aboutsummaryrefslogtreecommitdiff
path: root/src/decoder/partition.cc
blob: 90d39fd25cb3cda8b43df4a1e87840bd3364b898 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/decoder/partition.h"
#include "src/base/bottom_n.h"
#include "src/decoder/footprint.h"

#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <numeric>
#include <queue>
#include <set>
#include <unordered_set>
#include <utility>

namespace astc_codec {

namespace {

// The maximum number of partitions supported by ASTC is four.
constexpr int kMaxNumSubsets = 4;

// Partition selection function based on the ASTC specification.
// See section C.2.21
int SelectASTCPartition(int seed, int x, int y, int z, int partitioncount,
                        int num_pixels) {
  if (partitioncount <= 1) {
    return 0;
  }

  if (num_pixels < 31) {
    x <<= 1;
    y <<= 1;
    z <<= 1;
  }

  seed += (partitioncount - 1) * 1024;

  uint32_t rnum = seed;
  rnum ^= rnum >> 15;
  rnum -= rnum << 17;
  rnum += rnum << 7;
  rnum += rnum << 4;
  rnum ^= rnum >> 5;
  rnum += rnum << 16;
  rnum ^= rnum >> 7;
  rnum ^= rnum >> 3;
  rnum ^= rnum << 6;
  rnum ^= rnum >> 17;

  uint8_t seed1 = rnum & 0xF;
  uint8_t seed2 = (rnum >> 4) & 0xF;
  uint8_t seed3 = (rnum >> 8) & 0xF;
  uint8_t seed4 = (rnum >> 12) & 0xF;
  uint8_t seed5 = (rnum >> 16) & 0xF;
  uint8_t seed6 = (rnum >> 20) & 0xF;
  uint8_t seed7 = (rnum >> 24) & 0xF;
  uint8_t seed8 = (rnum >> 28) & 0xF;
  uint8_t seed9 = (rnum >> 18) & 0xF;
  uint8_t seed10 = (rnum >> 22) & 0xF;
  uint8_t seed11 = (rnum >> 26) & 0xF;
  uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;

  seed1 *= seed1;
  seed2 *= seed2;
  seed3 *= seed3;
  seed4 *= seed4;
  seed5 *= seed5;
  seed6 *= seed6;
  seed7 *= seed7;
  seed8 *= seed8;
  seed9 *= seed9;
  seed10 *= seed10;
  seed11 *= seed11;
  seed12 *= seed12;

  int sh1, sh2, sh3;
  if (seed & 1) {
    sh1 = (seed & 2 ? 4 : 5);
    sh2 = (partitioncount == 3 ? 6 : 5);
  } else {
    sh1 = (partitioncount == 3 ? 6 : 5);
    sh2 = (seed & 2 ? 4 : 5);
  }
  sh3 = (seed & 0x10) ? sh1 : sh2;

  seed1 >>= sh1;
  seed2 >>= sh2;
  seed3 >>= sh1;
  seed4 >>= sh2;
  seed5 >>= sh1;
  seed6 >>= sh2;
  seed7 >>= sh1;
  seed8 >>= sh2;

  seed9 >>= sh3;
  seed10 >>= sh3;
  seed11 >>= sh3;
  seed12 >>= sh3;

  int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
  int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
  int c = seed5 * x + seed6 * y + seed9  * z + (rnum >> 06);
  int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 02);

  a &= 0x3F;
  b &= 0x3F;
  c &= 0x3F;
  d &= 0x3F;

  if (partitioncount <= 3) {
    d = 0;
  }
  if (partitioncount <= 2) {
    c = 0;
  }

  if (a >= b && a >= c && a >= d) {
    return 0;
  } else if (b >= c && b >= d) {
    return 1;
  } else if (c >= d) {
    return 2;
  } else {
    return 3;
  }
}

// A partition hash that we can pass to containers like std::unordered_set
struct PartitionHasher {
  size_t operator()(const Partition& part) const {
    // The issue here is that if we have two different partitions, A and B, then
    // their hash should be equal if A and B are equal. We define the distance
    // between A and B using PartitionMetric, but internally that finds a 1-1
    // mapping from labels in A to labels in B.
    //
    // With that in mind, when we define a hash for partitions, we need to find
    // a 1-1 mapping to a 'universal' labeling scheme. Here we define that as
    // the heuristic: the first encountered label will be 0, the second will be
    // 1, etc. This creates a unique 1-1 mapping scheme from any partition.
    //
    // Note, we can't use this heuristic for the PartitionMetric, as it will
    // generate very large discrepancies between similar labellings (for example
    // 000...001 vs 011...111). We are just looking for a boolean distinction
    // whether or not two partitions are different and don't care how different
    // they are.
    std::array<int, kMaxNumSubsets> mapping {{ -1, -1, -1, -1 }};
    int next_subset = 0;
    for (int subset : part.assignment) {
      if (mapping[subset] < 0) {
        mapping[subset] = next_subset++;
      }
    }
    assert(next_subset <= kMaxNumSubsets);

    // The return value will be the hash of the assignment according to this
    // mapping
    const auto seed = 0;
    return std::accumulate(part.assignment.begin(), part.assignment.end(), seed,
                           [&mapping](size_t seed, const int& subset) {
                             std::hash<size_t> hasher;
                             const int s = mapping[subset];
                             return hasher(seed) ^ hasher(static_cast<size_t>(s));
                           });
  }
};

// Construct a VP-Tree of partitions. Since our PartitionMetric satisfies
// the triangle inequality, we can use this general higher-dimensional space
// partitioning tree to organize our partitions.
//
// TODO(google): !SPEED! Right now this tree stores an actual linked
// structure of pointers which is likely very slow during construction and
// very not cache-coherent during traversal, so it'd probably be good to
// switch to a flattened binary tree structure if performance becomes an
// issue.
class PartitionTree {
 public:
  // Unclear what it means to have an uninitialized tree, so delete default
  // constructors, but allow the tree to be moved
  PartitionTree() = delete;
  PartitionTree(const PartitionTree&) = delete;
  PartitionTree(PartitionTree&& t) = default;

  // Generate a PartitionTree from iterators over |Partition|s
  template<typename Itr>
  PartitionTree(Itr begin, Itr end) : parts_(begin, end) {
    std::vector<int> part_indices(parts_.size());
    std::iota(part_indices.begin(), part_indices.end(), 0);
    root_ = std::unique_ptr<PartitionTreeNode>(
        new PartitionTreeNode(parts_, part_indices));
  }

  // Search for the k-nearest partitions that are closest to part based on
  // the result of PartitionMetric
  void Search(const Partition& part, int k,
              std::vector<const Partition*>* const results,
              std::vector<int>* const distances) const {
    ResultHeap heap(k);
    SearchNode(root_, part, &heap);

    results->clear();
    if (nullptr != distances) {
      distances->clear();
    }

    std::vector<ResultNode> search_results = heap.Pop();
    for (const auto& result : search_results) {
      results->push_back(&parts_[result.part_idx]);
      if (nullptr != distances) {
        distances->push_back(result.distance);
      }
    }

    assert(results->size() == k);
  }

 private:
  // Heap elements to be stored while searching the tree. The two relevant
  // pieces of information are the partition index and it's distance from the
  // queried partition.
  struct ResultNode {
    int part_idx;
    int distance;

    // Heap based on distance from query point.
    bool operator<(const ResultNode& other) const {
      return distance < other.distance;
    }
  };

  using ResultHeap = base::BottomN<ResultNode>;

  struct PartitionTreeNode {
    int part_idx;
    int split_dist;

    std::unique_ptr<PartitionTreeNode> left;
    std::unique_ptr<PartitionTreeNode> right;

    PartitionTreeNode(const std::vector<Partition> &parts,
                      const std::vector<int> &part_indices)
        : split_dist(-1) {
      assert(part_indices.size() > 0);

      right.reset(nullptr);
      left.reset(nullptr);

      // Store the first node as our vantage point
      part_idx = part_indices[0];
      const Partition& vantage_point = parts[part_indices[0]];

      // Calculate the distances of the remaining nodes against the vantage
      // point.
      std::vector<std::pair<int, int>> part_dists;
      for (int i = 1; i < part_indices.size(); ++i) {
        const int idx = part_indices[i];
        const int dist = PartitionMetric(vantage_point, parts[idx]);
        if (dist > 0) {
          part_dists.push_back(std::make_pair(idx, dist));
        }
      }

      // If there are no more different parts, then this is a leaf node
      if (part_dists.empty()) {
        return;
      }

      struct OrderBySecond {
        typedef std::pair<int, int> PairType;
          bool operator()(const PairType& lhs, const PairType& rhs) {
            return lhs.second < rhs.second;
          }
      };

      // We want to partition the set such that the points are ordered
      // based on their distances from the vantage point. We can do this
      // using the partial sort of nth element.
      std::nth_element(
          part_dists.begin(), part_dists.begin() + part_dists.size() / 2,
          part_dists.end(), OrderBySecond());

      // Once that's done, our split position is in the middle
      const auto split_iter = part_dists.begin() + part_dists.size() / 2;
      split_dist = split_iter->second;

      // Recurse down the right and left sub-trees with the indices of the
      // parts that are farther and closer respectively
      std::vector<int> right_indices;
      for (auto itr = split_iter; itr != part_dists.end(); ++itr) {
        right_indices.push_back(itr->first);
      }

      if (!right_indices.empty()) {
        right.reset(new PartitionTreeNode(parts, right_indices));
      }

      std::vector<int> left_indices;
      for (auto itr = part_dists.begin(); itr != split_iter; ++itr) {
        left_indices.push_back(itr->first);
      }

      if (!left_indices.empty()) {
        left.reset(new PartitionTreeNode(parts, left_indices));
      }
    }
  };

  void SearchNode(const std::unique_ptr<PartitionTreeNode>& node,
                  const Partition& p, ResultHeap* const heap) const {
    if (nullptr == node) {
      return;
    }

    // Calculate distance against current node
    const int dist = PartitionMetric(parts_[node->part_idx], p);

    // Push it onto the heap and remove the top-most nodes to maintain
    // closest k indices.
    ResultNode result;
    result.part_idx = node->part_idx;
    result.distance = dist;
    heap->Push(result);

    // If the split distance is uninitialized, it means we have no children.
    if (node->split_dist < 0) {
      assert(nullptr == node->left);
      assert(nullptr == node->right);
      return;
    }

    // Next we need to check the left and right trees if their distance
    // is closer/farther than the farthest element on the heap
    const int tau = heap->Top().distance;
    if (dist + tau < node->split_dist || dist - tau < node->split_dist) {
      SearchNode(node->left, p, heap);
    }

    if (dist + tau > node->split_dist || dist - tau > node->split_dist) {
      SearchNode(node->right, p, heap);
    }
  }

  std::vector<Partition> parts_;
  std::unique_ptr<PartitionTreeNode> root_;
};

// A helper function that generates all of the partitions for each number of
// subsets in ASTC blocks and stores them in a PartitionTree for fast retrieval.
const int kNumASTCPartitionIDBits = 10;
PartitionTree GenerateASTCPartitionTree(Footprint footprint) {
  std::unordered_set<Partition, PartitionHasher> parts;
  for (int num_parts = 2; num_parts <= kMaxNumSubsets; ++num_parts) {
    for (int id = 0; id < (1 << kNumASTCPartitionIDBits); ++id) {
      Partition part = GetASTCPartition(footprint, num_parts, id);

      // Make sure we're not using a degenerate partition assignment that wastes
      // an endpoint pair...
      bool valid_part = true;
      for (int i = 0; i < num_parts; ++i) {
        if (std::find(part.assignment.begin(), part.assignment.end(), i) ==
            part.assignment.end()) {
          valid_part = false;
          break;
        }
      }

      if (valid_part) {
        parts.insert(std::move(part));
      }
    }
  }

  return PartitionTree(parts.begin(), parts.end());
}

// To avoid needing any fancy boilerplate for mapping from a width, height
// tuple, we can define a simple encoding for the block mode:
constexpr int EncodeDims(int width, int height) {
  return (width << 16) | height;
}

}  // namespace

////////////////////////////////////////////////////////////////////////////////

int PartitionMetric(const Partition& a, const Partition& b) {
  // Make sure that one partition is at least a subset of the other...
  assert(a.footprint == b.footprint);

  // Make sure that the number of parts is within our limits. ASTC has a maximum
  // of four subsets per block according to the specification.
  assert(a.num_parts <= kMaxNumSubsets);
  assert(b.num_parts <= kMaxNumSubsets);

  const int w = a.footprint.Width();
  const int h = b.footprint.Height();

  struct PairCount {
    int a;
    int b;
    int count;

    // Comparison needed for sort below.
    bool operator>(const PairCount& other) const {
      return count > other.count;
    }
  };

  // Since we need to find the smallest mapping from labels in A to labels in B,
  // we need to store each label pair in a structure that can later be sorted.
  // The maximum number of subsets in an ASTC block is four, meaning that
  // between the two partitions, we can have up to sixteen different pairs.
  std::array<PairCount, 16> pair_counts;
  for (int y = 0; y < 4; ++y) {
    for (int x = 0; x < 4; ++x) {
      const int idx = y * 4 + x;
      pair_counts[idx].a = x;
      pair_counts[idx].b = y;
      pair_counts[idx].count = 0;
    }
  }

  // Count how many times we see each pair of assigned values (order matters!)
  for (int y = 0; y < h; ++y) {
    for (int x = 0; x < w; ++x) {
      const int idx = y * w + x;

      const int a_val = a.assignment[idx];
      const int b_val = b.assignment[idx];

      assert(a_val >= 0);
      assert(b_val >= 0);

      assert(a_val < 4);
      assert(b_val < 4);

      ++(pair_counts[b_val * 4 + a_val].count);
    }
  }

  // Sort the pairs in descending order based on their count
  std::sort(pair_counts.begin(), pair_counts.end(), std::greater<PairCount>());

  // Now assign pairs one by one until we have no more pairs to assign. Once
  // a value from A is assigned to a value in B, it can no longer be reassigned,
  // so we can keep track of this in a matrix. Similarly, to keep the assignment
  // one-to-one, once a value in B has been assigned to, it cannot be assigned
  // to again.
  std::array<std::array<bool, kMaxNumSubsets>, kMaxNumSubsets> assigned { };

  int pixels_matched = 0;
  for (const auto& pair_count : pair_counts) {
    bool is_assigned = false;
    for (int i = 0; i < kMaxNumSubsets; ++i) {
      is_assigned |= assigned.at(pair_count.a).at(i);
      is_assigned |= assigned.at(i).at(pair_count.b);
    }

    if (!is_assigned) {
      assigned.at(pair_count.a).at(pair_count.b) = true;
      pixels_matched += pair_count.count;
    }
  }

  // The difference is the number of pixels that had an assignment versus the
  // total number of pixels.
  return w * h - pixels_matched;
}

// Generates the partition assignment for the given block attributes.
Partition GetASTCPartition(const Footprint& footprint, int num_parts,
                           int partition_id) {
  // Partitions must have at least one subset but may have at most four
  assert(num_parts >= 0);
  assert(num_parts <= kMaxNumSubsets);

  // Partition ID can be no more than 10 bits.
  assert(partition_id >= 0);
  assert(partition_id < 1 << 10);

  Partition part = {footprint, num_parts, partition_id, /* assignment = */ {}};
  part.assignment.reserve(footprint.NumPixels());

  // Maintain column-major order so that we match all of the image processing
  // algorithms that depend on this class.
  for (int y = 0; y < footprint.Height(); ++y) {
    for (int x = 0; x < footprint.Width(); ++x) {
      const int p = SelectASTCPartition(partition_id, x, y, 0, num_parts,
                                        footprint.NumPixels());
      part.assignment.push_back(p);
    }
  }

  return part;
}

const std::vector<const Partition*> FindKClosestASTCPartitions(
    const Partition& candidate, int k) {
  const int encoded_dims = EncodeDims(candidate.footprint.Width(),
                                      candidate.footprint.Height());

  int index = 0;
  switch (encoded_dims) {
    case EncodeDims(4, 4): index = 0; break;
    case EncodeDims(5, 4): index = 1; break;
    case EncodeDims(5, 5): index = 2; break;
    case EncodeDims(6, 5): index = 3; break;
    case EncodeDims(6, 6): index = 4; break;
    case EncodeDims(8, 5): index = 5; break;
    case EncodeDims(8, 6): index = 6; break;
    case EncodeDims(8, 8): index = 7; break;
    case EncodeDims(10, 5): index = 8; break;
    case EncodeDims(10, 6): index = 9; break;
    case EncodeDims(10, 8): index = 10; break;
    case EncodeDims(10, 10): index = 11; break;
    case EncodeDims(12, 10): index = 12; break;
    case EncodeDims(12, 12): index = 13; break;
    default:
      assert(false && "Unknown footprint dimensions. This should have been caught sooner.");
      break;
  }

  static const auto* const kASTCPartitionTrees =
      new std::array<PartitionTree, Footprint::NumValidFootprints()> {{
      GenerateASTCPartitionTree(Footprint::Get4x4()),
      GenerateASTCPartitionTree(Footprint::Get5x4()),
      GenerateASTCPartitionTree(Footprint::Get5x5()),
      GenerateASTCPartitionTree(Footprint::Get6x5()),
      GenerateASTCPartitionTree(Footprint::Get6x6()),
      GenerateASTCPartitionTree(Footprint::Get8x5()),
      GenerateASTCPartitionTree(Footprint::Get8x6()),
      GenerateASTCPartitionTree(Footprint::Get8x8()),
      GenerateASTCPartitionTree(Footprint::Get10x5()),
      GenerateASTCPartitionTree(Footprint::Get10x6()),
      GenerateASTCPartitionTree(Footprint::Get10x8()),
      GenerateASTCPartitionTree(Footprint::Get10x10()),
      GenerateASTCPartitionTree(Footprint::Get12x10()),
      GenerateASTCPartitionTree(Footprint::Get12x12()),
    }};

  const PartitionTree& parts_vptree = kASTCPartitionTrees->at(index);
  std::vector<const Partition*> results;
  parts_vptree.Search(candidate, k, &results, nullptr);
  return results;
}

// Returns the valid ASTC partition that is closest to the candidate based on
// the PartitionMetric defined above.
const Partition& FindClosestASTCPartition(const Partition& candidate) {
  // Given a candidate, the closest valid partition will likely not be an exact
  // match. Consider all of the texels for which this valid partition differs
  // with the candidate.
  //
  // If the valid partition has more subsets than the candidate, then all of the
  // highest subset will be included in the mismatched texels. Since the number
  // of possible partitions with increasing subsets grows exponentially, the
  // chance that a valid partition with fewer subsets appears within the first
  // few closest partitions is relatively high. Empirically, we can usually find
  // a partition with at most |candidate.num_parts| number of subsets within the
  // first four closest partitions.
  constexpr int kSearchItems = 4;

  const std::vector<const Partition*> results =
      FindKClosestASTCPartitions(candidate, kSearchItems);

  // Optimistically, look for result with the same number of subsets.
  for (const auto& result : results) {
    if (result->num_parts == candidate.num_parts) {
      return *result;
    }
  }

  // If all else fails, then at least find the result with fewer subsets than
  // we asked for.
  for (const auto& result : results) {
    if (result->num_parts < candidate.num_parts) {
      return *result;
    }
  }

  assert(false &&
         "Could not find partition with acceptable number of subsets!");
  return *(results[0]);
}

}  // namespace astc_codec