aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/arm/skyeye_common/vfp/vfp_helper.h
blob: a55bf875c84d6527179ff33b6a278138805c5d86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
/*
    vfp/vfp.h - ARM VFPv3 emulation unit - SoftFloat lib helper
    Copyright (C) 2003 Skyeye Develop Group
    for help please send mail to <skyeye-developer@lists.gro.clinux.org>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

/* 
 *  The following code is derivative from Linux Android kernel vfp
 *  floating point support.
 * 
 *  Copyright (C) 2004 ARM Limited.
 *  Written by Deep Blue Solutions Limited.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef __VFP_HELPER_H__
#define __VFP_HELPER_H__

/* Custom edit */

#include <stdint.h>
#include <stdio.h>

#include "core/arm/skyeye_common/armdefs.h"

#define u16 uint16_t
#define u32 uint32_t
#define u64 uint64_t
#define s16 int16_t
#define s32 int32_t
#define s64 int64_t

#define pr_info //printf
#define pr_debug //printf

static u32 vfp_fls(int x);
#define do_div(n, base) {n/=base;}

/* From vfpinstr.h */

#define INST_CPRTDO(inst)	(((inst) & 0x0f000000) == 0x0e000000)
#define INST_CPRT(inst)		((inst) & (1 << 4))
#define INST_CPRT_L(inst)	((inst) & (1 << 20))
#define INST_CPRT_Rd(inst)	(((inst) & (15 << 12)) >> 12)
#define INST_CPRT_OP(inst)	(((inst) >> 21) & 7)
#define INST_CPNUM(inst)	((inst) & 0xf00)
#define CPNUM(cp)		((cp) << 8)

#define FOP_MASK	(0x00b00040)
#define FOP_FMAC	(0x00000000)
#define FOP_FNMAC	(0x00000040)
#define FOP_FMSC	(0x00100000)
#define FOP_FNMSC	(0x00100040)
#define FOP_FMUL	(0x00200000)
#define FOP_FNMUL	(0x00200040)
#define FOP_FADD	(0x00300000)
#define FOP_FSUB	(0x00300040)
#define FOP_FDIV	(0x00800000)
#define FOP_EXT		(0x00b00040)

#define FOP_TO_IDX(inst)	((inst & 0x00b00000) >> 20 | (inst & (1 << 6)) >> 4)

#define FEXT_MASK	(0x000f0080)
#define FEXT_FCPY	(0x00000000)
#define FEXT_FABS	(0x00000080)
#define FEXT_FNEG	(0x00010000)
#define FEXT_FSQRT	(0x00010080)
#define FEXT_FCMP	(0x00040000)
#define FEXT_FCMPE	(0x00040080)
#define FEXT_FCMPZ	(0x00050000)
#define FEXT_FCMPEZ	(0x00050080)
#define FEXT_FCVT	(0x00070080)
#define FEXT_FUITO	(0x00080000)
#define FEXT_FSITO	(0x00080080)
#define FEXT_FTOUI	(0x000c0000)
#define FEXT_FTOUIZ	(0x000c0080)
#define FEXT_FTOSI	(0x000d0000)
#define FEXT_FTOSIZ	(0x000d0080)

#define FEXT_TO_IDX(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)

#define vfp_get_sd(inst)	((inst & 0x0000f000) >> 11 | (inst & (1 << 22)) >> 22)
#define vfp_get_dd(inst)	((inst & 0x0000f000) >> 12 | (inst & (1 << 22)) >> 18)
#define vfp_get_sm(inst)	((inst & 0x0000000f) << 1 | (inst & (1 << 5)) >> 5)
#define vfp_get_dm(inst)	((inst & 0x0000000f) | (inst & (1 << 5)) >> 1)
#define vfp_get_sn(inst)	((inst & 0x000f0000) >> 15 | (inst & (1 << 7)) >> 7)
#define vfp_get_dn(inst)	((inst & 0x000f0000) >> 16 | (inst & (1 << 7)) >> 3)

#define vfp_single(inst)	(((inst) & 0x0000f00) == 0xa00)

#define FPSCR_N	(1 << 31)
#define FPSCR_Z	(1 << 30)
#define FPSCR_C (1 << 29)
#define FPSCR_V	(1 << 28)

/* -------------- */

/* From asm/include/vfp.h */

/* FPSCR bits */
#define FPSCR_DEFAULT_NAN	(1<<25)
#define FPSCR_FLUSHTOZERO	(1<<24)
#define FPSCR_ROUND_NEAREST	(0<<22)
#define FPSCR_ROUND_PLUSINF	(1<<22)
#define FPSCR_ROUND_MINUSINF	(2<<22)
#define FPSCR_ROUND_TOZERO	(3<<22)
#define FPSCR_RMODE_BIT		(22)
#define FPSCR_RMODE_MASK	(3 << FPSCR_RMODE_BIT)
#define FPSCR_STRIDE_BIT	(20)
#define FPSCR_STRIDE_MASK	(3 << FPSCR_STRIDE_BIT)
#define FPSCR_LENGTH_BIT	(16)
#define FPSCR_LENGTH_MASK	(7 << FPSCR_LENGTH_BIT)
#define FPSCR_IOE		(1<<8)
#define FPSCR_DZE		(1<<9)
#define FPSCR_OFE		(1<<10)
#define FPSCR_UFE		(1<<11)
#define FPSCR_IXE		(1<<12)
#define FPSCR_IDE		(1<<15)
#define FPSCR_IOC		(1<<0)
#define FPSCR_DZC		(1<<1)
#define FPSCR_OFC		(1<<2)
#define FPSCR_UFC		(1<<3)
#define FPSCR_IXC		(1<<4)
#define FPSCR_IDC		(1<<7)

/* ---------------- */

static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
{
	if (shift) {
		if (shift < 32)
			val = val >> shift | ((val << (32 - shift)) != 0);
		else
			val = val != 0;
	}
	return val;
}

static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
{
	if (shift) {
		if (shift < 64)
			val = val >> shift | ((val << (64 - shift)) != 0);
		else
			val = val != 0;
	}
	return val;
}

static inline u32 vfp_hi64to32jamming(u64 val)
{
	u32 v;
	u32 highval = val >> 32;
	u32 lowval = val & 0xffffffff;

	if (lowval >= 1)
		v = highval | 1;
	else
		v = highval;

	return v;
}

static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
{
	*resl = nl + ml;
	*resh = nh + mh;
	if (*resl < nl)
		*resh += 1;
}

static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
{
	*resl = nl - ml;
	*resh = nh - mh;
	if (*resl > nl)
		*resh -= 1;
}

static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
{
	u32 nh, nl, mh, ml;
	u64 rh, rma, rmb, rl;

	nl = n;
	ml = m;
	rl = (u64)nl * ml;

	nh = n >> 32;
	rma = (u64)nh * ml;

	mh = m >> 32;
	rmb = (u64)nl * mh;
	rma += rmb;

	rh = (u64)nh * mh;
	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);

	rma <<= 32;
	rl += rma;
	rh += (rl < rma);

	*resl = rl;
	*resh = rh;
}

static inline void shift64left(u64 *resh, u64 *resl, u64 n)
{
	*resh = n >> 63;
	*resl = n << 1;
}

static inline u64 vfp_hi64multiply64(u64 n, u64 m)
{
	u64 rh, rl;
	mul64to128(&rh, &rl, n, m);
	return rh | (rl != 0);
}

static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
{
	u64 mh, ml, remh, reml, termh, terml, z;

	if (nh >= m)
		return ~0ULL;
	mh = m >> 32;
	if (mh << 32 <= nh) {
		z = 0xffffffff00000000ULL;
	} else {
		z = nh;
		do_div(z, mh);
		z <<= 32;
	}
	mul64to128(&termh, &terml, m, z);
	sub128(&remh, &reml, nh, nl, termh, terml);
	ml = m << 32;
	while ((s64)remh < 0) {
		z -= 0x100000000ULL;
		add128(&remh, &reml, remh, reml, mh, ml);
	}
	remh = (remh << 32) | (reml >> 32);
	if (mh << 32 <= remh) {
		z |= 0xffffffff;
	} else {
		do_div(remh, mh);
		z |= remh;
	}
	return z;
}

/*
 * Operations on unpacked elements
 */
#define vfp_sign_negate(sign)	(sign ^ 0x8000)

/*
 * Single-precision
 */
struct vfp_single {
	s16	exponent;
	u16	sign;
	u32	significand;
};

#ifdef __cplusplus
 extern "C" {
#endif
extern s32 vfp_get_float(ARMul_State * state, unsigned int reg);
extern void vfp_put_float(ARMul_State * state, s32 val, unsigned int reg);
#ifdef __cplusplus
 }
#endif

/*
 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 *  which are not propagated to the float upon packing.
 */
#define VFP_SINGLE_MANTISSA_BITS	(23)
#define VFP_SINGLE_EXPONENT_BITS	(8)
#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)

/*
 * The bit in an unpacked float which indicates that it is a quiet NaN
 */
#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))

/*
 * Operations on packed single-precision numbers
 */
#define vfp_single_packed_sign(v)	((v) & 0x80000000)
#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
#define vfp_single_packed_abs(v)	((v) & ~0x80000000)
#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))

/*
 * Unpack a single-precision float.  Note that this returns the magnitude
 * of the single-precision float mantissa with the 1. if necessary,
 * aligned to bit 30.
 */
static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
{
	u32 significand;

	s->sign = vfp_single_packed_sign(val) >> 16,
	s->exponent = vfp_single_packed_exponent(val);

	significand = (u32) val;
	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
	if (s->exponent && s->exponent != 255)
		significand |= 0x40000000;
	s->significand = significand;
}

/*
 * Re-pack a single-precision float.  This assumes that the float is
 * already normalised such that the MSB is bit 30, _not_ bit 31.
 */
static inline s32 vfp_single_pack(struct vfp_single *s)
{
	u32 val;
	val = (s->sign << 16) +
	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
	      (s->significand >> VFP_SINGLE_LOW_BITS);
	return (s32)val;
}

#define VFP_NUMBER		(1<<0)
#define VFP_ZERO		(1<<1)
#define VFP_DENORMAL		(1<<2)
#define VFP_INFINITY		(1<<3)
#define VFP_NAN			(1<<4)
#define VFP_NAN_SIGNAL		(1<<5)

#define VFP_QNAN		(VFP_NAN)
#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)

static inline int vfp_single_type(struct vfp_single *s)
{
	int type = VFP_NUMBER;
	if (s->exponent == 255) {
		if (s->significand == 0)
			type = VFP_INFINITY;
		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
			type = VFP_QNAN;
		else
			type = VFP_SNAN;
	} else if (s->exponent == 0) {
		if (s->significand == 0)
			type |= VFP_ZERO;
		else
			type |= VFP_DENORMAL;
	}
	return type;
}


u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);

/*
 * Double-precision
 */
struct vfp_double {
	s16	exponent;
	u16	sign;
	u64	significand;
};

/*
 * VFP_REG_ZERO is a special register number for vfp_get_double
 * which returns (double)0.0.  This is useful for the compare with
 * zero instructions.
 */
#ifdef CONFIG_VFPv3
#define VFP_REG_ZERO	32
#else
#define VFP_REG_ZERO	16
#endif
#ifdef __cplusplus
 extern "C" {
#endif
extern u64 vfp_get_double(ARMul_State * state, unsigned int reg);
extern void vfp_put_double(ARMul_State * state, u64 val, unsigned int reg);
#ifdef __cplusplus
 }
#endif
#define VFP_DOUBLE_MANTISSA_BITS	(52)
#define VFP_DOUBLE_EXPONENT_BITS	(11)
#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)

/*
 * The bit in an unpacked double which indicates that it is a quiet NaN
 */
#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))

/*
 * Operations on packed single-precision numbers
 */
#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))

/*
 * Unpack a double-precision float.  Note that this returns the magnitude
 * of the double-precision float mantissa with the 1. if necessary,
 * aligned to bit 62.
 */
static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
{
	u64 significand;

	s->sign = vfp_double_packed_sign(val) >> 48;
	s->exponent = vfp_double_packed_exponent(val);

	significand = (u64) val;
	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
	if (s->exponent && s->exponent != 2047)
		significand |= (1ULL << 62);
	s->significand = significand;
}

/*
 * Re-pack a double-precision float.  This assumes that the float is
 * already normalised such that the MSB is bit 30, _not_ bit 31.
 */
static inline s64 vfp_double_pack(struct vfp_double *s)
{
	u64 val;
	val = ((u64)s->sign << 48) +
	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
	      (s->significand >> VFP_DOUBLE_LOW_BITS);
	return (s64)val;
}

static inline int vfp_double_type(struct vfp_double *s)
{
	int type = VFP_NUMBER;
	if (s->exponent == 2047) {
		if (s->significand == 0)
			type = VFP_INFINITY;
		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
			type = VFP_QNAN;
		else
			type = VFP_SNAN;
	} else if (s->exponent == 0) {
		if (s->significand == 0)
			type |= VFP_ZERO;
		else
			type |= VFP_DENORMAL;
	}
	return type;
}

u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);

u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);

/*
 * A special flag to tell the normalisation code not to normalise.
 */
#define VFP_NAN_FLAG	0x100

/*
 * A bit pattern used to indicate the initial (unset) value of the
 * exception mask, in case nothing handles an instruction.  This
 * doesn't include the NAN flag, which get masked out before
 * we check for an error.
 */
#define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)

/*
 * A flag to tell vfp instruction type.
 *  OP_SCALAR - this operation always operates in scalar mode
 *  OP_SD - the instruction exceptionally writes to a single precision result.
 *  OP_DD - the instruction exceptionally writes to a double precision result.
 *  OP_SM - the instruction exceptionally reads from a single precision operand.
 */
#define OP_SCALAR	(1 << 0)
#define OP_SD		(1 << 1)
#define OP_DD		(1 << 1)
#define OP_SM		(1 << 2)

struct op {
	u32 (* const fn)(ARMul_State* state, int dd, int dn, int dm, u32 fpscr);
	u32 flags;
};

static u32 vfp_fls(int x)
{
	int r = 32;

	if (!x)
		return 0;
	if (!(x & 0xffff0000u)) {
		x <<= 16;
		r -= 16;
	}
	if (!(x & 0xff000000u)) {
		x <<= 8;
		r -= 8;
	}
	if (!(x & 0xf0000000u)) {
		x <<= 4;
		r -= 4;
	}
	if (!(x & 0xc0000000u)) {
		x <<= 2;
		r -= 2;
	}
	if (!(x & 0x80000000u)) {
		x <<= 1;
		r -= 1;
	}
	return r;

}

#endif