aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/mem_map_funcs.cpp
blob: af4cfacbdf5c4ffa312b4a025055e412790f8812 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.

#include <map>

#include "common/common.h"

#include "core/mem_map.h"
#include "core/hw/hw.h"
#include "hle/hle.h"

namespace Memory {

std::map<u32, HeapBlock> g_heap_gsp_map;

/// Convert a physical address to virtual address
u32 _AddressPhysicalToVirtual(const u32 addr) {
    // Our memory interface read/write functions assume virtual addresses. Put any physical address 
    // to virtual address translations here. This is obviously quite hacky... But we're not doing 
    // any MMU emulation yet or anything
    if ((addr >= FCRAM_PADDR) && (addr < (FCRAM_PADDR_END))) {
        return (addr & FCRAM_MASK) | FCRAM_VADDR;
    }
    return addr;
}

template <typename T>
inline void _Read(T &var, const u32 addr) {
    // TODO: Figure out the fastest order of tests for both read and write (they are probably different).
    // TODO: Make sure this represents the mirrors in a correct way.
    // Could just do a base-relative read, too.... TODO

    const u32 vaddr = _AddressPhysicalToVirtual(addr);
    
    // Memory allocated for HLE use that can be addressed from the emulated application
    // The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
    // core running the user application (appcore)
    if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
        HLE::Read<T>(var, vaddr);

    // Hardware I/O register reads
    // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
    } else if ((vaddr & 0xFF000000) == 0x10000000 || (vaddr & 0xFF000000) == 0x1E000000) {
        HW::Read<T>(var, vaddr);

    // FCRAM - GSP heap
    } else if ((vaddr > HEAP_GSP_VADDR)  && (vaddr < HEAP_GSP_VADDR_END)) {
        var = *((const T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK]);

    // FCRAM - application heap
    } else if ((vaddr > HEAP_VADDR)  && (vaddr < HEAP_VADDR_END)) {
        var = *((const T*)&g_heap[vaddr & HEAP_MASK]);

    /*else if ((vaddr & 0x3F800000) == 0x04000000) {
        var = *((const T*)&m_pVRAM[vaddr & VRAM_MASK]);*/

    } else {
        //_assert_msg_(MEMMAP, false, "unknown Read%d @ 0x%08X", sizeof(var) * 8, vaddr);
    }
}

template <typename T>
inline void _Write(u32 addr, const T data) {
    u32 vaddr = _AddressPhysicalToVirtual(addr);
    
    // Memory allocated for HLE use that can be addressed from the emulated application
    // The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
    // core running the user application (appcore)
    if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
        HLE::Write<T>(vaddr, data);

    // Hardware I/O register writes
    // 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
    } else if ((vaddr & 0xFF000000) == 0x10000000 || (vaddr & 0xFF000000) == 0x1E000000) {
        HW::Write<T>(vaddr, data);

    // FCRAM - GSP heap
    } else if ((vaddr > HEAP_GSP_VADDR)  && (vaddr < HEAP_GSP_VADDR_END)) {
        *(T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK] = data;

    // FCRAM - application heap
    } else if ((vaddr > HEAP_VADDR)  && (vaddr < HEAP_VADDR_END)) {
        *(T*)&g_heap[vaddr & HEAP_MASK] = data;

    } else if ((vaddr & 0xFF000000) == 0x14000000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
    } else if ((vaddr & 0xFFF00000) == 0x1EC00000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
    } else if ((vaddr & 0xFF000000) == 0x1F000000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
    } else if ((vaddr & 0xFFF00000) == 0x1FF00000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
    } else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
    } else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
        _assert_msg_(MEMMAP, false, "umimplemented write to shared page");
    
    // Error out...
    } else {
        _assert_msg_(MEMMAP, false, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8,
            data, vaddr);
    }
}

u8 *GetPointer(const u32 addr) {
    const u32 vaddr = _AddressPhysicalToVirtual(addr);

    // FCRAM - GSP heap
    if ((vaddr >= HEAP_GSP_VADDR)  && (vaddr < HEAP_GSP_VADDR_END)) {
        return g_heap_gsp + (vaddr & HEAP_GSP_MASK);

    // FCRAM - application heap
    } else if ((vaddr >= HEAP_VADDR)  && (vaddr < HEAP_VADDR_END)) {
        return g_heap + (vaddr & HEAP_MASK);

    } else {
        ERROR_LOG(MEMMAP, "Unknown GetPointer @ 0x%08x", vaddr);
        return 0;
    }
}

/**
 * Maps a block of memory on the GSP heap
 * @param size Size of block in bytes
 * @param flags Memory allocation flags
 */
u32 MapBlock_HeapGSP(u32 size, u32 operation, u32 permissions) {
    HeapBlock block;
    
    block.base_address  = HEAP_GSP_VADDR;
    block.size          = size;
    block.operation     = operation;
    block.permissions   = permissions;
    
    if (g_heap_gsp_map.size() > 0) {
        const HeapBlock last_block = g_heap_gsp_map.rbegin()->second;
        block.address = last_block.address + last_block.size;
    }
    g_heap_gsp_map[block.GetVirtualAddress()] = block;

    return block.GetVirtualAddress();
}

u8 Read8(const u32 addr) {
    u8 _var = 0;
    _Read<u8>(_var, addr);
    return (u8)_var;
}

u16 Read16(const u32 addr) {
    u16_le _var = 0;
    _Read<u16_le>(_var, addr);
    return (u16)_var;
}

u32 Read32(const u32 addr) {
    u32_le _var = 0;
    _Read<u32_le>(_var, addr);
    return _var;
}

u64 Read64(const u32 addr) {
    u64_le _var = 0;
    _Read<u64_le>(_var, addr);
    return _var;
}

u32 Read8_ZX(const u32 addr) {
    return (u32)Read8(addr);
}

u32 Read16_ZX(const u32 addr) {
    return (u32)Read16(addr);
}

void Write8(const u32 addr, const u8 data) {
    _Write<u8>(addr, data);
}

void Write16(const u32 addr, const u16 data) {
    _Write<u16_le>(addr, data);
}

void Write32(const u32 addr, const u32 data) {
    _Write<u32_le>(addr, data);
}

void Write64(const u32 addr, const u64 data) {
    _Write<u64_le>(addr, data);
}

} // namespace