aboutsummaryrefslogtreecommitdiffhomepage
path: root/absl/strings/numbers.cc
blob: 3b093b98c6f4ddee78f6203d954cfc7c01c240b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
// This file contains std::string processing functions related to
// numeric values.

#include "absl/strings/numbers.h"

#include <cassert>
#include <cctype>
#include <cfloat>          // for DBL_DIG and FLT_DIG
#include <cmath>           // for HUGE_VAL
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <memory>
#include <string>

#include "absl/base/internal/raw_logging.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/memutil.h"
#include "absl/strings/str_cat.h"

namespace absl {

bool SimpleAtof(absl::string_view str, float* value) {
  *value = 0.0;
  if (str.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* ptr = buf;
  if (str.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[str.size() + 1]);
    ptr = bigbuf.get();
  }
  memcpy(ptr, str.data(), str.size());
  ptr[str.size()] = '\0';

  char* endptr;
  *value = strtof(ptr, &endptr);
  if (endptr != ptr) {
    while (absl::ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod/strtof.
  // The values it returns on underflow and
  // overflow are the right fallback in a
  // robust setting.
  return *ptr != '\0' && *endptr == '\0';
}

bool SimpleAtod(absl::string_view str, double* value) {
  *value = 0.0;
  if (str.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* ptr = buf;
  if (str.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[str.size() + 1]);
    ptr = bigbuf.get();
  }
  memcpy(ptr, str.data(), str.size());
  ptr[str.size()] = '\0';

  char* endptr;
  *value = strtod(ptr, &endptr);
  if (endptr != ptr) {
    while (absl::ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod.  The values it
  // returns on underflow and overflow are the right
  // fallback in a robust setting.
  return *ptr != '\0' && *endptr == '\0';
}

namespace {

// TODO(rogeeff): replace with the real released thing once we figure out what
// it is.
inline bool CaseEqual(absl::string_view piece1, absl::string_view piece2) {
  return (piece1.size() == piece2.size() &&
          0 == strings_internal::memcasecmp(piece1.data(), piece2.data(),
                                            piece1.size()));
}

// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example:
//   char buf[2];
//   PutTwoDigits(42, buf);
//   // buf[0] == '4'
//   // buf[1] == '2'
inline void PutTwoDigits(size_t i, char* buf) {
  static const char two_ASCII_digits[100][2] = {
    {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'},
    {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'},
    {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'},
    {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'},
    {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'},
    {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
    {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'},
    {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'},
    {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'},
    {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'},
    {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'},
    {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
    {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'},
    {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'},
    {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'},
    {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'},
    {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'},
    {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
    {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'},
    {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}
  };
  assert(i < 100);
  memcpy(buf, two_ASCII_digits[i], 2);
}

}  // namespace

bool SimpleAtob(absl::string_view str, bool* value) {
  ABSL_RAW_CHECK(value != nullptr, "Output pointer must not be nullptr.");
  if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
      CaseEqual(str, "yes") || CaseEqual(str, "y") ||
      CaseEqual(str, "1")) {
    *value = true;
    return true;
  }
  if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
      CaseEqual(str, "no") || CaseEqual(str, "n") ||
      CaseEqual(str, "0")) {
    *value = false;
    return true;
  }
  return false;
}

// ----------------------------------------------------------------------
// FastInt32ToBuffer()
// FastUInt32ToBuffer()
// FastInt64ToBuffer()
// FastUInt64ToBuffer()
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer (hence the name, as the
// output is left-aligned).  The caller is responsible for ensuring that
// the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the std::string (i.e. the null character
// terminating the std::string).
// ----------------------------------------------------------------------

namespace {

// Used to optimize printing a decimal number's final digit.
const char one_ASCII_final_digits[10][2] {
  {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
  {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
};

}  // namespace

char* numbers_internal::FastUInt32ToBuffer(uint32_t i, char* buffer) {
  uint32_t digits;
  // The idea of this implementation is to trim the number of divides to as few
  // as possible, and also reducing memory stores and branches, by going in
  // steps of two digits at a time rather than one whenever possible.
  // The huge-number case is first, in the hopes that the compiler will output
  // that case in one branch-free block of code, and only output conditional
  // branches into it from below.
  if (i >= 1000000000) {     // >= 1,000,000,000
    digits = i / 100000000;  //      100,000,000
    i -= digits * 100000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt100_000_000:
    digits = i / 1000000;  // 1,000,000
    i -= digits * 1000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt1_000_000:
    digits = i / 10000;  // 10,000
    i -= digits * 10000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt10_000:
    digits = i / 100;
    i -= digits * 100;
    PutTwoDigits(digits, buffer);
    buffer += 2;
 lt100:
    digits = i;
    PutTwoDigits(digits, buffer);
    buffer += 2;
    *buffer = 0;
    return buffer;
  }

  if (i < 100) {
    digits = i;
    if (i >= 10) goto lt100;
    memcpy(buffer, one_ASCII_final_digits[i], 2);
    return buffer + 1;
  }
  if (i < 10000) {  //    10,000
    if (i >= 1000) goto lt10_000;
    digits = i / 100;
    i -= digits * 100;
    *buffer++ = '0' + digits;
    goto lt100;
  }
  if (i < 1000000) {  //    1,000,000
    if (i >= 100000) goto lt1_000_000;
    digits = i / 10000;  //    10,000
    i -= digits * 10000;
    *buffer++ = '0' + digits;
    goto lt10_000;
  }
  if (i < 100000000) {  //    100,000,000
    if (i >= 10000000) goto lt100_000_000;
    digits = i / 1000000;  //   1,000,000
    i -= digits * 1000000;
    *buffer++ = '0' + digits;
    goto lt1_000_000;
  }
  // we already know that i < 1,000,000,000
  digits = i / 100000000;  //   100,000,000
  i -= digits * 100000000;
  *buffer++ = '0' + digits;
  goto lt100_000_000;
}

char* numbers_internal::FastInt32ToBuffer(int32_t i, char* buffer) {
  uint32_t u = i;
  if (i < 0) {
    *buffer++ = '-';
    // We need to do the negation in modular (i.e., "unsigned")
    // arithmetic; MSVC++ apprently warns for plain "-u", so
    // we write the equivalent expression "0 - u" instead.
    u = 0 - u;
  }
  return numbers_internal::FastUInt32ToBuffer(u, buffer);
}

char* numbers_internal::FastUInt64ToBuffer(uint64_t i, char* buffer) {
  uint32_t u32 = static_cast<uint32_t>(i);
  if (u32 == i) return numbers_internal::FastUInt32ToBuffer(u32, buffer);

  // Here we know i has at least 10 decimal digits.
  uint64_t top_1to11 = i / 1000000000;
  u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
  uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);

  if (top_1to11_32 == top_1to11) {
    buffer = numbers_internal::FastUInt32ToBuffer(top_1to11_32, buffer);
  } else {
    // top_1to11 has more than 32 bits too; print it in two steps.
    uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
    uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
    buffer = numbers_internal::FastUInt32ToBuffer(top_8to9, buffer);
    PutTwoDigits(mid_2, buffer);
    buffer += 2;
  }

  // We have only 9 digits now, again the maximum uint32_t can handle fully.
  uint32_t digits = u32 / 10000000;  // 10,000,000
  u32 -= digits * 10000000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 100000;  // 100,000
  u32 -= digits * 100000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 1000;  // 1,000
  u32 -= digits * 1000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 10;
  u32 -= digits * 10;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  memcpy(buffer, one_ASCII_final_digits[u32], 2);
  return buffer + 1;
}

char* numbers_internal::FastInt64ToBuffer(int64_t i, char* buffer) {
  uint64_t u = i;
  if (i < 0) {
    *buffer++ = '-';
    u = 0 - u;
  }
  return numbers_internal::FastUInt64ToBuffer(u, buffer);
}

// Although DBL_DIG is typically 15, DBL_MAX is normally represented with 17
// digits of precision. When converted to a std::string value with fewer digits
// of precision using strtod(), the result can be bigger than DBL_MAX due to
// a rounding error. Converting this value back to a double will produce an
// Inf which will trigger a SIGFPE if FP exceptions are enabled. We skip
// the precision check for sufficiently large values to avoid the SIGFPE.
static const double kDoublePrecisionCheckMax = DBL_MAX / 1.000000000000001;

char* numbers_internal::RoundTripDoubleToBuffer(double d, char* buffer) {
  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
  // platforms these days.  Just in case some system exists where DBL_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  static_assert(DBL_DIG < 20, "DBL_DIG is too big");

  bool full_precision_needed = true;
  if (std::abs(d) <= kDoublePrecisionCheckMax) {
    int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize,
                                   "%.*g", DBL_DIG, d);

    // The snprintf should never overflow because the buffer is significantly
    // larger than the precision we asked for.
    assert(snprintf_result > 0 &&
           snprintf_result < numbers_internal::kFastToBufferSize);
    (void)snprintf_result;

    full_precision_needed = strtod(buffer, nullptr) != d;
  }

  if (full_precision_needed) {
    int snprintf_result = snprintf(buffer, numbers_internal::kFastToBufferSize,
                                   "%.*g", DBL_DIG + 2, d);

    // Should never overflow; see above.
    assert(snprintf_result > 0 &&
           snprintf_result < numbers_internal::kFastToBufferSize);
    (void)snprintf_result;
  }
  return buffer;
}
// This table is used to quickly calculate the base-ten exponent of a given
// float, and then to provide a multiplier to bring that number into the
// range 1-999,999,999, that is, into uint32_t range.  Finally, the exp
// std::string is made available so there is one less int-to-std::string conversion
// to be done.

struct Spec {
  double min_range;
  double multiplier;
  const char expstr[5];
};
const Spec neg_exp_table[] = {
    {1.4e-45f, 1e+55, "e-45"},  //
    {1e-44f, 1e+54, "e-44"},    //
    {1e-43f, 1e+53, "e-43"},    //
    {1e-42f, 1e+52, "e-42"},    //
    {1e-41f, 1e+51, "e-41"},    //
    {1e-40f, 1e+50, "e-40"},    //
    {1e-39f, 1e+49, "e-39"},    //
    {1e-38f, 1e+48, "e-38"},    //
    {1e-37f, 1e+47, "e-37"},    //
    {1e-36f, 1e+46, "e-36"},    //
    {1e-35f, 1e+45, "e-35"},    //
    {1e-34f, 1e+44, "e-34"},    //
    {1e-33f, 1e+43, "e-33"},    //
    {1e-32f, 1e+42, "e-32"},    //
    {1e-31f, 1e+41, "e-31"},    //
    {1e-30f, 1e+40, "e-30"},    //
    {1e-29f, 1e+39, "e-29"},    //
    {1e-28f, 1e+38, "e-28"},    //
    {1e-27f, 1e+37, "e-27"},    //
    {1e-26f, 1e+36, "e-26"},    //
    {1e-25f, 1e+35, "e-25"},    //
    {1e-24f, 1e+34, "e-24"},    //
    {1e-23f, 1e+33, "e-23"},    //
    {1e-22f, 1e+32, "e-22"},    //
    {1e-21f, 1e+31, "e-21"},    //
    {1e-20f, 1e+30, "e-20"},    //
    {1e-19f, 1e+29, "e-19"},    //
    {1e-18f, 1e+28, "e-18"},    //
    {1e-17f, 1e+27, "e-17"},    //
    {1e-16f, 1e+26, "e-16"},    //
    {1e-15f, 1e+25, "e-15"},    //
    {1e-14f, 1e+24, "e-14"},    //
    {1e-13f, 1e+23, "e-13"},    //
    {1e-12f, 1e+22, "e-12"},    //
    {1e-11f, 1e+21, "e-11"},    //
    {1e-10f, 1e+20, "e-10"},    //
    {1e-09f, 1e+19, "e-09"},    //
    {1e-08f, 1e+18, "e-08"},    //
    {1e-07f, 1e+17, "e-07"},    //
    {1e-06f, 1e+16, "e-06"},    //
    {1e-05f, 1e+15, "e-05"},    //
    {1e-04f, 1e+14, "e-04"},    //
};

const Spec pos_exp_table[] = {
    {1e+08f, 1e+02, "e+08"},  //
    {1e+09f, 1e+01, "e+09"},  //
    {1e+10f, 1e+00, "e+10"},  //
    {1e+11f, 1e-01, "e+11"},  //
    {1e+12f, 1e-02, "e+12"},  //
    {1e+13f, 1e-03, "e+13"},  //
    {1e+14f, 1e-04, "e+14"},  //
    {1e+15f, 1e-05, "e+15"},  //
    {1e+16f, 1e-06, "e+16"},  //
    {1e+17f, 1e-07, "e+17"},  //
    {1e+18f, 1e-08, "e+18"},  //
    {1e+19f, 1e-09, "e+19"},  //
    {1e+20f, 1e-10, "e+20"},  //
    {1e+21f, 1e-11, "e+21"},  //
    {1e+22f, 1e-12, "e+22"},  //
    {1e+23f, 1e-13, "e+23"},  //
    {1e+24f, 1e-14, "e+24"},  //
    {1e+25f, 1e-15, "e+25"},  //
    {1e+26f, 1e-16, "e+26"},  //
    {1e+27f, 1e-17, "e+27"},  //
    {1e+28f, 1e-18, "e+28"},  //
    {1e+29f, 1e-19, "e+29"},  //
    {1e+30f, 1e-20, "e+30"},  //
    {1e+31f, 1e-21, "e+31"},  //
    {1e+32f, 1e-22, "e+32"},  //
    {1e+33f, 1e-23, "e+33"},  //
    {1e+34f, 1e-24, "e+34"},  //
    {1e+35f, 1e-25, "e+35"},  //
    {1e+36f, 1e-26, "e+36"},  //
    {1e+37f, 1e-27, "e+37"},  //
    {1e+38f, 1e-28, "e+38"},  //
    {1e+39,  1e-29, "e+39"},  //
};

struct ExpCompare {
  bool operator()(const Spec& spec, double d) const {
    return spec.min_range < d;
  }
};

// Utility routine(s) for RoundTripFloatToBuffer:
// OutputNecessaryDigits takes two 11-digit numbers, whose integer portion
// represents the fractional part of a floating-point number, and outputs a
// number that is in-between them, with the fewest digits possible. For
// instance, given 12345678900 and 12345876900, it would output "0123457".
// When there are multiple final digits that would satisfy this requirement,
// this routine attempts to use a digit that would represent the average of
// lower_double and upper_double.
//
// Although the routine works using integers, all callers use doubles, so
// for their convenience this routine accepts doubles.
static char* OutputNecessaryDigits(double lower_double, double upper_double,
                                   char* out) {
  assert(lower_double > 0);
  assert(lower_double < upper_double - 10);
  assert(upper_double < 100000000000.0);

  // Narrow the range a bit; without this bias, an input of lower=87654320010.0
  // and upper=87654320100.0 would produce an output of 876543201
  //
  // We do this in three steps: first, we lower the upper bound and truncate it
  // to an integer.  Then, we increase the lower bound by exactly the amount we
  // just decreased the upper bound by - at that point, the midpoint is exactly
  // where it used to be.  Then we truncate the lower bound.

  uint64_t upper64 = upper_double - (1.0 / 1024);
  double shrink = upper_double - upper64;
  uint64_t lower64 = lower_double + shrink;

  // Theory of operation: we convert the lower number to ascii representation,
  // two digits at a time.  As we go, we remove the same digits from the upper
  // number.  When we see the upper number does not share those same digits, we
  // know we can stop converting. When we stop, the last digit we output is
  // taken from the average of upper and lower values, rounded up.
  char buf[2];
  uint32_t lodigits =
      static_cast<uint32_t>(lower64 / 1000000000);  // 1,000,000,000
  uint64_t mul64 = lodigits * uint64_t{1000000000};

  PutTwoDigits(lodigits, out);
  out += 2;
  if (upper64 - mul64 >= 1000000000) {  // digit mismatch!
    PutTwoDigits(upper64 / 1000000000, buf);
    if (out[-2] != buf[0]) {
      out[-2] = '0' + (upper64 + lower64 + 10000000000) / 20000000000;
      --out;
    } else {
      PutTwoDigits((upper64 + lower64 + 1000000000) / 2000000000, out - 2);
    }
    *out = '\0';
    return out;
  }
  uint32_t lower = static_cast<uint32_t>(lower64 - mul64);
  uint32_t upper = static_cast<uint32_t>(upper64 - mul64);

  lodigits = lower / 10000000;  // 10,000,000
  uint32_t mul = lodigits * 10000000;
  PutTwoDigits(lodigits, out);
  out += 2;
  if (upper - mul >= 10000000) {  // digit mismatch!
    PutTwoDigits(upper / 10000000, buf);
    if (out[-2] != buf[0]) {
      out[-2] = '0' + (upper + lower + 100000000) / 200000000;
      --out;
    } else {
      PutTwoDigits((upper + lower + 10000000) / 20000000, out - 2);
    }
    *out = '\0';
    return out;
  }
  lower -= mul;
  upper -= mul;

  lodigits = lower / 100000;  // 100,000
  mul = lodigits * 100000;
  PutTwoDigits(lodigits, out);
  out += 2;
  if (upper - mul >= 100000) {  // digit mismatch!
    PutTwoDigits(upper / 100000, buf);
    if (out[-2] != buf[0]) {
      out[-2] = '0' + (upper + lower + 1000000) / 2000000;
      --out;
    } else {
      PutTwoDigits((upper + lower + 100000) / 200000, out - 2);
    }
    *out = '\0';
    return out;
  }
  lower -= mul;
  upper -= mul;

  lodigits = lower / 1000;
  mul = lodigits * 1000;
  PutTwoDigits(lodigits, out);
  out += 2;
  if (upper - mul >= 1000) {  // digit mismatch!
    PutTwoDigits(upper / 1000, buf);
    if (out[-2] != buf[0]) {
      out[-2] = '0' + (upper + lower + 10000) / 20000;
      --out;
    } else {
      PutTwoDigits((upper + lower + 1000) / 2000, out - 2);
    }
    *out = '\0';
    return out;
  }
  lower -= mul;
  upper -= mul;

  PutTwoDigits(lower / 10, out);
  out += 2;
  PutTwoDigits(upper / 10, buf);
  if (out[-2] != buf[0]) {
    out[-2] = '0' + (upper + lower + 100) / 200;
    --out;
  } else {
    PutTwoDigits((upper + lower + 10) / 20, out - 2);
  }
  *out = '\0';
  return out;
}

// RoundTripFloatToBuffer converts the given float into a std::string which, if
// passed to strtof, will produce the exact same original float.  It does this
// by computing the range of possible doubles which map to the given float, and
// then examining the digits of the doubles in that range.  If all the doubles
// in the range start with "2.37", then clearly our float does, too.  As soon as
// they diverge, only one more digit is needed.
char* numbers_internal::RoundTripFloatToBuffer(float f, char* buffer) {
  static_assert(std::numeric_limits<float>::is_iec559,
                "IEEE-754/IEC-559 support only");

  char* out = buffer;  // we write data to out, incrementing as we go, but
                       // FloatToBuffer always returns the address of the buffer
                       // passed in.

  if (std::isnan(f)) {
    strcpy(out, "nan");  // NOLINT(runtime/printf)
    return buffer;
  }
  if (f == 0) {  // +0 and -0 are handled here
    if (std::signbit(f)) {
      strcpy(out, "-0");  // NOLINT(runtime/printf)
    } else {
      strcpy(out, "0");  // NOLINT(runtime/printf)
    }
    return buffer;
  }
  if (f < 0) {
    *out++ = '-';
    f = -f;
  }
  if (std::isinf(f)) {
    strcpy(out, "inf");  // NOLINT(runtime/printf)
    return buffer;
  }

  double next_lower = nextafterf(f, 0.0f);
  // For all doubles in the range lower_bound < f < upper_bound, the
  // nearest float is f.
  double lower_bound = (f + next_lower) * 0.5;
  double upper_bound = f + (f - lower_bound);
  // Note: because std::nextafter is slow, we calculate upper_bound
  // assuming that it is the same distance from f as lower_bound is.
  // For exact powers of two, upper_bound is actually twice as far
  // from f as lower_bound is, but this turns out not to matter.

  // Most callers pass floats that are either 0 or within the
  // range 0.0001 through 100,000,000, so handle those first,
  // since they don't need exponential notation.
  const Spec* spec = nullptr;
  if (f < 1.0) {
    if (f >= 0.0001f) {
      // for fractional values, we set up the multiplier at the same
      // time as we output the leading "0." / "0.0" / "0.00" / "0.000"
      double multiplier = 1e+11;
      *out++ = '0';
      *out++ = '.';
      if (f < 0.1f) {
        multiplier = 1e+12;
        *out++ = '0';
        if (f < 0.01f) {
          multiplier = 1e+13;
          *out++ = '0';
          if (f < 0.001f) {
            multiplier = 1e+14;
            *out++ = '0';
          }
        }
      }
      OutputNecessaryDigits(lower_bound * multiplier, upper_bound * multiplier,
                            out);
      return buffer;
    }
    spec = std::lower_bound(std::begin(neg_exp_table), std::end(neg_exp_table),
                            double{f}, ExpCompare());
    if (spec == std::end(neg_exp_table)) --spec;
  } else if (f < 1e8) {
    // Handling non-exponential format greater than 1.0 is similar to the above,
    // but instead of 0.0 / 0.00 / 0.000, the prefix is simply the truncated
    // integer part of f.
    int32_t as_int = f;
    out = numbers_internal::FastUInt32ToBuffer(as_int, out);
    // Easy: if the integer part is within (lower_bound, upper_bound), then we
    // are already done.
    if (as_int > lower_bound && as_int < upper_bound) {
      return buffer;
    }
    *out++ = '.';
    OutputNecessaryDigits((lower_bound - as_int) * 1e11,
                          (upper_bound - as_int) * 1e11, out);
    return buffer;
  } else {
    spec = std::lower_bound(std::begin(pos_exp_table),
                            std::end(pos_exp_table),
                            double{f}, ExpCompare());
    if (spec == std::end(pos_exp_table)) --spec;
  }
  // Exponential notation from here on.  "spec" was computed using lower_bound,
  // which means it's the first spec from the table where min_range is greater
  // or equal to f.
  // Unfortunately that's not quite what we want; we want a min_range that is
  // less or equal.  So first thing, if it was greater, back up one entry.
  if (spec->min_range > f) --spec;

  // The digits might be "237000123", but we want "2.37000123",
  // so we output the digits one character later, and then move the first
  // digit back so we can stick the "." in.
  char* start = out;
  out = OutputNecessaryDigits(lower_bound * spec->multiplier,
                              upper_bound * spec->multiplier, start + 1);
  start[0] = start[1];
  start[1] = '.';

  // If it turns out there was only one digit output, then back up over the '.'
  if (out == &start[2]) --out;

  // Now add the "e+NN" part.
  memcpy(out, spec->expstr, 4);
  out[4] = '\0';
  return buffer;
}

// Returns the number of leading 0 bits in a 64-bit value.
// TODO(jorg): Replace with builtin_clzll if available.
// Are we shipping util/bits in absl?
static inline int CountLeadingZeros64(uint64_t n) {
  int zeroes = 60;
  if (n >> 32) zeroes -= 32, n >>= 32;
  if (n >> 16) zeroes -= 16, n >>= 16;
  if (n >> 8) zeroes -= 8, n >>= 8;
  if (n >> 4) zeroes -= 4, n >>= 4;
  return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0\0"[n] + zeroes;
}

// Given a 128-bit number expressed as a pair of uint64_t, high half first,
// return that number multiplied by the given 32-bit value.  If the result is
// too large to fit in a 128-bit number, divide it by 2 until it fits.
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
                                           uint32_t mul) {
  uint64_t bits0_31 = num.second & 0xFFFFFFFF;
  uint64_t bits32_63 = num.second >> 32;
  uint64_t bits64_95 = num.first & 0xFFFFFFFF;
  uint64_t bits96_127 = num.first >> 32;

  // The picture so far: each of these 64-bit values has only the lower 32 bits
  // filled in.
  // bits96_127:          [ 00000000 xxxxxxxx ]
  // bits64_95:                    [ 00000000 xxxxxxxx ]
  // bits32_63:                             [ 00000000 xxxxxxxx ]
  // bits0_31:                                       [ 00000000 xxxxxxxx ]

  bits0_31 *= mul;
  bits32_63 *= mul;
  bits64_95 *= mul;
  bits96_127 *= mul;

  // Now the top halves may also have value, though all 64 of their bits will
  // never be set at the same time, since they are a result of a 32x32 bit
  // multiply.  This makes the carry calculation slightly easier.
  // bits96_127:          [ mmmmmmmm | mmmmmmmm ]
  // bits64_95:                    [ | mmmmmmmm mmmmmmmm | ]
  // bits32_63:                      |        [ mmmmmmmm | mmmmmmmm ]
  // bits0_31:                       |                 [ | mmmmmmmm mmmmmmmm ]
  // eventually:        [ bits128_up | ...bits64_127.... | ..bits0_63... ]

  uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
  uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
                        (bits0_63 < bits0_31);
  uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
  if (bits128_up == 0) return {bits64_127, bits0_63};

  int shift = 64 - CountLeadingZeros64(bits128_up);
  uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
  uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
  return {hi, lo};
}

// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
// where the first bit is always a one.  So PowFive(1, 0) starts 0b100000,
// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
  std::pair<uint64_t, uint64_t> result = {num, 0};
  while (expfive >= 13) {
    // 5^13 is the highest power of five that will fit in a 32-bit integer.
    result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
    expfive -= 13;
  }
  constexpr int powers_of_five[13] = {
      1,
      5,
      5 * 5,
      5 * 5 * 5,
      5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
      5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
  result = Mul32(result, powers_of_five[expfive & 15]);
  int shift = CountLeadingZeros64(result.first);
  if (shift != 0) {
    result.first = (result.first << shift) + (result.second >> (64 - shift));
    result.second = (result.second << shift);
  }
  return result;
}

struct ExpDigits {
  int32_t exponent;
  char digits[6];
};

// SplitToSix converts value, a positive double-precision floating-point number,
// into a base-10 exponent and 6 ASCII digits, where the first digit is never
// zero.  For example, SplitToSix(1) returns an exponent of zero and a digits
// array of {'1', '0', '0', '0', '0', '0'}.  If value is exactly halfway between
// two possible representations, e.g. value = 100000.5, then "round to even" is
// performed.
static ExpDigits SplitToSix(const double value) {
  ExpDigits exp_dig;
  int exp = 5;
  double d = value;
  // First step: calculate a close approximation of the output, where the
  // value d will be between 100,000 and 999,999, representing the digits
  // in the output ASCII array, and exp is the base-10 exponent.  It would be
  // faster to use a table here, and to look up the base-2 exponent of value,
  // however value is an IEEE-754 64-bit number, so the table would have 2,000
  // entries, which is not cache-friendly.
  if (d >= 999999.5) {
    if (d >= 1e+261) exp += 256, d *= 1e-256;
    if (d >= 1e+133) exp += 128, d *= 1e-128;
    if (d >= 1e+69) exp += 64, d *= 1e-64;
    if (d >= 1e+37) exp += 32, d *= 1e-32;
    if (d >= 1e+21) exp += 16, d *= 1e-16;
    if (d >= 1e+13) exp += 8, d *= 1e-8;
    if (d >= 1e+9) exp += 4, d *= 1e-4;
    if (d >= 1e+7) exp += 2, d *= 1e-2;
    if (d >= 1e+6) exp += 1, d *= 1e-1;
  } else {
    if (d < 1e-250) exp -= 256, d *= 1e256;
    if (d < 1e-122) exp -= 128, d *= 1e128;
    if (d < 1e-58) exp -= 64, d *= 1e64;
    if (d < 1e-26) exp -= 32, d *= 1e32;
    if (d < 1e-10) exp -= 16, d *= 1e16;
    if (d < 1e-2) exp -= 8, d *= 1e8;
    if (d < 1e+2) exp -= 4, d *= 1e4;
    if (d < 1e+4) exp -= 2, d *= 1e2;
    if (d < 1e+5) exp -= 1, d *= 1e1;
  }
  // At this point, d is in the range [99999.5..999999.5) and exp is in the
  // range [-324..308]. Since we need to round d up, we want to add a half
  // and truncate.
  // However, the technique above may have lost some precision, due to its
  // repeated multiplication by constants that each may be off by half a bit
  // of precision.  This only matters if we're close to the edge though.
  // Since we'd like to know if the fractional part of d is close to a half,
  // we multiply it by 65536 and see if the fractional part is close to 32768.
  // (The number doesn't have to be a power of two,but powers of two are faster)
  uint64_t d64k = d * 65536;
  int dddddd;  // A 6-digit decimal integer.
  if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
    // OK, it's fairly likely that precision was lost above, which is
    // not a surprise given only 52 mantissa bits are available.  Therefore
    // redo the calculation using 128-bit numbers.  (64 bits are not enough).

    // Start out with digits rounded down; maybe add one below.
    dddddd = static_cast<int>(d64k / 65536);

    // mantissa is a 64-bit integer representing M.mmm... * 2^63.  The actual
    // value we're representing, of course, is M.mmm... * 2^exp2.
    int exp2;
    double m = std::frexp(value, &exp2);
    uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
    // std::frexp returns an m value in the range [0.5, 1.0), however we
    // can't multiply it by 2^64 and convert to an integer because some FPUs
    // throw an exception when converting an number higher than 2^63 into an
    // integer - even an unsigned 64-bit integer!  Fortunately it doesn't matter
    // since m only has 52 significant bits anyway.
    mantissa <<= 1;
    exp2 -= 64;  // not needed, but nice for debugging

    // OK, we are here to compare:
    //     (dddddd + 0.5) * 10^(exp-5)  vs.  mantissa * 2^exp2
    // so we can round up dddddd if appropriate.  Those values span the full
    // range of 600 orders of magnitude of IEE 64-bit floating-point.
    // Fortunately, we already know they are very close, so we don't need to
    // track the base-2 exponent of both sides.  This greatly simplifies the
    // the math since the 2^exp2 calculation is unnecessary and the power-of-10
    // calculation can become a power-of-5 instead.

    std::pair<uint64_t, uint64_t> edge, val;
    if (exp >= 6) {
      // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
      // Since we're tossing powers of two, 2 * dddddd + 1 is the
      // same as dddddd + 0.5
      edge = PowFive(2 * dddddd + 1, exp - 5);

      val.first = mantissa;
      val.second = 0;
    } else {
      // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
      // above because (exp - 5) is negative.  So we compare (dddddd + 0.5) to
      // mantissa * 5 ^ (5 - exp)
      edge = PowFive(2 * dddddd + 1, 0);

      val = PowFive(mantissa, 5 - exp);
    }
    // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
    //        val.second, edge.first, edge.second);
    if (val > edge) {
      dddddd++;
    } else if (val == edge) {
      dddddd += (dddddd & 1);
    }
  } else {
    // Here, we are not close to the edge.
    dddddd = static_cast<int>((d64k + 32768) / 65536);
  }
  if (dddddd == 1000000) {
    dddddd = 100000;
    exp += 1;
  }
  exp_dig.exponent = exp;

  int two_digits = dddddd / 10000;
  dddddd -= two_digits * 10000;
  PutTwoDigits(two_digits, &exp_dig.digits[0]);

  two_digits = dddddd / 100;
  dddddd -= two_digits * 100;
  PutTwoDigits(two_digits, &exp_dig.digits[2]);

  PutTwoDigits(dddddd, &exp_dig.digits[4]);
  return exp_dig;
}

// Helper function for fast formatting of floating-point.
// The result is the same as "%g", a.k.a. "%.6g".
size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
  static_assert(std::numeric_limits<float>::is_iec559,
                "IEEE-754/IEC-559 support only");

  char* out = buffer;  // we write data to out, incrementing as we go, but
                       // FloatToBuffer always returns the address of the buffer
                       // passed in.

  if (std::isnan(d)) {
    strcpy(out, "nan");  // NOLINT(runtime/printf)
    return 3;
  }
  if (d == 0) {  // +0 and -0 are handled here
    if (std::signbit(d)) *out++ = '-';
    *out++ = '0';
    *out = 0;
    return out - buffer;
  }
  if (d < 0) {
    *out++ = '-';
    d = -d;
  }
  if (std::isinf(d)) {
    strcpy(out, "inf");  // NOLINT(runtime/printf)
    return out + 3 - buffer;
  }

  auto exp_dig = SplitToSix(d);
  int exp = exp_dig.exponent;
  const char* digits = exp_dig.digits;
  out[0] = '0';
  out[1] = '.';
  switch (exp) {
    case 5:
      memcpy(out, &digits[0], 6), out += 6;
      *out = 0;
      return out - buffer;
    case 4:
      memcpy(out, &digits[0], 5), out += 5;
      if (digits[5] != '0') {
        *out++ = '.';
        *out++ = digits[5];
      }
      *out = 0;
      return out - buffer;
    case 3:
      memcpy(out, &digits[0], 4), out += 4;
      if ((digits[5] | digits[4]) != '0') {
        *out++ = '.';
        *out++ = digits[4];
        if (digits[5] != '0') *out++ = digits[5];
      }
      *out = 0;
      return out - buffer;
    case 2:
      memcpy(out, &digits[0], 3), out += 3;
      *out++ = '.';
      memcpy(out, &digits[3], 3);
      out += 3;
      while (out[-1] == '0') --out;
      if (out[-1] == '.') --out;
      *out = 0;
      return out - buffer;
    case 1:
      memcpy(out, &digits[0], 2), out += 2;
      *out++ = '.';
      memcpy(out, &digits[2], 4);
      out += 4;
      while (out[-1] == '0') --out;
      if (out[-1] == '.') --out;
      *out = 0;
      return out - buffer;
    case 0:
      memcpy(out, &digits[0], 1), out += 1;
      *out++ = '.';
      memcpy(out, &digits[1], 5);
      out += 5;
      while (out[-1] == '0') --out;
      if (out[-1] == '.') --out;
      *out = 0;
      return out - buffer;
    case -4:
      out[2] = '0';
      ++out;
      ABSL_FALLTHROUGH_INTENDED;
    case -3:
      out[2] = '0';
      ++out;
      ABSL_FALLTHROUGH_INTENDED;
    case -2:
      out[2] = '0';
      ++out;
      ABSL_FALLTHROUGH_INTENDED;
    case -1:
      out += 2;
      memcpy(out, &digits[0], 6);
      out += 6;
      while (out[-1] == '0') --out;
      *out = 0;
      return out - buffer;
  }
  assert(exp < -4 || exp >= 6);
  out[0] = digits[0];
  assert(out[1] == '.');
  out += 2;
  memcpy(out, &digits[1], 5), out += 5;
  while (out[-1] == '0') --out;
  if (out[-1] == '.') --out;
  *out++ = 'e';
  if (exp > 0) {
    *out++ = '+';
  } else {
    *out++ = '-';
    exp = -exp;
  }
  if (exp > 99) {
    int dig1 = exp / 100;
    exp -= dig1 * 100;
    *out++ = '0' + dig1;
  }
  PutTwoDigits(exp, out);
  out += 2;
  *out = 0;
  return out - buffer;
}

namespace {
// Represents integer values of digits.
// Uses 36 to indicate an invalid character since we support
// bases up to 36.
static const int8_t kAsciiToInt[256] = {
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,
    6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
    36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
    24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};

// Parse the sign and optional hex or oct prefix in text.
inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/,
                                     int* base_ptr /*inout*/,
                                     bool* negative_ptr /*output*/) {
  if (text->data() == nullptr) {
    return false;
  }

  const char* start = text->data();
  const char* end = start + text->size();
  int base = *base_ptr;

  // Consume whitespace.
  while (start < end && absl::ascii_isspace(start[0])) {
    ++start;
  }
  while (start < end && absl::ascii_isspace(end[-1])) {
    --end;
  }
  if (start >= end) {
    return false;
  }

  // Consume sign.
  *negative_ptr = (start[0] == '-');
  if (*negative_ptr || start[0] == '+') {
    ++start;
    if (start >= end) {
      return false;
    }
  }

  // Consume base-dependent prefix.
  //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
  //  base 16: "0x" -> base 16
  // Also validate the base.
  if (base == 0) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      base = 16;
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    } else if (end - start >= 1 && start[0] == '0') {
      base = 8;
      start += 1;
    } else {
      base = 10;
    }
  } else if (base == 16) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    }
  } else if (base >= 2 && base <= 36) {
    // okay
  } else {
    return false;
  }
  *text = absl::string_view(start, end - start);
  *base_ptr = base;
  return true;
}

// Consume digits.
//
// The classic loop:
//
//   for each digit
//     value = value * base + digit
//   value *= sign
//
// The classic loop needs overflow checking.  It also fails on the most
// negative integer, -2147483648 in 32-bit two's complement representation.
//
// My improved loop:
//
//  if (!negative)
//    for each digit
//      value = value * base
//      value = value + digit
//  else
//    for each digit
//      value = value * base
//      value = value - digit
//
// Overflow checking becomes simple.

// Lookup tables per IntType:
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
// struct of arrays) would probably be better in terms of d-cache for the most
// commonly used bases.
template <typename IntType>
struct LookupTables {
  static const IntType kVmaxOverBase[];
  static const IntType kVminOverBase[];
};

// An array initializer macro for X/base where base in [0, 36].
// However, note that lookups for base in [0, 1] should never happen because
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
#define X_OVER_BASE_INITIALIZER(X)                                        \
  {                                                                       \
    0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
        X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18,   \
        X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26,   \
        X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34,   \
        X / 35, X / 36,                                                   \
  }

template <typename IntType>
const IntType LookupTables<IntType>::kVmaxOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());

template <typename IntType>
const IntType LookupTables<IntType>::kVminOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());

#undef X_OVER_BASE_INITIALIZER

template <typename IntType>
inline bool safe_parse_positive_int(absl::string_view text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmax = std::numeric_limits<IntType>::max();
  assert(vmax > 0);
  assert(base >= 0);
  assert(vmax >= static_cast<IntType>(base));
  const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value > vmax_over_base) {
      *value_p = vmax;
      return false;
    }
    value *= base;
    if (value > vmax - digit) {
      *value_p = vmax;
      return false;
    }
    value += digit;
  }
  *value_p = value;
  return true;
}

template <typename IntType>
inline bool safe_parse_negative_int(absl::string_view text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmin = std::numeric_limits<IntType>::min();
  assert(vmin < 0);
  assert(vmin <= 0 - base);
  IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
  // 2003 c++ standard [expr.mul]
  // "... the sign of the remainder is implementation-defined."
  // Although (vmin/base)*base + vmin%base is always vmin.
  // 2011 c++ standard tightens the spec but we cannot rely on it.
  // TODO(junyer): Handle this in the lookup table generation.
  if (vmin % base > 0) {
    vmin_over_base += 1;
  }
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value < vmin_over_base) {
      *value_p = vmin;
      return false;
    }
    value *= base;
    if (value < vmin + digit) {
      *value_p = vmin;
      return false;
    }
    value -= digit;
  }
  *value_p = value;
  return true;
}

// Input format based on POSIX.1-2008 strtol
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
template <typename IntType>
inline bool safe_int_internal(absl::string_view text, IntType* value_p,
                              int base) {
  *value_p = 0;
  bool negative;
  if (!safe_parse_sign_and_base(&text, &base, &negative)) {
    return false;
  }
  if (!negative) {
    return safe_parse_positive_int(text, base, value_p);
  } else {
    return safe_parse_negative_int(text, base, value_p);
  }
}

template <typename IntType>
inline bool safe_uint_internal(absl::string_view text, IntType* value_p,
                               int base) {
  *value_p = 0;
  bool negative;
  if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
    return false;
  }
  return safe_parse_positive_int(text, base, value_p);
}
}  // anonymous namespace

namespace numbers_internal {
bool safe_strto32_base(absl::string_view text, int32_t* value, int base) {
  return safe_int_internal<int32_t>(text, value, base);
}

bool safe_strto64_base(absl::string_view text, int64_t* value, int base) {
  return safe_int_internal<int64_t>(text, value, base);
}

bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) {
  return safe_uint_internal<uint32_t>(text, value, base);
}

bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) {
  return safe_uint_internal<uint64_t>(text, value, base);
}
}  // namespace numbers_internal

}  // namespace absl