summaryrefslogtreecommitdiff
path: root/matcher.ml
diff options
context:
space:
mode:
Diffstat (limited to 'matcher.ml')
-rw-r--r--matcher.ml1293
1 files changed, 1293 insertions, 0 deletions
diff --git a/matcher.ml b/matcher.ml
new file mode 100644
index 0000000..55a64b7
--- /dev/null
+++ b/matcher.ml
@@ -0,0 +1,1293 @@
+(***************************************************************************)
+(* This is part of aac_tactics, it is distributed under the terms of the *)
+(* GNU Lesser General Public License version 3 *)
+(* (see file LICENSE for more details) *)
+(* *)
+(* Copyright 2009-2010: Thomas Braibant, Damien Pous. *)
+(***************************************************************************)
+
+(** This module defines our matching functions, modulo associativity
+ and commutativity (AAC).
+
+ The basic idea is to find a substitution [env] such that the
+ pattern [p] instantiated by [env] is equal to [t] modulo AAC.
+
+ We proceed by structural decomposition of the pattern, and try all
+ possible non-deterministic split of the subject when needed. The
+ function {!matcher} is limited to top-level matching, that is, the
+ subject must make a perfect match against the pattern ([x+x] do
+ not match [a+a+b] ). We use a search monad {!Search} to perform
+ non-deterministic splits in an almost transparent way. We also
+ provide a function {!subterm} for finding a match that is a
+ subterm modulo AAC of the subject. Therefore, we are able to solve
+ the aforementioned case [x+x] against [a+b+a].
+
+ This file is structured as follows. First, we define the search
+ monad. Then,we define the two representations of terms (one
+ representing the AST, and one in normal form ), and environments
+ from variables to terms. Then, we use these parts to solve
+ matching problem. Finally, we wrap this function {!matcher} into
+ {!subterm}
+*)
+
+
+module Control =
+struct
+ let debug = false
+ let time = false
+ let printing = false
+end
+
+module Debug = Helper.Debug (Control)
+open Debug
+
+module Search = Search_monad (* a handle *)
+
+type symbol = int
+type var = int
+type units = (symbol * symbol) list (* from AC/A symbols to the unit *)
+type ext_units =
+ {
+ unit_for : units;
+ is_ac : (symbol * bool) list
+ }
+
+let print_units units=
+ List.iter (fun (op,unit) -> Printf.printf "%i %i\t" op unit) units;
+ Printf.printf "\n%!"
+
+exception NoUnit
+
+let get_unit units op =
+ try List.assoc op units
+ with
+ | Not_found -> raise NoUnit
+
+let is_unit units op unit = List.mem (op,unit) units
+
+
+open Search
+
+type 'a mset = ('a * int) list
+let linear p =
+ let rec ncons t l = function
+ | 0 -> l
+ | n -> t::ncons t l (n-1)
+ in
+ let rec aux = function
+ [ ] -> []
+ | (t,n)::q -> let q = aux q in
+ ncons t q n
+ in aux p
+
+
+
+(** The module {!Terms} defines two different types for expressions.
+
+ - a public type {!Terms.t} that represent abstract syntax trees of
+ expressions with binary associative (and commutative) operators
+
+ - a private type {!Terms.nf_term} that represent an equivalence
+ class for terms that are equal modulo AAC. The constructions
+ functions on this type ensure the property that the term is in
+ normal form (that is, no sum can appear as a subterm of the same
+ sum, no trailing units, etc...).
+
+*)
+
+module Terms : sig
+
+ (** {1 Abstract syntax tree of terms}
+
+ Terms represented using this datatype are representation of the
+ AST of an expression. *)
+
+ type t =
+ Dot of (symbol * t * t)
+ | Plus of (symbol * t * t)
+ | Sym of (symbol * t array)
+ | Var of var
+ | Unit of symbol
+
+ val equal_aac : units -> t -> t -> bool
+ val size: t -> int
+
+ (** {1 Terms in normal form}
+
+ A term in normal form is the canonical representative of the
+ equivalence class of all the terms that are equal modulo
+ Associativity and Commutativity. Outside the {!Matcher} module,
+ one does not need to access the actual representation of this
+ type. *)
+
+
+ type nf_term = private
+ | TAC of symbol * nf_term mset
+ | TA of symbol * nf_term list
+ | TSym of symbol * nf_term list
+ | TUnit of symbol
+ | TVar of var
+
+ (** {2 Fresh variables: we provide some functions to pick some fresh variables with respect to a term} *)
+ val fresh_var_term : t -> int
+ val fresh_var_nfterm : nf_term -> int
+
+
+ (** {2 Constructors: we ensure that the terms are always
+ normalised
+
+ braibant - Fri 27 Aug 2010, 15:11
+ Moreover, we assure that we will not build empty sums or empty
+ products, leaving this task to the caller function.
+ }
+ *)
+ val mk_TAC : units -> symbol -> nf_term mset -> nf_term
+ val mk_TA : units -> symbol -> nf_term list -> nf_term
+ val mk_TSym : symbol -> nf_term list -> nf_term
+ val mk_TVar : var -> nf_term
+ val mk_TUnit : symbol -> nf_term
+
+ (** {2 Comparisons} *)
+ val nf_term_compare : nf_term -> nf_term -> int
+ val nf_equal : nf_term -> nf_term -> bool
+
+ (** {2 Printing function} *)
+ val sprint_nf_term : nf_term -> string
+
+ (** {2 Conversion functions} *)
+ val term_of_t : units -> t -> nf_term
+ val t_of_term : nf_term -> t (* we could return the units here *)
+end
+ = struct
+
+ type t =
+ Dot of (symbol * t * t)
+ | Plus of (symbol * t * t)
+ | Sym of (symbol * t array)
+ | Var of var
+ | Unit of symbol
+
+ let rec size = function
+ | Dot (_,x,y)
+ | Plus (_,x,y) -> size x+ size y + 1
+ | Sym (_,v)-> Array.fold_left (fun acc x -> size x + acc) 1 v
+ | _ -> 1
+
+
+ type nf_term =
+ | TAC of symbol * nf_term mset
+ | TA of symbol * nf_term list
+ | TSym of symbol * nf_term list
+ | TUnit of symbol
+ | TVar of var
+
+
+ (** {2 Picking fresh variables} *)
+
+ (** [fresh_var_term] picks a fresh variable with respect to a term *)
+ let fresh_var_term t =
+ let rec aux = function
+ | Dot (_,t1,t2)
+ | Plus (_,t1,t2) -> max (aux t1) (aux t2)
+ | Sym (_,v) -> Array.fold_left (fun acc x -> max acc (aux x)) 0 v
+ | Var v -> assert (v >= 0); v
+ | Unit _ -> 0
+ in
+ aux t
+
+ (** [fresh_var_nfterm] picks a fresh_variable with respect to a term *)
+ let fresh_var_nfterm t =
+ let rec aux = function
+ | TAC (_,l) -> List.fold_left (fun acc (x,_) -> max acc (aux x)) 0 l
+ | TA (_,l)
+ | TSym (_,l) -> List.fold_left (fun acc x -> max acc (aux x)) 0 l
+ | TVar v -> assert (v >= 0); v
+ | TUnit _ -> 0
+ in
+ aux t
+
+ (** {2 Constructors: we ensure that the terms are always
+ normalised} *)
+
+ (** {3 Pre constructors : These constructors ensure that sums and
+ products are not degenerated (no trailing units)} *)
+ let mk_TAC' units (s : symbol) l = match l with
+ | [] -> TUnit (get_unit units s )
+ | [_,0] -> assert false
+ | [t,1] -> t
+ | _ -> TAC (s,l)
+ let mk_TA' units (s : symbol) l = match l with
+ | [] -> TUnit (get_unit units s )
+ | [t] -> t
+ | _ -> TA (s,l)
+
+
+ (** {2 Comparison} *)
+
+ let nf_term_compare = Pervasives.compare
+ let nf_equal a b =
+ a = b
+
+ (** [merge_ac comp l1 l2] merges two lists of terms with coefficients
+ into one. Terms that are equal modulo the comparison function
+ [comp] will see their arities added. *)
+
+ (* This function could be improved by the use of sorted msets *)
+ let merge_ac (compare : 'a -> 'a -> int) (l : 'a mset) (l' : 'a mset) : 'a mset =
+ let rec aux l l'=
+ match l,l' with
+ | [], _ -> l'
+ | _, [] -> l
+ | (t,tar)::q, (t',tar')::q' ->
+ begin match compare t t' with
+ | 0 -> ( t,tar+tar'):: aux q q'
+ | -1 -> (t, tar):: aux q l'
+ | _ -> (t', tar'):: aux l q'
+ end
+ in aux l l'
+
+ (** [merge_map f l] uses the combinator [f] to combine the head of the
+ list [l] with the merge_maped tail of [l] *)
+ let rec merge_map (f : 'a -> 'b list -> 'b list) (l : 'a list) : 'b list =
+ match l with
+ | [] -> []
+ | t::q -> f t (merge_map f q)
+
+
+ (** This function has to deal with the arities *)
+ let rec merge (l : nf_term mset) (l' : nf_term mset) : nf_term mset=
+ merge_ac nf_term_compare l l'
+
+ let extract_A units s t =
+ match t with
+ | TA (s',l) when s' = s -> l
+ | TUnit u when is_unit units s u -> []
+ | _ -> [t]
+
+ let extract_AC units s (t,ar) : nf_term mset =
+ match t with
+ | TAC (s',l) when s' = s -> List.map (fun (x,y) -> (x,y*ar)) l
+ | TUnit u when is_unit units s u -> []
+ | _ -> [t,ar]
+
+
+ (** {3 Constructors of {!nf_term}}*)
+ let mk_TAC units (s : symbol) (l : (nf_term *int) list) =
+ mk_TAC' units s
+ (merge_map (fun u l -> merge (extract_AC units s u) l) l)
+ let mk_TA units s l =
+ mk_TA' units s
+ (merge_map (fun u l -> (extract_A units s u) @ l) l)
+ let mk_TSym s l = TSym (s,l)
+ let mk_TVar v = TVar v
+ let mk_TUnit s = TUnit s
+
+
+ (** {2 Printing function} *)
+ let print_binary_list (single : 'a -> string)
+ (unit : string)
+ (binary : string -> string -> string) (l : 'a list) =
+ let rec aux l =
+ match l with
+ [] -> unit
+ | [t] -> single t
+ | t::q ->
+ let r = aux q in
+ Printf.sprintf "%s" (binary (single t) r)
+ in
+ aux l
+
+ let print_symbol s =
+ match s with
+ | s, None -> Printf.sprintf "%i" s
+ | s , Some u -> Printf.sprintf "%i(unit %i)" s u
+
+ let sprint_ac (single : 'a -> string) (l : 'a mset) =
+ (print_binary_list
+ (fun (x,t) ->
+ if t = 1
+ then single x
+ else Printf.sprintf "%i*%s" t (single x)
+ )
+ "0"
+ (fun x y -> x ^ " , " ^ y)
+ l
+ )
+
+ let print_symbol single s l =
+ match l with
+ [] -> Printf.sprintf "%i" s
+ | _ ->
+ Printf.sprintf "%i(%s)"
+ s
+ (print_binary_list single "" (fun x y -> x ^ "," ^ y) l)
+
+
+ let print_ac single s l =
+ Printf.sprintf "[%s:AC]{%s}"
+ (string_of_int s )
+ (sprint_ac
+ single
+ l
+ )
+
+ let print_a single s l =
+ Printf.sprintf "[%s:A]{%s}"
+ (string_of_int s)
+ (print_binary_list single "1" (fun x y -> x ^ " , " ^ y) l)
+
+ let rec sprint_nf_term = function
+ | TSym (s,l) -> print_symbol sprint_nf_term s l
+ | TAC (s,l) -> print_ac sprint_nf_term s l
+ | TA (s,l) -> print_a sprint_nf_term s l
+ | TVar v -> Printf.sprintf "x%i" v
+ | TUnit s -> Printf.sprintf "unit%i" s
+
+
+
+
+ (** {2 Conversion functions} *)
+
+ (* rebuilds a tree out of a list, under the assumption that the list is not empty *)
+ let rec binary_of_list f comb l =
+ let l = List.rev l in
+ let rec aux = function
+ | [] -> assert false
+ | [t] -> f t
+ | t::q -> comb (aux q) (f t)
+ in
+ aux l
+
+ let term_of_t units : t -> nf_term =
+ let rec term_of_t = function
+ | Dot (s,l,r) ->
+ let l = term_of_t l in
+ let r = term_of_t r in
+ mk_TA units s [l;r]
+ | Plus (s,l,r) ->
+ let l = term_of_t l in
+ let r = term_of_t r in
+ mk_TAC units s [l,1;r,1]
+ | Unit x ->
+ mk_TUnit x
+ | Sym (s,t) ->
+ let t = Array.to_list t in
+ let t = List.map term_of_t t in
+ mk_TSym s t
+ | Var i ->
+ mk_TVar ( i)
+ in
+ term_of_t
+
+ let rec t_of_term : nf_term -> t = function
+ | TAC (s,l) ->
+ (binary_of_list
+ t_of_term
+ (fun l r -> Plus ( s,l,r))
+ (linear l)
+ )
+ | TA (s,l) ->
+ (binary_of_list
+ t_of_term
+ (fun l r -> Dot ( s,l,r))
+ l
+ )
+ | TSym (s,l) ->
+ let v = Array.of_list l in
+ let v = Array.map (t_of_term) v in
+ Sym ( s,v)
+ | TVar x -> Var x
+ | TUnit s -> Unit s
+
+
+ let equal_aac units x y =
+ nf_equal (term_of_t units x) (term_of_t units y)
+ end
+
+ (** Terms environments defined as association lists from variables to
+ terms in normal form {! Terms.nf_term} *)
+ module Subst : sig
+ type t
+
+ val find : t -> var -> Terms.nf_term option
+ val add : t -> var -> Terms.nf_term -> t
+ val empty : t
+ val instantiate : t -> Terms.t -> Terms.t
+ val sprint : t -> string
+ val to_list : t -> (var*Terms.t) list
+ end
+ =
+ struct
+ open Terms
+
+ (** Terms environments, with nf_terms, to avoid costly conversions
+ of {!Terms.nf_terms} to {!Terms.t}, that will be mostly discarded*)
+ type t = (var * nf_term) list
+
+ let find : t -> var -> nf_term option = fun t x ->
+ try Some (List.assoc x t) with | _ -> None
+ let add t x v = (x,v) :: t
+ let empty = []
+
+ let sprint (l : t) =
+ match l with
+ | [] -> Printf.sprintf "Empty environment\n"
+ | _ ->
+ let s = List.fold_left
+ (fun acc (x,y) ->
+ Printf.sprintf "%sX%i -> %s\n"
+ acc
+ x
+ (sprint_nf_term y)
+ )
+ ""
+ (List.rev l) in
+ Printf.sprintf "%s\n%!" s
+
+
+
+ (** [instantiate] is an homomorphism except for the variables*)
+ let instantiate (t: t) (x:Terms.t) : Terms.t =
+ let rec aux = function
+ | Unit _ as x -> x
+ | Sym (s,t) -> Sym (s,Array.map aux t)
+ | Plus (s,l,r) -> Plus (s, aux l, aux r)
+ | Dot (s,l,r) -> Dot (s, aux l, aux r)
+ | Var i ->
+ begin match find t i with
+ | None -> Util.error "aac_tactics: instantiate failure"
+ | Some x -> t_of_term x
+ end
+ in aux x
+
+ let to_list t = List.map (fun (x,y) -> x,Terms.t_of_term y) t
+ end
+
+ (******************)
+ (* MATCHING UTILS *)
+ (******************)
+
+ open Terms
+
+ (** Since most of the folowing functions require an extra parameter,
+ the units, we package them in a module. This functor will then be
+ applied to a module containing the units, in the exported
+ functions. *)
+ module M (X : sig
+ val units : units
+ val is_ac : (symbol * bool) list
+ val strict : bool (* variables cannot be instantiated with units *)
+ end) = struct
+
+ open X
+
+ let print_units ()=
+ List.iter (fun (op,unit) -> Printf.printf "%i %i\t" op unit) units;
+ Printf.printf "\n%!"
+
+ let mk_TAC s l = mk_TAC units s l
+ let mk_TA s l = mk_TA units s l
+ let mk_TAC' s l =
+ try return( mk_TAC s l)
+ with _ -> fail ()
+ let mk_TA' s l =
+ try return( mk_TA s l)
+ with _ -> fail ()
+
+ (** First, we need to be able to perform non-deterministic choice of
+ term splitting to satisfy a pattern. Indeed, we want to show that:
+ (x+a*b)*c <= a*b*c
+ *)
+ let a_nondet_split_raw t : ('a list * 'a list) m =
+ let rec aux l l' =
+ match l' with
+ | [] ->
+ return ( l,[])
+ | t::q ->
+ return ( l,l' )
+ >>| aux (l @ [t]) q
+ in
+ aux [] t
+
+ (** Same as the previous [a_nondet_split], but split the list in 3
+ parts *)
+ let a_nondet_middle t : ('a list * 'a list * 'a list) m =
+ a_nondet_split_raw t >>
+ (fun (left, right) ->
+ a_nondet_split_raw left >>
+ (fun (left, middle) -> return (left, middle, right))
+ )
+
+ (** Non deterministic splits of ac lists *)
+ let dispatch f n =
+ let rec aux k =
+ if k = 0 then return (f n 0)
+ else return (f (n-k) k) >>| aux (k-1)
+ in
+ aux (n )
+
+ let add_with_arith x ar l =
+ if ar = 0 then l else (x,ar) ::l
+
+ let ac_nondet_split_raw (l : 'a mset) : ('a mset * 'a mset) m =
+ let rec aux = function
+ | [] -> return ([],[])
+ | (t,tar)::q ->
+ aux q
+ >>
+ (fun (left,right) ->
+ dispatch (fun arl arr ->
+ add_with_arith t arl left,
+ add_with_arith t arr right
+ )
+ tar
+ )
+ in
+ aux l
+
+ let a_nondet_split current t : (nf_term * nf_term list) m=
+ a_nondet_split_raw t
+ >>
+ (fun (l,r) ->
+ if strict && (l=[])
+ then fail()
+ else
+ mk_TA' current l >>
+ fun t -> return (t, r)
+ )
+
+ let ac_nondet_split current t : (nf_term * nf_term mset) m=
+ ac_nondet_split_raw t
+ >>
+ (fun (l,r) ->
+ if strict && (l=[])
+ then fail()
+ else
+ mk_TAC' current l >>
+ fun t -> return (t, r)
+ )
+
+
+ (** Try to affect the variable [x] to each left factor of [t]*)
+ let var_a_nondet_split env current x t =
+ a_nondet_split current t
+ >>
+ (fun (t,res) ->
+ return ((Subst.add env x t), res)
+ )
+
+ (** Try to affect variable [x] to _each_ subset of t. *)
+ let var_ac_nondet_split (current: symbol) env (x : var) (t : nf_term mset) : (Subst.t * (nf_term mset)) m =
+ ac_nondet_split current t
+ >>
+ (fun (t,res) ->
+ return ((Subst.add env x t), res)
+ )
+
+ (** See the term t as a given AC symbol. Unwrap the first constructor
+ if necessary *)
+ let get_AC (s : symbol) (t : nf_term) : (nf_term *int) list =
+ match t with
+ | TAC (s',l) when s' = s -> l
+ | TUnit u when is_unit units s u -> []
+ | _ -> [t,1]
+
+ (** See the term t as a given A symbol. Unwrap the first constructor
+ if necessary *)
+ let get_A (s : symbol) (t : nf_term) : nf_term list =
+ match t with
+ | TA (s',l) when s' = s -> l
+ | TUnit u when is_unit units s u -> []
+ | _ -> [t]
+
+ (** See the term [t] as an symbol [s]. Fail if it is not such
+ symbol. *)
+ let get_Sym s t =
+ match t with
+ | TSym (s',l) when s' = s -> return l
+ | _ -> fail ()
+
+ (*************)
+ (* A Removal *)
+ (*************)
+
+ (** We remove the left factor v in a term list. This function runs
+ linearly with respect to the size of the first pattern symbol *)
+
+ let left_factor current (v : nf_term) (t : nf_term list) =
+ let rec aux a b =
+ match a,b with
+ | t::q , t' :: q' when nf_equal t t' -> aux q q'
+ | [], q -> return q
+ | _, _ -> fail ()
+ in
+ match v with
+ | TA (s,l) when s = current -> aux l t
+ | TUnit u when is_unit units current u -> return t
+ | _ ->
+ begin match t with
+ | [] -> fail ()
+ | t::q ->
+ if nf_equal v t
+ then return q
+ else fail ()
+ end
+
+
+ (**************)
+ (* AC Removal *)
+ (**************)
+
+ (** {!pick_sym} gather all elements of a list that satisfies a
+ predicate, and combine them with the residual of the list. That
+ is, each element of the residual contains exactly one element less
+ than the original term.
+
+ TODO : This function not as efficient as it could be, using a
+ proper data-structure *)
+
+ let pick_sym (s : symbol) (t : nf_term mset ) =
+ let rec aux front back =
+ match back with
+ | [] -> fail ()
+ | (t,tar)::q ->
+ begin match t with
+ | TSym (s',v') when s = s' ->
+ let back =
+ if tar > 1
+ then (t,tar -1) ::q
+ else q
+ in
+ return (v' , List.rev_append front back )
+ >>| aux ((t,tar)::front) q
+ | _ -> aux ((t,tar)::front) q
+ end
+ in
+ aux [] t
+
+
+
+ (** We have to check if we are trying to remove a unit from a term. Could also be located in Terms*)
+ let is_unit_AC s t =
+ try nf_equal t (mk_TAC s [])
+ with | NoUnit -> false
+
+ let is_same_AC s t : nf_term mset option=
+ match t with
+ TAC (s',l) when s = s' -> Some l
+ | _ -> None
+
+ (** We want to remove the term [v] from the term list [t] under an AC
+ symbol *)
+ let single_AC_factor (s : symbol) (v : nf_term) v_ar (t : nf_term mset) : (nf_term mset) m =
+ let rec aux front back =
+ match back with
+ | [] -> fail ()
+ | (t,tar)::q ->
+ begin
+ if nf_equal v t
+ then
+ match () with
+ | _ when tar < v_ar -> fail ()
+ | _ when tar = v_ar -> return (List.rev_append front q)
+ | _ -> return (List.rev_append front ((t,tar-v_ar)::q))
+ else
+ aux ((t,tar) :: front) q
+ end
+ in
+ if is_unit_AC s v
+ then
+ return t
+ else
+ aux [] t
+
+ (* Remove a constant from a mset. If this constant is also a mset for
+ the same symbol, we remove every elements, one at a time (and we do
+ care of the arities) *)
+ let factor_AC (s : symbol) (v: nf_term) (t : nf_term mset) : ( nf_term mset ) m =
+ match is_same_AC s v with
+ | None -> single_AC_factor s v 1 t
+ | Some l ->
+ (* We are trying to remove an AC factor *)
+ List.fold_left (fun acc (v,v_ar) ->
+ acc >> (single_AC_factor s v v_ar)
+ )
+ (return t)
+ l
+
+
+(** [tri_fold f l acc] folds on the list [l] and give to f the
+ beginning of the list in reverse order, the considered element, and
+ the last part of the list
+
+ as an exemple, on the list [1;2;3;4], we get the trace
+ f () [] 1 [2; 3; 4]
+ f () [1] 2 [3; 4]
+ f () [2;1] 3 [ 4]
+ f () [3;2;1] 4 []
+
+ it is the duty of the user to reverse the front if needed
+*)
+
+let tri_fold f (l : 'a list) (acc : 'b)= match l with
+ [] -> acc
+ | _ ->
+ let _,_,acc = List.fold_left (fun acc (t : 'a) ->
+ let l,r,acc = acc in
+ let r = List.tl r in
+ t::l,r,f acc l t r
+ ) ([], l,acc) l
+ in acc
+
+(* let test = tri_fold (fun acc l t r -> (l,t,r) :: acc) [1;2;3;4] [] *)
+
+
+
+ (*****************************)
+ (* ENUMERATION DES POSITIONS *)
+ (*****************************)
+
+
+(** The pattern is a unit: we need to try to make it appear at each
+ position. We do not need to go further with a real matching, since
+ the match should be trivial. Hence, we proceed recursively to
+ enumerate all the positions. *)
+
+module Positions = struct
+
+
+ let ac (l: 'a mset) : ('a mset * 'a )m =
+ let rec aux = function
+ | [] -> assert false
+ | [t,1] -> return ([],t)
+ | [t,tar] -> return ([t,tar -1],t)
+ | (t,tar) as h :: q ->
+ (aux q >> (fun (c,x) -> return (h :: c,x)))
+ >>| (if tar > 1 then return ((t,tar-1) :: q,t) else return (q,t))
+ in
+ aux l
+
+ let ac' current (l: 'a mset) : ('a mset * 'a )m =
+ ac_nondet_split_raw l >>
+ (fun (l,r) ->
+ if l = [] || r = []
+ then fail ()
+ else
+ mk_TAC' current r >>
+ fun t -> return (l, t)
+ )
+
+ let a (l : 'a list) : ('a list * 'a * 'a list) m =
+ let rec aux left right : ('a list * 'a * 'a list) m =
+ match right with
+ | [] -> assert false
+ | [t] -> return (left,t,[])
+ | t::q ->
+ aux (left@[t]) q
+ >>| return (left,t,q)
+ in
+ aux [] l
+end
+
+let build_ac (current : symbol) (context : nf_term mset) (p : t) : t m=
+ if context = []
+ then return p
+ else
+ mk_TAC' current context >>
+ fun t -> return (Plus (current,t_of_term t,p))
+
+let build_a (current : symbol)
+ (left : nf_term list) (right : nf_term list) (p : t) : t m=
+ let right_pat p =
+ if right = []
+ then return p
+ else
+ mk_TA' current right >>
+ fun t -> return (Dot (current,p,t_of_term t))
+ in
+ let left_pat p=
+ if left = []
+ then return p
+ else
+ mk_TA' current left >>
+ fun t -> return (Dot (current,t_of_term t,p))
+ in
+ right_pat p >> left_pat >> (fun p -> return p)
+
+
+let conts (hole : t) (l : symbol list) p : t m =
+ let p = t_of_term p in
+ (* - aller chercher les symboles ac et les symboles a
+ - construire pour chaque
+ * * +
+ / \ / \ / \
+ 1 p p 1 p 1
+ *)
+ let ac,a = List.partition (fun s -> List.assoc s is_ac) l in
+ let acc = fail () in
+ let acc = List.fold_left
+ (fun acc s ->
+ acc >>| return (Plus (s,p,hole))
+ ) acc ac in
+ let acc =
+ List.fold_left
+ (fun acc s ->
+ acc >>| return (Dot (s,p,hole)) >>| return (Dot (s,hole,p))
+ ) acc a
+ in acc
+
+
+(**
+ Return the same thing as subterm :
+ - The size of the context
+ - The context
+ - A collection of substitutions (here == return Subst.empty)
+*)
+let unit_subterm (t : nf_term) (unit : symbol) (hole : t): (int * t * Subst.t m) m =
+ let symbols = List.fold_left
+ (fun acc (ac,u) -> if u = unit then ac :: acc else acc ) [] units
+ in
+ (* make a unit appear at each strict sub-position of the term*)
+ let rec positions (t : nf_term) : t m =
+ match t with
+ (* with a final unit at the end *)
+ | TAC (s,l) ->
+ let symbols' = List.filter (fun x -> x <> s) symbols in
+ (
+ ac_nondet_split_raw l >>
+ (fun (l,r) -> if l = [] || r = [] then fail () else
+ (
+ match r with
+ | [p,1] ->
+ positions p >>| conts hole symbols' p
+ | _ ->
+ mk_TAC' s r >> conts hole symbols'
+ ) >> build_ac s l ))
+ | TA (s,l) ->
+ let symbols' = List.filter (fun x -> x <> s) symbols in
+ (
+ (* first the other symbols, and then the more simple case of
+ this particular symbol *)
+ a_nondet_middle l >>
+ (fun (l,m,r) ->
+ (* meant to break the symmetry *)
+ if (l = [] && r = [])
+ then fail ()
+ else
+ (
+ match m with
+ | [p] ->
+ positions p >>| conts hole symbols' p
+ | _ ->
+ mk_TA' s m >> conts hole symbols'
+ ) >> build_a s l r ))
+ >>|
+ (
+ if List.mem s symbols then
+ begin match l with
+ | [a] -> assert false
+ | [a;b] -> build_a s [a] [b] (hole)
+ | _ ->
+ (* on ne construit que les elements interieurs,
+ d'ou la disymetrie *)
+ (Positions.a l >>
+ (fun (left,p,right) ->
+ if left = [] then fail () else
+ (build_a s left right (Dot (s,hole,t_of_term p)))))
+ end
+ else fail ()
+ )
+
+ | TSym (s,l) ->
+ tri_fold (fun acc l t r ->
+ ((positions t) >>
+ (fun (p) ->
+ let l = List.map t_of_term l in
+ let r = List.map t_of_term r in
+ return (Sym (s, Array.of_list (List.rev_append l (p::r)))) ))
+ >>|
+ (
+ conts hole symbols t >>
+ (fun (p) ->
+ let l = List.map t_of_term l in
+ let r = List.map t_of_term r in
+ return (Sym (s, Array.of_list (List.rev_append l (p::r)))) )
+ )
+ >>| acc
+ ) l (fail())
+ | TVar x -> assert false
+ | TUnit x when x = unit -> return (hole)
+ | TUnit x as t -> conts hole symbols t
+ in
+ (positions t
+ >>|
+ (match t with
+ | TSym _ -> conts hole symbols t
+ | TAC (s,l) -> conts hole symbols t
+ | TA (s,l) -> conts hole symbols t
+ | _ -> fail())
+ )
+ >> fun (p) -> return (Terms.size p,p,return Subst.empty)
+
+
+
+
+ (************)
+ (* Matching *)
+ (************)
+
+
+
+(** {!matching} is the generic matching judgement. Each time a
+ non-deterministic split is made, we have to come back to this one.
+
+ {!matchingSym} is used to match two applications that have the
+ same (free) head-symbol.
+
+ {!matchingAC} is used to match two sums (with the subtlety that
+ [x+y] matches [f a] which is a function application or [a*b] which
+ is a product).
+
+ {!matchingA} is used to match two products (with the subtlety that
+ [x*y] matches [f a] which is a function application, or [a+b]
+ which is a sum).
+
+
+*)
+
+let matching : Subst.t -> nf_term -> nf_term -> Subst.t Search.m=
+ let rec matching env (p : nf_term) (t: nf_term) : Subst.t Search.m=
+ match p with
+ | TAC (s,l) ->
+ let l = linear l in
+ matchingAC env s l (get_AC s t)
+ | TA (s,l) ->
+ matchingA env s l (get_A s t)
+ | TSym (s,l) ->
+ (get_Sym s t)
+ >> (fun t -> matchingSym env l t)
+ | TVar x ->
+ begin match Subst.find env x with
+ | None -> return (Subst.add env x t)
+ | Some v -> if nf_equal v t then return env else fail ()
+ end
+ | TUnit s ->
+ if nf_equal p t then return env else fail ()
+ and
+ matchingAC (env : Subst.t) (current : symbol) (l : nf_term list) (t : (nf_term *int) list) =
+ match l with
+ | TSym (s,v):: q ->
+ pick_sym s t
+ >> (fun (v',t') ->
+ matchingSym env v v'
+ >> (fun env -> matchingAC env current q t'))
+
+ | TAC (s,v)::q when s = current ->
+ assert false
+ | TVar x:: q -> (* This is an optimization *)
+ begin match Subst.find env x with
+ | None ->
+ (var_ac_nondet_split current env x t)
+ >> (fun (env,residual) -> matchingAC env current q residual)
+ | Some v ->
+ (factor_AC current v t)
+ >> (fun residual -> matchingAC env current q residual)
+ end
+ | TUnit s as v :: q -> (* this is an optimization *)
+ (factor_AC current v t) >>
+ (fun residual -> matchingAC env current q residual)
+ | h :: q ->(* PAC =/= curent or PA or unit for this symbol*)
+ (ac_nondet_split current t)
+ >>
+ (fun (t,right) ->
+ matching env h t
+ >>
+ (
+ fun env ->
+ matchingAC env current q right
+ )
+ )
+ | [] -> if t = [] then return env else fail ()
+ and
+ matchingA (env : Subst.t) (current : symbol) (l : nf_term list) (t : nf_term list) =
+ match l with
+ | TSym (s,v) :: l ->
+ begin match t with
+ | TSym (s',v') :: r when s = s' ->
+ (matchingSym env v v')
+ >> (fun env -> matchingA env current l r)
+ | _ -> fail ()
+ end
+ | TA (s,v) :: l when s = current ->
+ assert false
+ | TVar x :: l ->
+ begin match Subst.find env x with
+ | None ->
+ debug (Printf.sprintf "var %i (%s)" x
+ (let b = Buffer.create 21 in List.iter (fun t -> Buffer.add_string b ( Terms.sprint_nf_term t)) t; Buffer.contents b ));
+ var_a_nondet_split env current x t
+ >> (fun (env,residual)-> debug (Printf.sprintf "pl %i %i" x(List.length residual)); matchingA env current l residual)
+ | Some v ->
+ (left_factor current v t)
+ >> (fun residual -> matchingA env current l residual)
+ end
+ | TUnit s as v :: q -> (* this is an optimization *)
+ (left_factor current v t) >>
+ (fun residual -> matchingA env current q residual)
+ | h :: l ->
+ a_nondet_split current t
+ >> (fun (t,r) ->
+ matching env h t
+ >> (fun env -> matchingA env current l r)
+ )
+ | [] -> if t = [] then return env else fail ()
+ and
+ matchingSym (env : Subst.t) (l : nf_term list) (t : nf_term list) =
+ List.fold_left2
+ (fun acc p t -> acc >> (fun env -> matching env p t))
+ (return env)
+ l
+ t
+
+ in
+ fun env l r ->
+ let _ = debug (Printf.sprintf "pattern :%s\nterm :%s\n%!" (Terms.sprint_nf_term l) (Terms.sprint_nf_term r)) in
+ let m = matching env l r in
+ let _ = debug (Printf.sprintf "count %i" (Search.count m)) in
+ m
+
+
+(** [unitifiable p : Subst.t m] *)
+let unitifiable p : (symbol * Subst.t m) m =
+ let m = List.fold_left
+ (fun acc (_,unit) -> acc >>|
+ let m = matching Subst.empty p (mk_TUnit unit) in
+ if Search.is_empty m then
+ fail ()
+ else
+ begin
+ return (unit,m)
+ end
+ ) (fail ()) units
+ in
+ m
+;;
+
+let nullifiable p =
+ let nullable = not strict in
+ let has_unit s =
+ try let _ = get_unit units s in true
+ with NoUnit -> false
+ in
+ let rec aux = function
+ | TA (s,l) -> has_unit s && List.for_all (aux) l
+ | TAC (s,l) -> has_unit s && List.for_all (fun (x,n) -> aux x) l
+ | TSym _ -> false
+ | TVar _ -> nullable
+ | TUnit _ -> true
+ in aux p
+
+let unit_warning p ~nullif ~unitif =
+ assert ((Search.is_empty unitif) || nullif);
+ if not (Search.is_empty unitif)
+ then
+ begin
+ Pp.msg_warning
+ (Pp.str
+ "[aac_tactics] This pattern can be instanciated to match units, some solutions can be missing");
+ end
+
+;;
+
+
+
+
+(***********)
+(* Subterm *)
+(***********)
+
+
+
+(** [subterm] solves a sub-term pattern matching.
+
+ This function is more high-level than {!matcher}, thus takes {!t}
+ as arguments rather than terms in normal form {!nf_term}.
+
+ We use three mutually recursive functions {!subterm},
+ {!subterm_AC}, {!subterm_A} to find the matching subterm, making
+ non-deterministic choices to split the term into a context and an
+ intersting sub-term. Intuitively, the only case in which we have to
+ go in depth is when we are left with a sub-term that is atomic.
+
+ Indeed, rewriting [H: b = c |- a+b+a = a+a+c], we do not want to
+ find recursively the sub-terms of [a+b] and [b+a], since they will
+ overlap with the sub-terms of [a+b+a].
+
+ We rebuild the context on the fly, leaving the variables in the
+ pattern uninstantiated. We do so in order to allow interaction
+ with the user, to choose the env.
+
+ Strange patterms like x*y*x can be instanciated by nothing, inside
+ a product. Therefore, we need to check that all the term is not
+ going into the context. With proper support for interaction with
+ the user, we should lift these tests. However, at the moment, they
+ serve as heuristics to return "interesting" matchings
+*)
+
+ let return_non_empty raw_p m =
+ if is_empty m
+ then
+ fail ()
+ else
+ return (raw_p ,m)
+
+ let subterm (raw_p:t) (raw_t:t): (int * t * Subst.t m) m=
+ let _ = debug (String.make 40 '=') in
+ let p = term_of_t units raw_p in
+ let t = term_of_t units raw_t in
+ let nullif = nullifiable p in
+ let unitif = unitifiable p in
+ let _ = unit_warning p ~nullif ~unitif in
+ let _ = debug (Printf.sprintf "%s" (Terms.sprint_nf_term p)) in
+ let _ = debug (Printf.sprintf "%s" (Terms.sprint_nf_term t)) in
+ let filter_right current right (p,m) =
+ if right = []
+ then return (p,m)
+ else
+ mk_TAC' current right >>
+ fun t -> return (Plus (current,p,t_of_term t),m)
+ in
+ let filter_middle current left right (p,m) =
+ let right_pat p =
+ if right = []
+ then return p
+ else
+ mk_TA' current right >>
+ fun t -> return (Dot (current,p,t_of_term t))
+ in
+ let left_pat p=
+ if left = []
+ then return p
+ else
+ mk_TA' current left >>
+ fun t -> return (Dot (current,t_of_term t,p))
+ in
+ right_pat p >> left_pat >> (fun p -> return (p,m))
+ in
+ let rec subterm (t:nf_term) : (t * Subst.t m) m=
+ match t with
+ | TAC (s,l) ->
+ ((ac_nondet_split_raw l) >>
+ (fun (left,right) ->
+ (subterm_AC s left) >> (filter_right s right)
+ ))
+ | TA (s,l) ->
+ (a_nondet_middle l) >>
+ (fun (left, middle, right) ->
+ (subterm_A s middle) >>
+ (filter_middle s left right)
+ )
+ | TSym (s, l) ->
+ let init =
+ return_non_empty raw_p (matching Subst.empty p t)
+ in
+ tri_fold (fun acc l t r ->
+ ((subterm t) >>
+ (fun (p,m) ->
+ let l = List.map t_of_term l in
+ let r = List.map t_of_term r in
+ let p = Sym (s, Array.of_list (List.rev_append l (p::r))) in
+ return (p,m)
+ )) >>| acc
+ ) l init
+ | TVar x -> assert false
+ (* this case is superseded by the later disjunction *)
+ | TUnit s -> fail ()
+
+ and subterm_AC s tl =
+ match tl with
+ [x,1] -> subterm x
+ | _ ->
+ mk_TAC' s tl >> fun t ->
+ return_non_empty raw_p (matching Subst.empty p t)
+ and subterm_A s tl =
+ match tl with
+ [x] -> subterm x
+ | _ ->
+ mk_TA' s tl >>
+ fun t ->
+ return_non_empty raw_p (matching Subst.empty p t)
+ in
+ match p with
+ | TUnit unit -> unit_subterm t unit raw_p
+ | _ when not (Search.is_empty unitif) ->
+ let unit_matches =
+ Search.fold
+ (fun (unit,inst) acc ->
+ Search.fold
+ (fun subst acc' ->
+ let m = unit_subterm t unit (Subst.instantiate subst raw_p)
+ in
+ m>>| acc'
+ )
+ inst
+ acc
+ )
+ unitif
+ (fail ())
+ in
+ let nullifies (t : Subst.t) =
+ List.for_all (fun (_,x) ->
+ List.exists (fun (_,y) -> Unit y = x ) units
+ ) (Subst.to_list t)
+ in
+ let nonunit_matches =
+ subterm t >>
+ (
+ fun (p,m) ->
+ let m = Search.filter (fun subst -> not( nullifies subst)) m in
+ if Search.is_empty m
+ then fail ()
+ else return (Terms.size p,p,m)
+ )
+ in
+ unit_matches >>| nonunit_matches
+
+ | _ -> (subterm t >> fun (p,m) -> return (Terms.size p,p,m))
+
+
+ end
+
+
+(* The functions we export, handlers for the previous ones. Some debug
+ information also *)
+let subterm ?(strict = false) units raw t =
+ let module M = M (struct
+ let is_ac = units.is_ac
+ let units = units.unit_for
+ let strict = strict
+ end) in
+ let sols = time (M.subterm raw) t "%fs spent in subterm (including matching)\n" in
+ debug
+ (Printf.sprintf "%i possible solution(s)\n"
+ (Search.fold (fun (_,_,envm) acc -> count envm + acc) sols 0));
+ sols
+
+
+let matcher ?(strict = false) units p t =
+ let module M = M (struct
+ let is_ac = units.is_ac
+ let units = units.unit_for
+ let strict = false
+ end) in
+ let units = units.unit_for in
+ let sols = time
+ (fun (p,t) ->
+ let p = (Terms.term_of_t units p) in
+ let t = (Terms.term_of_t units t) in
+ M.matching Subst.empty p t) (p,t)
+ "%fs spent in the matcher\n"
+ in
+ debug (Printf.sprintf "%i solutions\n" (count sols));
+ sols
+