aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/video_core/rasterizer.cpp
blob: a7c1bab3e78176e61adcf58ae74dbf6333d769f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.

#include <algorithm>

#include "common/common_types.h"

#include "math.h"
#include "pica.h"
#include "rasterizer.h"
#include "vertex_shader.h"

namespace Pica {

namespace Rasterizer {

static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
    u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress());
    u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();

    // Assuming RGBA8 format until actual framebuffer format handling is implemented
    *(color_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
}

static u32 GetDepth(int x, int y) {
    u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());

    // Assuming 16-bit depth buffer format until actual format handling is implemented
    return *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2);
}

static void SetDepth(int x, int y, u16 value) {
    u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());

    // Assuming 16-bit depth buffer format until actual format handling is implemented
    *(depth_buffer + x + y * registers.framebuffer.GetWidth() / 2) = value;
}

void ProcessTriangle(const VertexShader::OutputVertex& v0,
                     const VertexShader::OutputVertex& v1,
                     const VertexShader::OutputVertex& v2)
{
    // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
    struct Fix12P4 {
        Fix12P4() {}
        Fix12P4(u16 val) : val(val) {}

        static u16 FracMask() { return 0xF; }
        static u16 IntMask() { return (u16)~0xF; }

        operator u16() const {
            return val;
        }

        bool operator < (const Fix12P4& oth) const {
            return (u16)*this < (u16)oth;
        }

    private:
        u16 val;
    };

    // vertex positions in rasterizer coordinates
    auto FloatToFix = [](float24 flt) {
                          return Fix12P4(flt.ToFloat32() * 16.0f);
                      };
    auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
                                             return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
                                         };
    Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
                                   ScreenToRasterizerCoordinates(v1.screenpos),
                                   ScreenToRasterizerCoordinates(v2.screenpos) };

    // TODO: Proper scissor rect test!
    u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
    u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
    u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
    u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});

    min_x = min_x & Fix12P4::IntMask();
    min_y = min_y & Fix12P4::IntMask();
    max_x = (max_x + Fix12P4::FracMask()) & Fix12P4::IntMask();
    max_y = (max_y + Fix12P4::FracMask()) & Fix12P4::IntMask();

    // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
    // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
    // values which are added to the barycentric coordinates w0, w1 and w2, respectively.
    // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
    auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
                                          const Math::Vec2<Fix12P4>& line1,
                                          const Math::Vec2<Fix12P4>& line2)
    {
        if (line1.y == line2.y) {
            // just check if vertex is above us => bottom line parallel to x-axis
            return vtx.y < line1.y;
        } else {
            // check if vertex is on our left => right side
            // TODO: Not sure how likely this is to overflow
            return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
        }
    };
    int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
    int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
    int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;

    // TODO: Not sure if looping through x first might be faster
    for (u16 y = min_y; y < max_y; y += 0x10) {
        for (u16 x = min_x; x < max_x; x += 0x10) {

            // Calculate the barycentric coordinates w0, w1 and w2
            auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
                               const Math::Vec2<Fix12P4>& vtx2,
                               const Math::Vec2<Fix12P4>& vtx3) {
                const auto vec1 = (vtx2.Cast<int>() - vtx1.Cast<int>()).Append(0);
                const auto vec2 = (vtx3.Cast<int>() - vtx1.Cast<int>()).Append(0);
                // TODO: There is a very small chance this will overflow for sizeof(int) == 4
                return Cross(vec1, vec2).z;
            };

            int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
            int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
            int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
            int wsum = w0 + w1 + w2;

            // If current pixel is not covered by the current primitive
            if (w0 < 0 || w1 < 0 || w2 < 0)
                continue;

            // Perspective correct attribute interpolation:
            // Attribute values cannot be calculated by simple linear interpolation since
            // they are not linear in screen space. For example, when interpolating a
            // texture coordinate across two vertices, something simple like
            //     u = (u0*w0 + u1*w1)/(w0+w1)
            // will not work. However, the attribute value divided by the
            // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
            // in screenspace. Hence, we can linearly interpolate these two independently and
            // calculate the interpolated attribute by dividing the results.
            // I.e.
            //     u_over_w   = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
            //     one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
            //     u = u_over_w / one_over_w
            //
            // The generalization to three vertices is straightforward in baricentric coordinates.
            auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
                auto attr_over_w = Math::MakeVec3(attr0 / v0.pos.w,
                                                  attr1 / v1.pos.w,
                                                  attr2 / v2.pos.w);
                auto w_inverse   = Math::MakeVec3(float24::FromFloat32(1.f) / v0.pos.w,
                                                  float24::FromFloat32(1.f) / v1.pos.w,
                                                  float24::FromFloat32(1.f) / v2.pos.w);
                auto baricentric_coordinates = Math::MakeVec3(float24::FromFloat32(w0),
                                                              float24::FromFloat32(w1),
                                                              float24::FromFloat32(w2));

                float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
                float24 interpolated_w_inverse   = Math::Dot(w_inverse,   baricentric_coordinates);
                return interpolated_attr_over_w / interpolated_w_inverse;
            };

            Math::Vec4<u8> primary_color{
                (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
                (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
                (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
                (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
            };

            u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
                           (float)v1.screenpos[2].ToFloat32() * w1 +
                           (float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); // TODO: Shouldn't need to multiply by 65536?
            SetDepth(x >> 4, y >> 4, z);

            DrawPixel(x >> 4, y >> 4, primary_color);
        }
    }
}

} // namespace Rasterizer

} // namespace Pica