summaryrefslogtreecommitdiff
path: root/AAC.v
diff options
context:
space:
mode:
authorGravatar Benjamin Barenblat <bbaren@google.com>2019-02-13 20:40:51 -0500
committerGravatar Benjamin Barenblat <bbaren@google.com>2019-02-13 20:40:51 -0500
commit8018e923c75eb5504310864f821972f794b7d554 (patch)
tree88a55f7c23fcbbea0ff80e406555292049b48dec /AAC.v
parent76f9b4cdc5693a6313961e2f91b39ba311857e72 (diff)
New upstream version 8.8.0+1.gbp069dc3bupstream/8.8.0+1.gbp069dc3bupstream
Diffstat (limited to 'AAC.v')
-rw-r--r--AAC.v1141
1 files changed, 0 insertions, 1141 deletions
diff --git a/AAC.v b/AAC.v
deleted file mode 100644
index 5feb0b6..0000000
--- a/AAC.v
+++ /dev/null
@@ -1,1141 +0,0 @@
-(***************************************************************************)
-(* This is part of aac_tactics, it is distributed under the terms of the *)
-(* GNU Lesser General Public License version 3 *)
-(* (see file LICENSE for more details) *)
-(* *)
-(* Copyright 2009-2010: Thomas Braibant, Damien Pous. *)
-(***************************************************************************)
-
-(** * Theory file for the aac_rewrite tactic
-
- We define several base classes to package associative and possibly
- commutative operators, and define a data-type for reified (or
- quoted) expressions (with morphisms).
-
- We then define a reflexive decision procedure to decide the
- equality of reified terms: first normalise reified terms, then
- compare them. This allows us to close transitivity steps
- automatically, in the [aac_rewrite] tactic.
-
- We restrict ourselves to the case where all symbols operate on a
- single fixed type. In particular, this means that we cannot handle
- situations like
-
- [H: forall x y, nat_of_pos (pos_of_nat (x) + y) + x = ....]
-
- where one occurrence of [+] operates on nat while the other one
- operates on positive. *)
-
-Require Import Arith NArith.
-Require Import List.
-Require Import FMapPositive FMapFacts.
-Require Import RelationClasses Equality.
-Require Export Morphisms.
-
-Set Implicit Arguments.
-Set Asymmetric Patterns.
-
-Local Open Scope signature_scope.
-
-(** * Environments for the reification process: we use positive maps to index elements *)
-
-Section sigma.
- Definition sigma := PositiveMap.t.
- Definition sigma_get A (null : A) (map : sigma A) (n : positive) : A :=
- match PositiveMap.find n map with
- | None => null
- | Some x => x
- end.
- Definition sigma_add := @PositiveMap.add.
- Definition sigma_empty := @PositiveMap.empty.
-End sigma.
-
-
-(** * Classes for properties of operators *)
-
-Class Associative (X:Type) (R:relation X) (dot: X -> X -> X) :=
- law_assoc : forall x y z, R (dot x (dot y z)) (dot (dot x y) z).
-Class Commutative (X:Type) (R: relation X) (plus: X -> X -> X) :=
- law_comm: forall x y, R (plus x y) (plus y x).
-Class Unit (X:Type) (R:relation X) (op : X -> X -> X) (unit:X) := {
- law_neutral_left: forall x, R (op unit x) x;
- law_neutral_right: forall x, R (op x unit) x
-}.
-
-
-(** Class used to find the equivalence relation on which operations
- are A or AC, starting from the relation appearing in the goal *)
-
-Class AAC_lift X (R: relation X) (E : relation X) := {
- aac_lift_equivalence : Equivalence E;
- aac_list_proper : Proper (E ==> E ==> iff) R
-}.
-
-(** simple instances, when we have a subrelation, or an equivalence *)
-
-Instance aac_lift_subrelation {X} {R} {E} {HE: Equivalence E}
- {HR: @Transitive X R} {HER: subrelation E R}: AAC_lift R E | 3.
-Proof.
- constructor; trivial.
- intros ? ? H ? ? H'. split; intro G.
- rewrite <- H, G. apply HER, H'.
- rewrite H, G. apply HER. symmetry. apply H'.
-Qed.
-
-Instance aac_lift_proper {X} {R : relation X} {E} {HE: Equivalence E}
- {HR: Proper (E==>E==>iff) R}: AAC_lift R E | 4 := {}.
-
-
-
-Module Internal.
-
-(** * Utilities for the evaluation function *)
-
-Section copy.
-
- Context {X} {R} {HR: @Equivalence X R} {plus}
- (op: Associative R plus) (op': Commutative R plus) (po: Proper (R ==> R ==> R) plus).
-
- (* copy n x = x+...+x (n times) *)
- Fixpoint copy' n x := match n with
- | xH => x
- | xI n => let xn := copy' n x in plus (plus xn xn) x
- | xO n => let xn := copy' n x in (plus xn xn)
- end.
- Definition copy n x := Prect (fun _ => X) x (fun _ xn => plus x xn) n.
-
- Lemma copy_plus : forall n m x, R (copy (n+m) x) (plus (copy n x) (copy m x)).
- Proof.
- unfold copy.
- induction n using Pind; intros m x.
- rewrite Prect_base. rewrite <- Pplus_one_succ_l. rewrite Prect_succ. reflexivity.
- rewrite Pplus_succ_permute_l. rewrite 2Prect_succ. rewrite IHn. apply op.
- Qed.
- Lemma copy_xH : forall x, R (copy 1 x) x.
- Proof. intros; unfold copy; rewrite Prect_base. reflexivity. Qed.
- Lemma copy_Psucc : forall n x, R (copy (Psucc n) x) (plus x (copy n x)).
- Proof. intros; unfold copy; rewrite Prect_succ. reflexivity. Qed.
-
- Global Instance copy_compat n: Proper (R ==> R) (copy n).
- Proof.
- unfold copy.
- induction n using Pind; intros x y H.
- rewrite 2Prect_base. assumption.
- rewrite 2Prect_succ. apply po; auto.
- Qed.
-
-End copy.
-
-(** * Utilities for positive numbers
- which we use as:
- - indices for morphisms and symbols
- - multiplicity of terms in sums *)
-
-Local Notation idx := positive.
-
-Fixpoint eq_idx_bool i j :=
- match i,j with
- | xH, xH => true
- | xO i, xO j => eq_idx_bool i j
- | xI i, xI j => eq_idx_bool i j
- | _, _ => false
- end.
-
-Fixpoint idx_compare i j :=
- match i,j with
- | xH, xH => Eq
- | xH, _ => Lt
- | _, xH => Gt
- | xO i, xO j => idx_compare i j
- | xI i, xI j => idx_compare i j
- | xI _, xO _ => Gt
- | xO _, xI _ => Lt
- end.
-
-Local Notation pos_compare := idx_compare (only parsing).
-
-(** Specification predicate for boolean binary functions *)
-Inductive decide_spec {A} {B} (R : A -> B -> Prop) (x : A) (y : B) : bool -> Prop :=
-| decide_true : R x y -> decide_spec R x y true
-| decide_false : ~(R x y) -> decide_spec R x y false.
-
-Lemma eq_idx_spec : forall i j, decide_spec (@eq _) i j (eq_idx_bool i j).
-Proof.
- induction i; destruct j; simpl; try (constructor; congruence).
- case (IHi j); constructor; congruence.
- case (IHi j); constructor; congruence.
-Qed.
-
-(** weak specification predicate for comparison functions: only the 'Eq' case is specified *)
-Inductive compare_weak_spec A: A -> A -> comparison -> Prop :=
-| pcws_eq: forall i, compare_weak_spec i i Eq
-| pcws_lt: forall i j, compare_weak_spec i j Lt
-| pcws_gt: forall i j, compare_weak_spec i j Gt.
-
-Lemma pos_compare_weak_spec: forall i j, compare_weak_spec i j (pos_compare i j).
-Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.
-
-Lemma idx_compare_reflect_eq: forall i j, idx_compare i j = Eq -> i=j.
-Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.
-
-(** * Dependent types utilities *)
-
-Local Notation cast T H u := (eq_rect _ T u _ H).
-
-Section dep.
- Variable U: Type.
- Variable T: U -> Type.
-
- Lemma cast_eq: (forall u v: U, {u=v}+{u<>v}) ->
- forall A (H: A=A) (u: T A), cast T H u = u.
- Proof. intros. rewrite <- Eqdep_dec.eq_rect_eq_dec; trivial. Qed.
-
- Variable f: forall A B, T A -> T B -> comparison.
- Definition reflect_eqdep := forall A u B v (H: A=B), @f A B u v = Eq -> cast T H u = v.
-
- (* these lemmas have to remain transparent to get structural recursion
- in the lemma [tcompare_weak_spec] below *)
- Lemma reflect_eqdep_eq: reflect_eqdep ->
- forall A u v, @f A A u v = Eq -> u = v.
- Proof. intros H A u v He. apply (H _ _ _ _ eq_refl He). Defined.
-
- Lemma reflect_eqdep_weak_spec: reflect_eqdep ->
- forall A u v, compare_weak_spec u v (@f A A u v).
- Proof.
- intros. case_eq (f u v); try constructor.
- intro H'. apply reflect_eqdep_eq in H'. subst. constructor. assumption.
- Defined.
-End dep.
-
-
-
-(** * Utilities about (non-empty) lists and multisets *)
-
-Inductive nelist (A : Type) : Type :=
-| nil : A -> nelist A
-| cons : A -> nelist A -> nelist A.
-
-Local Notation "x :: y" := (cons x y).
-
-Fixpoint nelist_map (A B: Type) (f: A -> B) l :=
- match l with
- | nil x => nil ( f x)
- | cons x l => cons ( f x) (nelist_map f l)
- end.
-
-Fixpoint appne A l l' : nelist A :=
- match l with
- nil x => cons x l'
- | cons t q => cons t (appne A q l')
- end.
-
-Local Notation "x ++ y" := (appne x y).
-
-(** finite multisets are represented with ordered lists with multiplicities *)
-Definition mset A := nelist (A*positive).
-
-(** lexicographic composition of comparisons (this is a notation to keep it lazy) *)
-Local Notation lex e f := (match e with Eq => f | _ => e end).
-
-
-Section lists.
-
- (** comparison functions *)
-
- Section c.
- Variables A B: Type.
- Variable compare: A -> B -> comparison.
- Fixpoint list_compare h k :=
- match h,k with
- | nil x, nil y => compare x y
- | nil x, _ => Lt
- | _, nil x => Gt
- | u::h, v::k => lex (compare u v) (list_compare h k)
- end.
- End c.
- Definition mset_compare A B compare: mset A -> mset B -> comparison :=
- list_compare (fun un vm =>
- let '(u,n) := un in
- let '(v,m) := vm in
- lex (compare u v) (pos_compare n m)).
-
- Section list_compare_weak_spec.
- Variable A: Type.
- Variable compare: A -> A -> comparison.
- Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
- (* this lemma has to remain transparent to get structural recursion
- in the lemma [tcompare_weak_spec] below *)
- Lemma list_compare_weak_spec: forall h k,
- compare_weak_spec h k (list_compare compare h k).
- Proof.
- induction h as [|u h IHh]; destruct k as [|v k]; simpl; try constructor.
-
- case (Hcompare a a0 ); try constructor.
- case (Hcompare u v ); try constructor.
- case (IHh k); intros; constructor.
- Defined.
- End list_compare_weak_spec.
-
- Section mset_compare_weak_spec.
- Variable A: Type.
- Variable compare: A -> A -> comparison.
- Hypothesis Hcompare: forall u v, compare_weak_spec u v (compare u v).
- (* this lemma has to remain transparent to get structural recursion
- in the lemma [tcompare_weak_spec] below *)
- Lemma mset_compare_weak_spec: forall h k,
- compare_weak_spec h k (mset_compare compare h k).
- Proof.
- apply list_compare_weak_spec.
- intros [u n] [v m].
- case (Hcompare u v); try constructor.
- case (pos_compare_weak_spec n m); try constructor.
- Defined.
- End mset_compare_weak_spec.
-
- (** (sorted) merging functions *)
-
- Section m.
- Variable A: Type.
- Variable compare: A -> A -> comparison.
- Definition insert n1 h1 :=
- let fix insert_aux l2 :=
- match l2 with
- | nil (h2,n2) =>
- match compare h1 h2 with
- | Eq => nil (h1,Pplus n1 n2)
- | Lt => (h1,n1):: nil (h2,n2)
- | Gt => (h2,n2):: nil (h1,n1)
- end
- | (h2,n2)::t2 =>
- match compare h1 h2 with
- | Eq => (h1,Pplus n1 n2):: t2
- | Lt => (h1,n1)::l2
- | Gt => (h2,n2)::insert_aux t2
- end
- end
- in insert_aux.
-
- Fixpoint merge_msets l1 :=
- match l1 with
- | nil (h1,n1) => fun l2 => insert n1 h1 l2
- | (h1,n1)::t1 =>
- let fix merge_aux l2 :=
- match l2 with
- | nil (h2,n2) =>
- match compare h1 h2 with
- | Eq => (h1,Pplus n1 n2) :: t1
- | Lt => (h1,n1):: merge_msets t1 l2
- | Gt => (h2,n2):: l1
- end
- | (h2,n2)::t2 =>
- match compare h1 h2 with
- | Eq => (h1,Pplus n1 n2)::merge_msets t1 t2
- | Lt => (h1,n1)::merge_msets t1 l2
- | Gt => (h2,n2)::merge_aux t2
- end
- end
- in merge_aux
- end.
-
- (** interpretation of a list with a constant and a binary operation *)
-
- Variable B: Type.
- Variable map: A -> B.
- Variable b2: B -> B -> B.
- Fixpoint fold_map l :=
- match l with
- | nil x => map x
- | u::l => b2 (map u) (fold_map l)
- end.
-
- (** mapping and merging *)
-
- Variable merge: A -> nelist B -> nelist B.
- Fixpoint merge_map (l: nelist A): nelist B :=
- match l with
- | nil x => nil (map x)
- | u::l => merge u (merge_map l)
- end.
-
- Variable ret : A -> B.
- Variable bind : A -> B -> B.
- Fixpoint fold_map' (l : nelist A) : B :=
- match l with
- | nil x => ret x
- | u::l => bind u (fold_map' l)
- end.
-
- End m.
-End lists.
-
-(** * Packaging structures *)
-
-(** ** free symbols *)
-
-Module Sym.
- Section t.
- Context {X} {R : relation X} .
-
- (** type of an arity *)
- Fixpoint type_of (n: nat) :=
- match n with
- | O => X
- | S n => X -> type_of n
- end.
-
- (** relation to be preserved at an arity *)
- Fixpoint rel_of n : relation (type_of n) :=
- match n with
- | O => R
- | S n => respectful R (rel_of n)
- end.
-
- (** a symbol package contains an arity,
- a value of the corresponding type,
- and a proof that the value is a proper morphism *)
- Record pack : Type := mkPack {
- ar : nat;
- value :> type_of ar;
- morph : Proper (rel_of ar) value
- }.
-
- (** helper to build default values, when filling reification environments *)
- Definition null: pack := mkPack 1 (fun x => x) (fun _ _ H => H).
-
- End t.
-
-End Sym.
-
-(** ** binary operations *)
-
-Module Bin.
- Section t.
- Context {X} {R: relation X}.
-
- Record pack := mk_pack {
- value:> X -> X -> X;
- compat: Proper (R ==> R ==> R) value;
- assoc: Associative R value;
- comm: option (Commutative R value)
- }.
- End t.
- (* See #<a href="Instances.html">Instances.v</a># for concrete instances of these classes. *)
-
-End Bin.
-
-
-(** * Reification, normalisation, and decision *)
-
-Section s.
- Context {X} {R: relation X} {E: @Equivalence X R}.
- Infix "==" := R (at level 80).
-
- (* We use environments to store the various operators and the
- morphisms.*)
-
- Variable e_sym: idx -> @Sym.pack X R.
- Variable e_bin: idx -> @Bin.pack X R.
-
-
- (** packaging units (depends on e_bin) *)
-
- Record unit_of u := mk_unit_for {
- uf_idx: idx;
- uf_desc: Unit R (Bin.value (e_bin uf_idx)) u
- }.
-
- Record unit_pack := mk_unit_pack {
- u_value:> X;
- u_desc: list (unit_of u_value)
- }.
- Variable e_unit: positive -> unit_pack.
-
- Hint Resolve e_bin e_unit: typeclass_instances.
-
- (** ** Almost normalised syntax
- a term in [T] is in normal form if:
- - sums do not contain sums
- - products do not contain products
- - there are no unary sums or products
- - lists and msets are lexicographically sorted according to the order we define below
-
- [vT n] denotes the set of term vectors of size [n] (the mutual dependency could be removed),
-
- Note that [T] and [vT] depend on the [e_sym] environment (which
- contains, among other things, the arity of symbols)
- *)
-
- Inductive T: Type :=
- | sum: idx -> mset T -> T
- | prd: idx -> nelist T -> T
- | sym: forall i, vT (Sym.ar (e_sym i)) -> T
- | unit : idx -> T
- with vT: nat -> Type :=
- | vnil: vT O
- | vcons: forall n, T -> vT n -> vT (S n).
-
-
- (** lexicographic rpo over the normalised syntax *)
- Fixpoint compare (u v: T) :=
- match u,v with
- | sum i l, sum j vs => lex (idx_compare i j) (mset_compare compare l vs)
- | prd i l, prd j vs => lex (idx_compare i j) (list_compare compare l vs)
- | sym i l, sym j vs => lex (idx_compare i j) (vcompare l vs)
- | unit i , unit j => idx_compare i j
- | unit _ , _ => Lt
- | _ , unit _ => Gt
- | sum _ _, _ => Lt
- | _ , sum _ _ => Gt
- | prd _ _, _ => Lt
- | _ , prd _ _ => Gt
-
- end
- with vcompare i j (us: vT i) (vs: vT j) :=
- match us,vs with
- | vnil, vnil => Eq
- | vnil, _ => Lt
- | _, vnil => Gt
- | vcons _ u us, vcons _ v vs => lex (compare u v) (vcompare us vs)
- end.
-
-
-
- (** ** Evaluation from syntax to the abstract domain *)
-
- Fixpoint eval u: X :=
- match u with
- | sum i l => let o := Bin.value (e_bin i) in
- fold_map (fun un => let '(u,n):=un in @copy _ o n (eval u)) o l
- | prd i l => fold_map eval (Bin.value (e_bin i)) l
- | sym i v => eval_aux v (Sym.value (e_sym i))
- | unit i => e_unit i
- end
- with eval_aux i (v: vT i): Sym.type_of i -> X :=
- match v with
- | vnil => fun f => f
- | vcons _ u v => fun f => eval_aux v (f (eval u))
- end.
-
- (** we need to show that compare reflects equality (this is because
- we work with msets rather than lists with arities) *)
- Lemma tcompare_weak_spec: forall (u v : T), compare_weak_spec u v (compare u v)
- with vcompare_reflect_eqdep: forall i us j vs (H: i=j), vcompare us vs = Eq -> cast vT H us = vs.
- Proof.
- induction u.
- destruct v; simpl; try constructor.
- case (pos_compare_weak_spec p p0); intros; try constructor.
- case (mset_compare_weak_spec compare tcompare_weak_spec m m0); intros; try constructor.
- destruct v; simpl; try constructor.
- case (pos_compare_weak_spec p p0); intros; try constructor.
- case (list_compare_weak_spec compare tcompare_weak_spec n n0); intros; try constructor.
- destruct v0; simpl; try constructor.
- case_eq (idx_compare i i0); intro Hi; try constructor.
- apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. (* the [symmetry] is required ! *)
- case_eq (vcompare v v0); intro Hv; try constructor.
- rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor.
- destruct v; simpl; try constructor.
- case_eq (idx_compare p p0); intro Hi; try constructor.
- apply idx_compare_reflect_eq in Hi. symmetry in Hi. subst. constructor.
-
- induction us; destruct vs; simpl; intros H Huv; try discriminate.
- apply cast_eq, eq_nat_dec.
- injection H; intro Hn.
- revert Huv; case (tcompare_weak_spec t t0); intros; try discriminate.
- symmetry in Hn. subst. (* symmetry required *)
- rewrite <- (IHus _ _ eq_refl Huv).
- apply cast_eq, eq_nat_dec.
- Qed.
-
- Instance eval_aux_compat i (l: vT i): Proper (@Sym.rel_of X R i ==> R) (eval_aux l).
- Proof.
- induction l; simpl; repeat intro.
- assumption.
- apply IHl, H. reflexivity.
- Qed.
-
-
- (* is [i] a unit for [j] ? *)
- Definition is_unit_of j i :=
- List.existsb (fun p => eq_idx_bool j (uf_idx p)) (u_desc (e_unit i)).
-
- (* is [i] commutative ? *)
- Definition is_commutative i :=
- match Bin.comm (e_bin i) with Some _ => true | None => false end.
-
-
- (** ** Normalisation *)
-
- Inductive discr {A} : Type :=
- | Is_op : A -> discr
- | Is_unit : idx -> discr
- | Is_nothing : discr .
-
- (* This is called sum in the std lib *)
- Inductive m {A} {B} :=
- | left : A -> m
- | right : B -> m.
-
- Definition comp A B (merge : B -> B -> B) (l : B) (l' : @m A B) : @m A B :=
- match l' with
- | left _ => right l
- | right l' => right (merge l l')
- end.
-
- (** auxiliary functions, to clean up sums *)
-
- Section sums.
- Variable i : idx.
- Variable is_unit : idx -> bool.
-
- Definition sum' (u: mset T): T :=
- match u with
- | nil (u,xH) => u
- | _ => sum i u
- end.
-
- Definition is_sum (u: T) : @discr (mset T) :=
- match u with
- | sum j l => if eq_idx_bool j i then Is_op l else Is_nothing
- | unit j => if is_unit j then Is_unit j else Is_nothing
- | u => Is_nothing
- end.
-
- Definition copy_mset n (l: mset T): mset T :=
- match n with
- | xH => l
- | _ => nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l
- end.
-
- Definition return_sum u n :=
- match is_sum u with
- | Is_nothing => right (nil (u,n))
- | Is_op l' => right (copy_mset n l')
- | Is_unit j => left j
- end.
-
- Definition add_to_sum u n (l : @m idx (mset T)) :=
- match is_sum u with
- | Is_nothing => comp (merge_msets compare) (nil (u,n)) l
- | Is_op l' => comp (merge_msets compare) (copy_mset n l') l
- | Is_unit _ => l
- end.
-
-
- Definition norm_msets_ norm (l: mset T) :=
- fold_map'
- (fun un => let '(u,n) := un in return_sum (norm u) n)
- (fun un l => let '(u,n) := un in add_to_sum (norm u) n l) l.
-
-
- End sums.
-
- (** similar functions for products *)
-
- Section prds.
-
- Variable i : idx.
- Variable is_unit : idx -> bool.
- Definition prd' (u: nelist T): T :=
- match u with
- | nil u => u
- | _ => prd i u
- end.
-
- Definition is_prd (u: T) : @discr (nelist T) :=
- match u with
- | prd j l => if eq_idx_bool j i then Is_op l else Is_nothing
- | unit j => if is_unit j then Is_unit j else Is_nothing
- | u => Is_nothing
- end.
-
-
- Definition return_prd u :=
- match is_prd u with
- | Is_nothing => right (nil (u))
- | Is_op l' => right (l')
- | Is_unit j => left j
- end.
-
- Definition add_to_prd u (l : @m idx (nelist T)) :=
- match is_prd u with
- | Is_nothing => comp (@appne T) (nil (u)) l
- | Is_op l' => comp (@appne T) (l') l
- | Is_unit _ => l
- end.
-
- Definition norm_lists_ norm (l : nelist T) :=
- fold_map'
- (fun u => return_prd (norm u))
- (fun u l => add_to_prd (norm u) l) l.
-
-
- End prds.
-
-
- Definition run_list x := match x with
- | left n => nil (unit n)
- | right l => l
- end.
-
- Definition norm_lists norm i l :=
- let is_unit := is_unit_of i in
- run_list (norm_lists_ i is_unit norm l).
-
- Definition run_msets x := match x with
- | left n => nil (unit n, xH)
- | right l => l
- end.
-
- Definition norm_msets norm i l :=
- let is_unit := is_unit_of i in
- run_msets (norm_msets_ i is_unit norm l).
-
- Fixpoint norm u {struct u}:=
- match u with
- | sum i l => if is_commutative i then sum' i (norm_msets norm i l) else u
- | prd i l => prd' i (norm_lists norm i l)
- | sym i l => sym i (vnorm l)
- | unit i => unit i
- end
- with vnorm i (l: vT i): vT i :=
- match l with
- | vnil => vnil
- | vcons _ u l => vcons (norm u) (vnorm l)
- end.
-
- (** ** Correctness *)
-
- Lemma is_unit_of_Unit : forall i j : idx,
- is_unit_of i j = true -> Unit R (Bin.value (e_bin i)) (eval (unit j)).
- Proof.
- intros. unfold is_unit_of in H.
- rewrite existsb_exists in H.
- destruct H as [x [H H']].
- revert H' ; case (eq_idx_spec); [intros H' _ ; subst| intros _ H'; discriminate].
- simpl. destruct x. simpl. auto.
- Qed.
-
- Instance Binvalue_Commutative i (H : is_commutative i = true) : Commutative R (@Bin.value _ _ (e_bin i) ).
- Proof.
- unfold is_commutative in H.
- destruct (Bin.comm (e_bin i)); auto.
- discriminate.
- Qed.
-
- Instance Binvalue_Associative i :Associative R (@Bin.value _ _ (e_bin i) ).
- Proof.
- destruct ((e_bin i)); auto.
- Qed.
-
- Instance Binvalue_Proper i : Proper (R ==> R ==> R) (@Bin.value _ _ (e_bin i) ).
- Proof.
- destruct ((e_bin i)); auto.
- Qed.
- Hint Resolve Binvalue_Proper Binvalue_Associative Binvalue_Commutative.
-
- (** auxiliary lemmas about sums *)
-
- Hint Resolve is_unit_of_Unit.
- Section sum_correctness.
- Variable i : idx.
- Variable is_unit : idx -> bool.
- Hypothesis is_unit_sum_Unit : forall j, is_unit j = true-> @Unit X R (Bin.value (e_bin i)) (eval (unit j)).
-
- Inductive is_sum_spec_ind : T -> @discr (mset T) -> Prop :=
- | is_sum_spec_op : forall j l, j = i -> is_sum_spec_ind (sum j l) (Is_op l)
- | is_sum_spec_unit : forall j, is_unit j = true -> is_sum_spec_ind (unit j) (Is_unit j)
- | is_sum_spec_nothing : forall u, is_sum_spec_ind u (Is_nothing).
-
- Lemma is_sum_spec u : is_sum_spec_ind u (is_sum i is_unit u).
- Proof.
- unfold is_sum; case u; intros; try constructor.
- case_eq (eq_idx_bool p i); intros; subst; try constructor; auto.
- revert H. case eq_idx_spec; try discriminate. auto.
- case_eq (is_unit p); intros; try constructor. auto.
- Qed.
-
- Instance assoc : @Associative X R (Bin.value (e_bin i)).
- Proof.
- destruct (e_bin i). simpl. assumption.
- Qed.
- Instance proper : Proper (R ==> R ==> R)(Bin.value (e_bin i)).
- Proof.
- destruct (e_bin i). simpl. assumption.
- Qed.
- Hypothesis comm : @Commutative X R (Bin.value (e_bin i)).
-
- Lemma sum'_sum : forall (l: mset T), eval (sum' i l) ==eval (sum i l) .
- Proof.
- intros [[a n] | [a n] l]; destruct n; simpl; reflexivity.
- Qed.
-
- Lemma eval_sum_nil x:
- eval (sum i (nil (x,xH))) == (eval x).
- Proof. rewrite <- sum'_sum. reflexivity. Qed.
-
- Lemma eval_sum_cons : forall n a (l: mset T),
- (eval (sum i ((a,n)::l))) == (@Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval a)) (eval (sum i l))).
- Proof.
- intros n a [[? ? ]|[b m] l]; simpl; reflexivity.
- Qed.
-
- Inductive compat_sum_unit : @m idx (mset T) -> Prop :=
- | csu_left : forall x, is_unit x = true-> compat_sum_unit (left x)
- | csu_right : forall m, compat_sum_unit (right m)
- .
-
- Lemma compat_sum_unit_return x n : compat_sum_unit (return_sum i is_unit x n).
- Proof.
- unfold return_sum.
- case is_sum_spec; intros; try constructor; auto.
- Qed.
-
- Lemma compat_sum_unit_add : forall x n h,
- compat_sum_unit h
- ->
- compat_sum_unit
- (add_to_sum i (is_unit_of i) x n
- h).
- Proof.
- unfold add_to_sum;intros; inversion H;
- case_eq (is_sum i (is_unit_of i) x);
- intros; simpl; try constructor || eauto. apply H0.
- Qed.
-
- (* Hint Resolve copy_plus. : this lags because of the inference of the implicit arguments *)
- Hint Extern 5 (copy (?n + ?m) (eval ?a) == Bin.value (copy ?n (eval ?a)) (copy ?m (eval ?a))) => apply copy_plus.
- Hint Extern 5 (?x == ?x) => reflexivity.
- Hint Extern 5 ( Bin.value ?x ?y == Bin.value ?y ?x) => apply Bin.comm.
-
- Lemma eval_merge_bin : forall (h k: mset T),
- eval (sum i (merge_msets compare h k)) == @Bin.value _ _ (e_bin i) (eval (sum i h)) (eval (sum i k)).
- Proof.
- induction h as [[a n]|[a n] h IHh]; intro k.
- simpl.
- induction k as [[b m]|[b m] k IHk]; simpl.
- destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto. apply copy_plus; auto.
-
- destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto.
- rewrite copy_plus,law_assoc; auto.
- rewrite IHk; clear IHk. rewrite 2 law_assoc. apply proper. apply law_comm. reflexivity.
-
- induction k as [[b m]|[b m] k IHk]; simpl; simpl in IHh.
- destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
- rewrite (law_comm _ (copy m (eval a))), law_assoc, <- copy_plus, Pplus_comm; auto.
- rewrite <- law_assoc, IHh. reflexivity.
- rewrite law_comm. reflexivity.
-
- simpl in IHk.
- destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl.
- rewrite IHh; clear IHh. rewrite 2 law_assoc. rewrite (law_comm _ (copy m (eval a))). rewrite law_assoc, <- copy_plus, Pplus_comm; auto.
- rewrite IHh; clear IHh. simpl. rewrite law_assoc. reflexivity.
- rewrite 2 (law_comm (copy m (eval b))). rewrite law_assoc. apply proper; [ | reflexivity].
- rewrite <- IHk. reflexivity.
- Qed.
-
-
- Lemma copy_mset' n (l: mset T): copy_mset n l = nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l.
- Proof.
- unfold copy_mset. destruct n; try reflexivity.
-
- simpl. induction l as [|[a l] IHl]; simpl; try congruence. destruct a. reflexivity.
- Qed.
-
-
- Lemma copy_mset_succ n (l: mset T): eval (sum i (copy_mset (Psucc n) l)) == @Bin.value _ _ (e_bin i) (eval (sum i l)) (eval (sum i (copy_mset n l))).
- Proof.
- rewrite 2 copy_mset'.
-
- induction l as [[a m]|[a m] l IHl].
- simpl eval. rewrite <- copy_plus; auto. rewrite Pmult_Sn_m. reflexivity.
-
- simpl nelist_map. rewrite ! eval_sum_cons. rewrite IHl. clear IHl.
- rewrite Pmult_Sn_m. rewrite copy_plus; auto. rewrite <- !law_assoc.
- apply Binvalue_Proper; try reflexivity.
- rewrite law_comm . rewrite <- !law_assoc. apply proper; try reflexivity.
- apply law_comm.
- Qed.
-
- Lemma copy_mset_copy : forall n (m : mset T), eval (sum i (copy_mset n m)) == @copy _ (@Bin.value _ _ (e_bin i)) n (eval (sum i m)).
- Proof.
- induction n using Pind; intros.
-
- unfold copy_mset. rewrite copy_xH. reflexivity.
- rewrite copy_mset_succ. rewrite copy_Psucc. rewrite IHn. reflexivity.
- Qed.
-
- Instance compat_sum_unit_Unit : forall p, compat_sum_unit (left p) ->
- @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
- Proof.
- intros.
- inversion H. subst. auto.
- Qed.
-
- Lemma copy_n_unit : forall j n, is_unit j = true ->
- eval (unit j) == @copy _ (Bin.value (e_bin i)) n (eval (unit j)).
- Proof.
- intros.
- induction n using Prect.
- rewrite copy_xH. reflexivity.
- rewrite copy_Psucc. rewrite <- IHn. apply is_unit_sum_Unit in H. rewrite law_neutral_left. reflexivity.
- Qed.
-
-
- Lemma z0 l r (H : compat_sum_unit r):
- eval (sum i (run_msets (comp (merge_msets compare) l r))) == eval (sum i ((merge_msets compare) (l) (run_msets r))).
- Proof.
- unfold comp. unfold run_msets.
- case_eq r; intros; subst.
- rewrite eval_merge_bin; auto.
- rewrite eval_sum_nil.
- apply compat_sum_unit_Unit in H. rewrite law_neutral_right. reflexivity.
- reflexivity.
- Qed.
-
- Lemma z1 : forall n x,
- eval (sum i (run_msets (return_sum i (is_unit) x n )))
- == @copy _ (@Bin.value _ _ (e_bin i)) n (eval x).
- Proof.
- intros. unfold return_sum. unfold run_msets.
- case (is_sum_spec); intros; subst.
- rewrite copy_mset_copy.
- reflexivity.
-
- rewrite eval_sum_nil. apply copy_n_unit. auto.
- reflexivity.
- Qed.
- Lemma z2 : forall u n x, compat_sum_unit x ->
- eval (sum i ( run_msets
- (add_to_sum i (is_unit) u n x)))
- ==
- @Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval u)) (eval (sum i (run_msets x))).
- Proof.
- intros u n x Hix .
- unfold add_to_sum.
- case is_sum_spec; intros; subst.
-
- rewrite z0 by auto. rewrite eval_merge_bin. rewrite copy_mset_copy. reflexivity.
- rewrite <- copy_n_unit by assumption.
- apply is_unit_sum_Unit in H.
- rewrite law_neutral_left. reflexivity.
-
-
- rewrite z0 by auto. rewrite eval_merge_bin. reflexivity.
- Qed.
- End sum_correctness.
- Lemma eval_norm_msets i norm
- (Comm : Commutative R (Bin.value (e_bin i)))
- (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (sum i (norm_msets norm i h)) == eval (sum i h).
- Proof.
- unfold norm_msets.
- assert (H :
- forall h : mset T,
- eval (sum i (run_msets (norm_msets_ i (is_unit_of i) norm h))) == eval (sum i h) /\ compat_sum_unit (is_unit_of i) (norm_msets_ i (is_unit_of i) norm h)).
-
- induction h as [[a n] | [a n] h [IHh IHh']]; simpl norm_msets_; split.
- rewrite z1 by auto. rewrite Hnorm . reflexivity. auto.
- apply compat_sum_unit_return.
-
- rewrite z2 by auto. rewrite IHh.
- rewrite eval_sum_cons. rewrite Hnorm. reflexivity. apply compat_sum_unit_add, IHh'.
-
- apply H.
- Defined.
-
- (** auxiliary lemmas about products *)
-
- Section prd_correctness.
- Variable i : idx.
- Variable is_unit : idx -> bool.
- Hypothesis is_unit_prd_Unit : forall j, is_unit j = true-> @Unit X R (Bin.value (e_bin i)) (eval (unit j)).
-
- Inductive is_prd_spec_ind : T -> @discr (nelist T) -> Prop :=
- | is_prd_spec_op :
- forall j l, j = i -> is_prd_spec_ind (prd j l) (Is_op l)
- | is_prd_spec_unit :
- forall j, is_unit j = true -> is_prd_spec_ind (unit j) (Is_unit j)
- | is_prd_spec_nothing :
- forall u, is_prd_spec_ind u (Is_nothing).
-
- Lemma is_prd_spec u : is_prd_spec_ind u (is_prd i is_unit u).
- Proof.
- unfold is_prd; case u; intros; try constructor.
- case (eq_idx_spec); intros; subst; try constructor; auto.
- case_eq (is_unit p); intros; try constructor; auto.
- Qed.
-
- Lemma prd'_prd : forall (l: nelist T), eval (prd' i l) == eval (prd i l).
- Proof.
- intros [?|? [|? ?]]; simpl; reflexivity.
- Qed.
-
-
- Lemma eval_prd_nil x: eval (prd i (nil x)) == eval x.
- Proof.
- rewrite <- prd'_prd. simpl. reflexivity.
- Qed.
- Lemma eval_prd_cons a : forall (l: nelist T), eval (prd i (a::l)) == @Bin.value _ _ (e_bin i) (eval a) (eval (prd i l)).
- Proof.
- intros [|b l]; simpl; reflexivity.
- Qed.
- Lemma eval_prd_app : forall (h k: nelist T), eval (prd i (h++k)) == @Bin.value _ _ (e_bin i) (eval (prd i h)) (eval (prd i k)).
- Proof.
- induction h; intro k. simpl; try reflexivity.
- simpl appne. rewrite 2 eval_prd_cons, IHh, law_assoc. reflexivity.
- Qed.
-
- Inductive compat_prd_unit : @m idx (nelist T) -> Prop :=
- | cpu_left : forall x, is_unit x = true -> compat_prd_unit (left x)
- | cpu_right : forall m, compat_prd_unit (right m)
- .
-
- Lemma compat_prd_unit_return x: compat_prd_unit (return_prd i is_unit x).
- Proof.
- unfold return_prd.
- case (is_prd_spec); intros; try constructor; auto.
- Qed.
-
- Lemma compat_prd_unit_add : forall x h,
- compat_prd_unit h
- ->
- compat_prd_unit
- (add_to_prd i is_unit x
- h).
- Proof.
- intros.
- unfold add_to_prd.
- unfold comp.
- case (is_prd_spec); intros; try constructor; auto.
- unfold comp; case h; try constructor.
- unfold comp; case h; try constructor.
- Qed.
-
-
- Instance compat_prd_Unit : forall p, compat_prd_unit (left p) ->
- @Unit X R (Bin.value (e_bin i)) (eval (unit p)).
- Proof.
- intros.
- inversion H; subst. apply is_unit_prd_Unit. assumption.
- Qed.
-
- Lemma z0' : forall l (r: @m idx (nelist T)), compat_prd_unit r ->
- eval (prd i (run_list (comp (@appne T) l r))) == eval (prd i ((appne (l) (run_list r)))).
- Proof.
- intros.
- unfold comp. unfold run_list. case_eq r; intros; auto; subst.
- rewrite eval_prd_app.
- rewrite eval_prd_nil.
- apply compat_prd_Unit in H. rewrite law_neutral_right. reflexivity.
- reflexivity.
- Qed.
-
- Lemma z1' a : eval (prd i (run_list (return_prd i is_unit a))) == eval (prd i (nil a)).
- Proof.
- intros. unfold return_prd. unfold run_list.
- case (is_prd_spec); intros; subst; reflexivity.
- Qed.
- Lemma z2' : forall u x, compat_prd_unit x ->
- eval (prd i ( run_list
- (add_to_prd i is_unit u x))) == @Bin.value _ _ (e_bin i) (eval u) (eval (prd i (run_list x))).
- Proof.
- intros u x Hix.
- unfold add_to_prd.
- case (is_prd_spec); intros; subst.
- rewrite z0' by auto. rewrite eval_prd_app. reflexivity.
- apply is_unit_prd_Unit in H. rewrite law_neutral_left. reflexivity.
- rewrite z0' by auto. rewrite eval_prd_app. reflexivity.
- Qed.
-
- End prd_correctness.
-
-
-
-
- Lemma eval_norm_lists i (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (prd i (norm_lists norm i h)) == eval (prd i h).
- Proof.
- unfold norm_lists.
- assert (H : forall h : nelist T,
- eval (prd i (run_list (norm_lists_ i (is_unit_of i) norm h))) ==
- eval (prd i h)
- /\ compat_prd_unit (is_unit_of i) (norm_lists_ i (is_unit_of i) norm h)).
-
-
- induction h as [a | a h [IHh IHh']]; simpl norm_lists_; split.
- rewrite z1'. simpl. apply Hnorm.
-
- apply compat_prd_unit_return.
-
- rewrite z2'. rewrite IHh. rewrite eval_prd_cons. rewrite Hnorm. reflexivity. apply is_unit_of_Unit.
- auto.
-
- apply compat_prd_unit_add. auto.
- apply H.
- Defined.
-
- (** correctness of the normalisation function *)
-
- Theorem eval_norm: forall u, eval (norm u) == eval u
- with eval_norm_aux: forall i (l: vT i) (f: Sym.type_of i),
- Proper (@Sym.rel_of X R i) f -> eval_aux (vnorm l) f == eval_aux l f.
- Proof.
- induction u as [ p m | p l | ? | ?]; simpl norm.
- case_eq (is_commutative p); intros.
- rewrite sum'_sum.
- apply eval_norm_msets; auto.
- reflexivity.
-
- rewrite prd'_prd.
- apply eval_norm_lists; auto.
-
- apply eval_norm_aux, Sym.morph.
-
- reflexivity.
-
- induction l; simpl; intros f Hf. reflexivity.
- rewrite eval_norm. apply IHl, Hf; reflexivity.
- Qed.
-
-
- (** corollaries, for goal normalisation or decision *)
-
- Lemma normalise : forall (u v: T), eval (norm u) == eval (norm v) -> eval u == eval v.
- Proof. intros u v. rewrite 2 eval_norm. trivial. Qed.
-
- Lemma compare_reflect_eq: forall u v, compare u v = Eq -> eval u == eval v.
- Proof. intros u v. case (tcompare_weak_spec u v); intros; try congruence. reflexivity. Qed.
-
- Lemma decide: forall (u v: T), compare (norm u) (norm v) = Eq -> eval u == eval v.
- Proof. intros u v H. apply normalise. apply compare_reflect_eq. apply H. Qed.
-
- Lemma lift_normalise {S} {H : AAC_lift S R}:
- forall (u v: T), (let x := norm u in let y := norm v in
- S (eval x) (eval y)) -> S (eval u) (eval v).
- Proof. destruct H. intros u v; simpl; rewrite 2 eval_norm. trivial. Qed.
-
-End s.
-End Internal.
-
-Local Ltac internal_normalize :=
- let x := fresh in let y := fresh in
- intro x; intro y; vm_compute in x; vm_compute in y; unfold x; unfold y;
- compute [Internal.eval Internal.fold_map Internal.copy Prect]; simpl.
-
-
-(** * Lemmas for performing transitivity steps
- given an instance of AAC_lift *)
-
-Section t.
- Context `{AAC_lift}.
-
- Lemma lift_transitivity_left (y x z : X): E x y -> R y z -> R x z.
- Proof. destruct H as [Hequiv Hproper]; intros G;rewrite G. trivial. Qed.
-
- Lemma lift_transitivity_right (y x z : X): E y z -> R x y -> R x z.
- Proof. destruct H as [Hequiv Hproper]; intros G. rewrite G. trivial. Qed.
-
- Lemma lift_reflexivity {HR :Reflexive R}: forall x y, E x y -> R x y.
- Proof. destruct H. intros ? ? G. rewrite G. reflexivity. Qed.
-
-End t.
-
-Declare ML Module "aac".