 'b) (m : 'a m) (acc : 'b) =
- let rec aux acc = function
- F x -> f x acc
- | N l ->
- (List.fold_left (fun acc x ->
- match x with
- | (N []) -> acc
- | x -> aux acc x
- ) acc l)
- in
- aux acc m
-
-
-
- let rec (>>) : 'a m -> ('a -> 'b m) -> 'b m =
- fun m f ->
- match m with
- | F x -> f x
- | N l ->
- N (List.fold_left (fun acc x ->
- match x with
- | (N []) -> acc
- | x -> (x >> f)::acc
- ) [] l)
-
- let (>>|) (m : 'a m) (n :'a m) : 'a m = match (m,n) with
- | N [],_ -> n
- | _,N [] -> m
- | F x, N l -> N (F x::l)
- | N l, F x -> N (F x::l)
- | x,y -> N [x;y]
-
- let return : 'a -> 'a m = fun x -> F x
- let fail : unit -> 'a m = fun () -> N []
-
- let sprint f m =
- fold (fun x acc -> Printf.sprintf "%s\n%s" acc (f x)) m ""
- let rec count = function
- | F _ -> 1
- | N l -> List.fold_left (fun acc x -> acc+count x) 0 l
-
- let opt_comb f x y = match x with None -> f y | _ -> x
-
- let rec choose = function
- | F x -> Some x
- | N l -> List.fold_left (fun acc x ->
- opt_comb choose acc x
- ) None l
-
- let is_empty = fun x -> choose x = None
-
- let to_list m = (fold (fun x acc -> x::acc) m [])
-
- let sort f m =
- N (List.map (fun x -> F x) (List.sort f (to_list m)))
-end
-
-open Search
-
-
-type 'a mset = ('a * int) list
-let linear p =
- let rec ncons t l = function
- | 0 -> l
- | n -> t::ncons t l (n-1)
- in
- let rec aux = function
- [ ] -> []
- | (t,n)::q -> let q = aux q in
- ncons t q n
- in aux p
-
-
-
-(** The module {!Terms} defines two different types for expressions.
-
- - a public type {!Terms.t} that represent abstract syntax trees of
- expressions with binary associative (and commutative) operators
-
- - a private type {!Terms.nf_term} that represent an equivalence
- class for terms that are equal modulo AAC. The constructions
- functions on this type ensure the property that the term is in
- normal form (that is, no sum can appear as a subterm of the same
- sum, no trailing units, etc...).
-
-*)
-
-module Terms : sig
-
- (** {1 Abstract syntax tree of terms}
-
- Terms represented using this datatype are representation of the
- AST of an expression. *)
-
- type t =
- Dot of (symbol * t * t)
- | One of symbol
- | Plus of (symbol * t * t)
- | Zero of symbol
- | Sym of (symbol * t array)
- | Var of var
-
- val equal_aac : t -> t -> bool
- val size: t -> int
- (** {1 Terms in normal form}
-
- A term in normal form is the canonical representative of the
- equivalence class of all the terms that are equal modulo
- Associativity and Commutativity. Outside the {!Matcher} module,
- one does not need to access the actual representation of this
- type. *)
-
- type nf_term = private
- | TAC of symbol * nf_term mset
- | TA of symbol * nf_term list
- | TSym of symbol *nf_term list
- | TVar of var
-
-
- (** {2 Constructors: we ensure that the terms are always
- normalised} *)
- val mk_TAC : symbol -> nf_term mset -> nf_term
- val mk_TA : symbol -> nf_term list -> nf_term
- val mk_TSym : symbol -> nf_term list -> nf_term
- val mk_TVar : var -> nf_term
-
- (** {2 Comparisons} *)
-
- val nf_term_compare : nf_term -> nf_term -> int
- val nf_equal : nf_term -> nf_term -> bool
-
- (** {2 Printing function} *)
- val sprint_nf_term : nf_term -> string
-
- (** {2 Conversion functions} *)
- val term_of_t : t -> nf_term
- val t_of_term : nf_term -> t
-end
- = struct
-
- type t =
- Dot of (symbol * t * t)
- | One of symbol
- | Plus of (symbol * t * t)
- | Zero of symbol
- | Sym of (symbol * t array)
- | Var of var
-
- let rec size = function
- | Dot (_,x,y)
- | Plus (_,x,y) -> size x+ size y + 1
- | Sym (_,v)-> Array.fold_left (fun acc x -> size x + acc) 1 v
- | _ -> 1
-
-
- type nf_term =
- | TAC of symbol * nf_term mset
- | TA of symbol * nf_term list
- | TSym of symbol *nf_term list
- | TVar of var
-
-
-
- (** {2 Comparison} *)
-
- let nf_term_compare = Pervasives.compare
- let nf_equal a b = a = b
-
- (** {2 Constructors: we ensure that the terms are always
- normalised} *)
-
- (** {3 Pre constructors : These constructors ensure that sums and
- products are not degenerated (no trailing units)} *)
- let mk_TAC' s l = match l with
- | [t,0] -> TAC (s,[])
- | [t,1] -> t
- | _ -> TAC (s,l)
- let mk_TA' s l = match l with [t] -> t
- | _ -> TA (s,l)
-
-
-
- (** [merge_ac comp l1 l2] merges two lists of terms with coefficients
- into one. Terms that are equal modulo the comparison function
- [comp] will see their arities added. *)
- let merge_ac (compare : 'a -> 'a -> int) (l : 'a mset) (l' : 'a mset) : 'a mset =
- let rec aux l l'=
- match l,l' with
- | [], _ -> l'
- | _, [] -> l
- | (t,tar)::q, (t',tar')::q' ->
- begin match compare t t' with
- | 0 -> ( t,tar+tar'):: aux q q'
- | -1 -> (t, tar):: aux q l'
- | _ -> (t', tar'):: aux l q'
- end
- in aux l l'
-
- (** [merge_map f l] uses the combinator [f] to combine the head of the
- list [l] with the merge_maped tail of [l] *)
- let rec merge_map (f : 'a -> 'b list -> 'b list) (l : 'a list) : 'b list =
- match l with
- | [] -> []
- | t::q -> f t (merge_map f q)
-
-
- (** This function has to deal with the arities *)
- let rec merge l l' =
- merge_ac nf_term_compare l l'
-
- let extract_A s t =
- match t with
- | TA (s',l) when s' = s -> l
- | _ -> [t]
-
- let extract_AC s (t,ar) : nf_term mset =
- match t with
- | TAC (s',l) when s' = s -> List.map (fun (x,y) -> (x,y*ar)) l
- | _ -> [t,ar]
-
-
- (** {3 Constructors of {!nf_term}}*)
-
- let mk_TAC s (l : (nf_term *int) list) =
- mk_TAC' s
- (merge_map (fun u l -> merge (extract_AC s u) l) l)
- let mk_TA s l =
- mk_TA' s
- (merge_map (fun u l -> (extract_A s u) @ l) l)
- let mk_TSym s l = TSym (s,l)
- let mk_TVar v = TVar v
-
-
- (** {2 Printing function} *)
- let print_binary_list single unit binary l =
- let rec aux l =
- match l with
- [] -> unit
- | [t] -> single t
- | t::q ->
- let r = aux q in
- Printf.sprintf "%s" (binary (single t) r)
- in
- aux l
-
- let sprint_ac single (l : 'a mset) =
- (print_binary_list
- (fun (x,t) ->
- if t = 1
- then single x
- else Printf.sprintf "%i*%s" t (single x)
- )
- "0"
- (fun x y -> x ^ " , " ^ y)
- l
- )
-
- let print_symbol single s l =
- match l with
- [] -> Printf.sprintf "%i" s
- | _ ->
- Printf.sprintf "%i(%s)"
- s
- (print_binary_list single "" (fun x y -> x ^ "," ^ y) l)
-
-
- let print_ac_list single s l =
- Printf.sprintf "[%i:AC]{%s}"
- s
- (print_binary_list
- single
- "0"
- (fun x y -> x ^ " , " ^ y)
- l
- )
-
-
- let print_a single s l =
- Printf.sprintf "[%i:A]{%s}"
- s
- (print_binary_list single "1" (fun x y -> x ^ " , " ^ y) l)
-
- let rec sprint_nf_term = function
- | TSym (s,l) -> print_symbol sprint_nf_term s l
- | TAC (s,l) ->
- Printf.sprintf "[%i:AC]{%s}" s
- (sprint_ac
- sprint_nf_term
- l)
- | TA (s,l) -> print_a sprint_nf_term s l
- | TVar v -> Printf.sprintf "x%i" v
-
-
-
- (** {2 Conversion functions} *)
-
- (* rebuilds a tree out of a list *)
- let rec binary_of_list f comb null l =
- let l = List.rev l in
- let rec aux = function
- | [] -> null
- | [t] -> f t
- | t::q -> comb (aux q) (f t)
- in
- aux l
-
- let rec term_of_t : t -> nf_term = function
- | Dot (s,l,r) ->
- let l = term_of_t l in
- let r = term_of_t r in
- mk_TA s [l;r]
- | Plus (s,l,r) ->
- let l = term_of_t l in
- let r = term_of_t r in
- mk_TAC ( s) [l,1;r,1]
- | One x ->
- mk_TA ( x) []
- | Zero x ->
- mk_TAC ( x) []
- | Sym (s,t) ->
- let t = Array.to_list t in
- let t = List.map term_of_t t in
- mk_TSym ( s) t
- | Var i ->
- mk_TVar ( i)
-
- let rec t_of_term : nf_term -> t = function
- | TAC (s,l) ->
- (binary_of_list
- t_of_term
- (fun l r -> Plus ( s,l,r))
- (Zero ( s))
- (linear l)
- )
- | TA (s,l) ->
- (binary_of_list
- t_of_term
- (fun l r -> Dot ( s,l,r))
- (One ( s))
- l
- )
- | TSym (s,l) ->
- let v = Array.of_list l in
- let v = Array.map (t_of_term) v in
- Sym ( s,v)
- | TVar x -> Var x
-
-
- let equal_aac x y =
- nf_equal (term_of_t x) (term_of_t y)
- end
-
-(** Terms environments defined as association lists from variables to
- terms in normal form {! Terms.nf_term} *)
-module Subst : sig
- type t
-
- val find : t -> var -> Terms.nf_term option
- val add : t -> var -> Terms.nf_term -> t
- val empty : t
- val instantiate : t -> Terms.t -> Terms.t
- val sprint : t -> string
- val to_list : t -> (var*Terms.t) list
-end
- =
-struct
- open Terms
-
- (** Terms environments, with nf_terms, to avoid costly conversions
- of {!Terms.nf_terms} to {!Terms.t}, that will be mostly discarded*)
- type t = (var * nf_term) list
-
- let find : t -> var -> nf_term option = fun t x ->
- try Some (List.assoc x t) with | _ -> None
- let add t x v = (x,v) :: t
- let empty = []
-
- let sprint (l : t) =
- match l with
- | [] -> Printf.sprintf "Empty environment\n"
- | _ ->
-
- let s = List.fold_left
- (fun acc (x,y) ->
- Printf.sprintf "%sX%i -> %s\n"
- acc
- x
- (sprint_nf_term y)
- )
- ""
- (List.rev l) in
- Printf.sprintf "%s\n%!" s
-
-
-
- (** [instantiate] is an homomorphism except for the variables*)
- let instantiate (t: t) (x:Terms.t) : Terms.t =
- let rec aux = function
- | One _ as x -> x
- | Zero _ as x -> x
- | Sym (s,t) -> Sym (s,Array.map aux t)
- | Plus (s,l,r) -> Plus (s, aux l, aux r)
- | Dot (s,l,r) -> Dot (s, aux l, aux r)
- | Var i ->
- begin match find t i with
- | None -> Util.error "aac_tactics: instantiate failure"
- | Some x -> t_of_term x
- end
- in aux x
-
- let to_list t = List.map (fun (x,y) -> x,Terms.t_of_term y) t
-end
-
-(******************)
-(* MATCHING UTILS *)
-(******************)
-
-open Terms
-
-(** First, we need to be able to perform non-deterministic choice of
- term splitting to satisfy a pattern. Indeed, we want to show that:
- (x+a*b)*c <= a*b*c
-*)
-let a_nondet_split t : ('a list * 'a list) m =
- let rec aux l l' =
- match l' with
- | [] ->
- return ( l,[])
- | t::q ->
- return ( l,l' )
- >>| aux (l @ [t]) q
- in
- aux [] t
-
-(** Same as the previous [a_nondet_split], but split the list in 3
- parts *)
-let a_nondet_middle t : ('a list * 'a list * 'a list) m =
- a_nondet_split t >>
- (fun left, right ->
- a_nondet_split left >>
- (fun left, middle -> return (left, middle, right))
- )
-
-(** Non deterministic splits of ac lists *)
-let dispatch f n =
- let rec aux k =
- if k = 0 then return (f n 0)
- else return (f (n-k) k) >>| aux (k-1)
- in
- aux (n )
-
-let add_with_arith x ar l =
- if ar = 0 then l else (x,ar) ::l
-
-let ac_nondet_split (l : 'a mset) : ('a mset * 'a mset) m =
- let rec aux = function
- | [] -> return ([],[])
- | (t,tar)::q ->
- aux q
- >>
- (fun (left,right) ->
- dispatch (fun arl arr ->
- add_with_arith t arl left,
- add_with_arith t arr right
- )
- tar
- )
- in
- aux l
-
-(** Try to affect the variable [x] to each left factor of [t]*)
-let var_a_nondet_split ?(strict=false) env current x t =
- a_nondet_split t
- >>
- (fun (l,r) ->
- if strict && l=[] then fail() else
- return ((Subst.add env x (mk_TA current l)), r)
- )
-
-(** Try to affect variable [x] to _each_ subset of t. *)
-let var_ac_nondet_split ?(strict=false) (s : symbol) env (x : var) (t : nf_term mset) : (Subst.t * (nf_term mset)) m =
- ac_nondet_split t
- >>
- (fun (subset,compl) ->
- if strict && subset=[] then fail() else
- return ((Subst.add env x (mk_TAC s subset)), compl)
- )
-
-(** See the term t as a given AC symbol. Unwrap the first constructor
- if necessary *)
-let get_AC (s : symbol) (t : nf_term) : (nf_term *int) list =
- match t with
- | TAC (s',l) when s' = s -> l
- | _ -> [t,1]
-
-(** See the term t as a given A symbol. Unwrap the first constructor
- if necessary *)
-let get_A (s : symbol) (t : nf_term) : nf_term list =
- match t with
- | TA (s',l) when s' = s -> l
- | _ -> [t]
-
-(** See the term [t] as an symbol [s]. Fail if it is not such
- symbol. *)
-let get_Sym s t =
- match t with
- | TSym (s',l) when s' = s -> return l
- | _ -> fail ()
-
-(*************)
-(* A Removal *)
-(*************)
-
-(** We remove the left factor v in a term list. This function runs
- linearly with respect to the size of the first pattern symbol *)
-
-let left_factor current (v : nf_term) (t : nf_term list) =
- let rec aux a b =
- match a,b with
- | t::q , t' :: q' when nf_equal t t' -> aux q q'
- | [], q -> return q
- | _, _ -> fail ()
- in
- match v with
- | TA (s,l) when s = current -> aux l t
- | _ ->
- begin match t with
- | [] -> fail ()
- | t::q ->
- if nf_equal v t
- then return q
- else fail ()
- end
-
-
-(**************)
-(* AC Removal *)
-(**************)
-
-(** [fold_acc] gather all elements of a list that satisfies a
- predicate, and combine them with the residual of the list. That
- is, each element of the residual contains exactly one element less
- than the original term.
-
- TODO : This function not as efficient as it could be
-*)
-
-let pick_sym (s : symbol) (t : nf_term mset ) =
- let rec aux front back =
- match back with
- | [] -> fail ()
- | (t,tar)::q ->
- begin match t with
- | TSym (s',v') when s = s' ->
- let back =
- if tar > 1
- then (t,tar -1) ::q
- else q
- in
- return (v' , List.rev_append front back )
- >>| aux ((t,tar)::front) q
- | _ -> aux ((t,tar)::front) q
- end
- in
- aux [] t
-
-
-
-(** We have to check if we are trying to remove a unit from a term*)
-let is_unit_AC s t =
- nf_equal t (mk_TAC s [])
-
-let is_same_AC s t : nf_term mset option=
- match t with
- TAC (s',l) when s = s' -> Some l
- | _ -> None
-
-(** We want to remove the term [v] from the term list [t] under an AC
- symbol *)
-let single_AC_factor (s : symbol) (v : nf_term) v_ar (t : nf_term mset) : (nf_term mset) m =
- let rec aux front back =
- match back with
- | [] -> fail ()
- | (t,tar)::q ->
- begin
- if nf_equal v t
- then
- match () with
- | _ when tar < v_ar -> fail ()
- | _ when tar = v_ar -> return (List.rev_append front q)
- | _ -> return (List.rev_append front ((t,tar-v_ar)::q))
- else
- aux ((t,tar) :: front) q
- end
- in
- if is_unit_AC s v
- then
- return t
- else
- aux [] t
-
-let factor_AC (s : symbol) (v: nf_term) (t : nf_term mset) : ( nf_term mset ) m =
- match is_same_AC s v with
- | None -> single_AC_factor s v 1 t
- | Some l ->
- (* We are trying to remove an AC factor *)
- List.fold_left (fun acc (v,v_ar) ->
- acc >> (single_AC_factor s v v_ar)
- )
- (return t)
- l
-
-
-
-(************)
-(* Matching *)
-(************)
-
-
-
-(** {!matching} is the generic matching judgement. Each time a
- non-deterministic split is made, we have to come back to this one.
-
- {!matchingSym} is used to match two applications that have the
- same (free) head-symbol.
-
- {!matchingAC} is used to match two sums (with the subtlety that
- [x+y] matches [f a] which is a function application or [a*b] which
- is a product).
-
- {!matchingA} is used to match two products (with the subtlety that
- [x*y] matches [f a] which is a function application, or [a+b]
- which is a sum).
-
-
-*)
-let matching ?strict =
- let rec matching env (p : nf_term) (t: nf_term) : Subst.t Search.m=
- match p with
- | TAC (s,l) ->
- let l = linear l in
- matchingAC env s l (get_AC s t)
- | TA (s,l) ->
- matchingA env s l (get_A s t)
- | TSym (s,l) ->
- (get_Sym s t)
- >> (fun t -> matchingSym env l t)
- | TVar x ->
- begin match Subst.find env x with
- | None -> return (Subst.add env x t)
- | Some v -> if nf_equal v t then return env else fail ()
- end
-
- and
- matchingAC (env : Subst.t) (current : symbol) (l : nf_term list) (t : (nf_term *int) list) =
- match l with
- | TSym (s,v):: q ->
- pick_sym s t
- >> (fun (v',t') ->
- matchingSym env v v'
- >> (fun env -> matchingAC env current q t'))
-
- | TAC (s,v)::q when s = current ->
- assert false
- | TVar x:: q ->
- begin match Subst.find env x with
- | None ->
- (var_ac_nondet_split ?strict current env x t)
- >> (fun (env,residual) -> matchingAC env current q residual)
- | Some v ->
- (factor_AC current v t)
- >> (fun residual -> matchingAC env current q residual)
- end
- | h :: q ->(* PAC =/= curent or PA *)
- (ac_nondet_split t)
- >>
- (fun (left,right) ->
- matching env h (mk_TAC current left)
- >>
- (
- fun env ->
- matchingAC env current q right
- )
- )
- | [] -> if t = [] then return env else fail ()
- and
- matchingA (env : Subst.t) (current : symbol) (l : nf_term list) (t : nf_term list) =
- match l with
- | TSym (s,v) :: l ->
- begin match t with
- | TSym (s',v') :: r when s = s' ->
- (matchingSym env v v')
- >> (fun env -> matchingA env current l r)
- | _ -> fail ()
- end
- | TA (s,v) :: l when s = current ->
- assert false
- | TVar x :: l ->
- begin match Subst.find env x with
- | None ->
- var_a_nondet_split ?strict env current x t
- >> (fun (env,residual)-> matchingA env current l residual)
- | Some v ->
- (left_factor current v t)
- >> (fun residual -> matchingA env current l residual)
- end
- | h :: l ->
- a_nondet_split t
- >> (fun (t,r) ->
- matching env h (mk_TA current t)
- >> (fun env -> matchingA env current l r)
- )
- | [] -> if t = [] then return env else fail ()
- and
- matchingSym (env : Subst.t) (l : nf_term list) (t : nf_term list) =
- List.fold_left2
- (fun acc p t -> acc >> (fun env -> matching env p t))
- (return env)
- l
- t
-
- in
- matching
-
-
-
-(***********)
-(* Subterm *)
-(***********)
-
-(** [tri_fold f l acc] folds on the list [l] and give to f the
- beginning of the list in reverse order, the considered element, and
- the last part of the list
-
- as an exemple, on the list [1;2;3;4], we get the trace
- f () [] 1 [2; 3; 4]
- f () [1] 2 [3; 4]
- f () [2;1] 3 [ 4]
- f () [3;2;1] 4 []
-
- it is the duty of the user to reverse the front if needed
-*)
-
-let tri_fold f (l : 'a list) (acc : 'b)= match l with
- [] -> acc
- | _ ->
- let _,_,acc = List.fold_left (fun acc (t : 'a) ->
- let l,r,acc = acc in
- let r = List.tl r in
- l,r,f acc l t r
- ) ([], l,acc) l
- in acc
-
-
-(** [subterm] solves a sub-term pattern matching.
-
- This function is more high-level than {!matcher}, thus takes {!t}
- as arguments rather than terms in normal form {!nf_term}.
-
- We use three mutually recursive functions {!subterm},
- {!subterm_AC}, {!subterm_A} to find the matching subterm, making
- non-deterministic choices to split the term into a context and an
- intersting sub-term. Intuitively, the only case in which we have to
- go in depth is when we are left with a sub-term that is atomic.
-
- Indeed, rewriting [H: b = c |- a+b+a = a+a+c], we do not want to
- find recursively the sub-terms of [a+b] and [b+a], since they will
- overlap with the sub-terms of [a+b+a].
-
- We rebuild the context on the fly, leaving the variables in the
- pattern uninstantiated. We do so in order to allow interaction
- with the user, to choose the env.
-
- Strange patterms like x*y*x can be instanciated by nothing, inside
- a product. Therefore, we need to check that all the term is not
- going into the context (hence the tests on the length of the
- lists). With proper support for interaction with the user, we
- should lift these tests. However, at the moment, they serve as
- heuristics to return "interesting" matchings
-
-*)
-
-let return_non_empty raw_p m =
- if Search.is_empty m
- then
- fail ()
- else
- return (raw_p ,m)
-
-let subterm ?strict (raw_p:t) (raw_t:t): (int* t * Subst.t m) m=
- let p = term_of_t raw_p in
- let t = term_of_t raw_t in
- let rec subterm (t:nf_term) : (t * Subst.t m) m=
- match t with
- | TAC (s,l) ->
- (ac_nondet_split l) >>
- (fun (left,right) ->
- (subterm_AC s left) >>
- (fun (p,m) ->
- let p = if right = [] then p else
- Plus (s,p,t_of_term (mk_TAC s right))
- in
- return (p,m)
- )
-
- )
- | TA (s,l) ->
- (a_nondet_middle l)
- >>
- (fun (left, middle, right) ->
- (subterm_A s middle) >>
- (fun (p,m) ->
- let p =
- if right = [] then p else
- Dot (s,p,t_of_term (mk_TA s right))
- in
- let p =
- if left = [] then p else
- Dot (s,t_of_term (mk_TA s left),p)
- in
- return (p,m)
- )
- )
- | TSym (s, l) ->
- let init = return_non_empty raw_p (matching ?strict Subst.empty p t) in
- tri_fold (fun acc l t r ->
- ((subterm t) >>
- (fun (p,m) ->
- let l = List.map t_of_term l in
- let r = List.map t_of_term r in
- let p = Sym (s, Array.of_list (List.rev_append l (p::r))) in
- return (p,m)
- )) >>| acc
- ) l init
- | _ -> assert false
- and subterm_AC s tl =
- match tl with
- [x,1] -> subterm x
- | _ ->
- return_non_empty raw_p (matching ?strict Subst.empty p (mk_TAC s tl))
- and subterm_A s tl =
- match tl with
- [x] -> subterm x
- | _ ->
- return_non_empty raw_p (matching ?strict Subst.empty p (mk_TA s tl))
- in
- (subterm t >> fun (p,m) -> return (Terms.size p,p,m))
-
-(* The functions we export, handlers for the previous ones. Some debug
- information also *)
-let subterm ?strict raw t =
- let sols = time (subterm ?strict raw) t "%fs spent in subterm (including matching)\n" in
- if debug then Printf.printf "%i possible solution(s)\n"
- (Search.fold (fun (_,_,envm) acc -> count envm + acc) sols 0);
- sols
-
-
-let matcher ?strict p t =
- let sols = time
- (fun (p,t) ->
- let p = (Terms.term_of_t p) in
- let t = (Terms.term_of_t t) in
- matching ?strict Subst.empty p t) (p,t)
- "%fs spent in the matcher\n"
- in
- if debug then Printf.printf "%i solutions\n" (count sols);
- sols
-
-(* A very basic way to interact with the envs, to choose a possible
- solution *)
-open Pp
-let pp_env pt : Subst.t -> Pp.std_ppcmds = fun env ->
- List.fold_left (fun acc (v,t) -> str (Printf.sprintf "x%i: " v) ++ pt t ++ str "; " ++ acc) (str "") (Subst.to_list env)
-
-let pp_envm pt : Subst.t Search.m -> Pp.std_ppcmds = fun m ->
- let _,s = Search.fold
- (fun env (n,acc) ->
- n+1, h 0 (str (Printf.sprintf "%i:\t[" n) ++pp_env pt env ++ str "]") ++ fnl () :: acc
- ) m (0,[]) in
- List.fold_left (fun acc s -> s ++ acc) (str "") (s)
-
-let pp_all pt : (int * Terms.t * Subst.t Search.m) Search.m -> Pp.std_ppcmds = fun m ->
- let _,s = Search.fold
- (fun (size,context,envm) (n,acc) ->
- let s = str (Printf.sprintf "subterm %i\t" n) in
- let s = s ++ (str "(context ") ++ pt context ++ (str ")\n") in
- let s = s ++ str (Printf.sprintf "\t%i possible(s) substitutions" (Search.count envm) ) ++ fnl () in
- let s = s ++ pp_envm pt envm in
- n+1, s::acc
- ) m (0,[]) in
- List.fold_left (fun acc s -> s ++ str "\n" ++ acc) (str "") (s)
-