aboutsummaryrefslogtreecommitdiffhomepage
path: root/absl/random/internal/fast_uniform_bits.h
blob: e8df92f3d99f797d16c2c9b32aa09aa89c075654 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_

#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>

namespace absl {
namespace random_internal {
// Returns true if the input value is zero or a power of two. Useful for
// determining if the range of output values in a URBG
template <typename UIntType>
constexpr bool IsPowerOfTwoOrZero(UIntType n) {
  return (n == 0) || ((n & (n - 1)) == 0);
}

// Computes the length of the range of values producible by the URBG, or returns
// zero if that would encompass the entire range of representable values in
// URBG::result_type.
template <typename URBG>
constexpr typename URBG::result_type RangeSize() {
  using result_type = typename URBG::result_type;
  return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
          (URBG::min)() == std::numeric_limits<result_type>::lowest())
             ? result_type{0}
             : (URBG::max)() - (URBG::min)() + result_type{1};
}

template <typename UIntType>
constexpr UIntType LargestPowerOfTwoLessThanOrEqualTo(UIntType n) {
  return n < 2 ? n : 2 * LargestPowerOfTwoLessThanOrEqualTo(n / 2);
}

// Given a URBG generating values in the closed interval [Lo, Hi], returns the
// largest power of two less than or equal to `Hi - Lo + 1`.
template <typename URBG>
constexpr typename URBG::result_type PowerOfTwoSubRangeSize() {
  return LargestPowerOfTwoLessThanOrEqualTo(RangeSize<URBG>());
}

// Computes the floor of the log. (i.e., std::floor(std::log2(N));
template <typename UIntType>
constexpr UIntType IntegerLog2(UIntType n) {
  return (n <= 1) ? 0 : 1 + IntegerLog2(n / 2);
}

// Returns the number of bits of randomness returned through
// `PowerOfTwoVariate(urbg)`.
template <typename URBG>
constexpr size_t NumBits() {
  return RangeSize<URBG>() == 0
             ? std::numeric_limits<typename URBG::result_type>::digits
             : IntegerLog2(PowerOfTwoSubRangeSize<URBG>());
}

// Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
// If `n == 0`, all bits are set.
template <typename UIntType>
constexpr UIntType MaskFromShift(UIntType n) {
  return ((n % std::numeric_limits<UIntType>::digits) == 0)
             ? ~UIntType{0}
             : (UIntType{1} << n) - UIntType{1};
}

// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
//  `UIntType`: the result (output) type
//
// The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
// instantiated from an existing generator through a copy or a move. It does
// not, however, facilitate the production of pseudorandom bits from an un-owned
// generator that will outlive the std::independent_bits_engine instance.
template <typename UIntType = uint64_t>
class FastUniformBits {
 public:
  using result_type = UIntType;

  static constexpr result_type(min)() { return 0; }
  static constexpr result_type(max)() {
    return (std::numeric_limits<result_type>::max)();
  }

  template <typename URBG>
  result_type operator()(URBG& g);  // NOLINT(runtime/references)

 private:
  static_assert(std::is_unsigned<UIntType>::value,
                "Class-template FastUniformBits<> must be parameterized using "
                "an unsigned type.");

  // PowerOfTwoVariate() generates a single random variate, always returning a
  // value in the half-open interval `[0, PowerOfTwoSubRangeSize<URBG>())`. If
  // the URBG already generates values in a power-of-two range, the generator
  // itself is used. Otherwise, we use rejection sampling on the largest
  // possible power-of-two-sized subrange.
  struct PowerOfTwoTag {};
  struct RejectionSamplingTag {};
  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g) {  // NOLINT(runtime/references)
    using tag =
        typename std::conditional<IsPowerOfTwoOrZero(RangeSize<URBG>()),
                                  PowerOfTwoTag, RejectionSamplingTag>::type;
    return PowerOfTwoVariate(g, tag{});
  }

  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g,  // NOLINT(runtime/references)
      PowerOfTwoTag) {
    return g() - (URBG::min)();
  }

  template <typename URBG>
  static typename URBG::result_type PowerOfTwoVariate(
      URBG& g,  // NOLINT(runtime/references)
      RejectionSamplingTag) {
    // Use rejection sampling to ensure uniformity across the range.
    typename URBG::result_type u;
    do {
      u = g() - (URBG::min)();
    } while (u >= PowerOfTwoSubRangeSize<URBG>());
    return u;
  }

  // Generate() generates a random value, dispatched on whether
  // the underlying URBG must loop over multiple calls or not.
  template <typename URBG>
  result_type Generate(URBG& g,  // NOLINT(runtime/references)
                       std::true_type /* avoid_looping */);

  template <typename URBG>
  result_type Generate(URBG& g,  // NOLINT(runtime/references)
                       std::false_type /* avoid_looping */);
};

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::operator()(URBG& g) {  // NOLINT(runtime/references)
  // kRangeMask is the mask used when sampling variates from the URBG when the
  // width of the URBG range is not a power of 2.
  // Y = (2 ^ kRange) - 1
  static_assert((URBG::max)() > (URBG::min)(),
                "URBG::max and URBG::min may not be equal.");
  using urbg_result_type = typename URBG::result_type;
  constexpr urbg_result_type kRangeMask =
      RangeSize<URBG>() == 0
          ? (std::numeric_limits<urbg_result_type>::max)()
          : static_cast<urbg_result_type>(PowerOfTwoSubRangeSize<URBG>() - 1);
  return Generate(g, std::integral_constant<bool, (kRangeMask >= (max)())>{});
}

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
                                    std::true_type /* avoid_looping */) {
  // The width of the result_type is less than than the width of the random bits
  // provided by URBG.  Thus, generate a single value and then simply mask off
  // the required bits.

  return PowerOfTwoVariate(g) & (max)();
}

template <typename UIntType>
template <typename URBG>
typename FastUniformBits<UIntType>::result_type
FastUniformBits<UIntType>::Generate(URBG& g,  // NOLINT(runtime/references)
                                    std::false_type /* avoid_looping */) {
  // See [rand.adapt.ibits] for more details on the constants calculated below.
  //
  // It is preferable to use roughly the same number of bits from each generator
  // call, however this is only possible when the number of bits provided by the
  // URBG is a divisor of the number of bits in `result_type`. In all other
  // cases, the number of bits used cannot always be the same, but it can be
  // guaranteed to be off by at most 1. Thus we run two loops, one with a
  // smaller bit-width size (`kSmallWidth`) and one with a larger width size
  // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
  // `kSmallIters` and `kLargeIters` times respectively such
  // that
  //
  //    `kTotalWidth == kSmallIters * kSmallWidth
  //                    + kLargeIters * kLargeWidth`
  //
  // where `kTotalWidth` is the total number of bits in `result_type`.
  //
  constexpr size_t kTotalWidth = std::numeric_limits<result_type>::digits;
  constexpr size_t kUrbgWidth = NumBits<URBG>();
  constexpr size_t kTotalIters =
      kTotalWidth / kUrbgWidth + (kTotalWidth % kUrbgWidth != 0);
  constexpr size_t kSmallWidth = kTotalWidth / kTotalIters;
  constexpr size_t kLargeWidth = kSmallWidth + 1;
  //
  // Because `kLargeWidth == kSmallWidth + 1`, it follows that
  //
  //     `kTotalWidth == kTotalIters * kSmallWidth + kLargeIters`
  //
  // and therefore
  //
  //     `kLargeIters == kTotalWidth % kSmallWidth`
  //
  // Intuitively, each iteration with the large width accounts for one unit
  // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
  // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
  // there would be no need for any large iterations (i.e., one loop would
  // suffice), and indeed, in this case, `kLargeIters` would be zero.
  constexpr size_t kLargeIters = kTotalWidth % kSmallWidth;
  constexpr size_t kSmallIters =
      (kTotalWidth - (kLargeWidth * kLargeIters)) / kSmallWidth;

  static_assert(
      kTotalWidth == kSmallIters * kSmallWidth + kLargeIters * kLargeWidth,
      "Error in looping constant calculations.");

  result_type s = 0;

  constexpr size_t kSmallShift = kSmallWidth % kTotalWidth;
  constexpr result_type kSmallMask = MaskFromShift(result_type{kSmallShift});
  for (size_t n = 0; n < kSmallIters; ++n) {
    s = (s << kSmallShift) +
        (static_cast<result_type>(PowerOfTwoVariate(g)) & kSmallMask);
  }

  constexpr size_t kLargeShift = kLargeWidth % kTotalWidth;
  constexpr result_type kLargeMask = MaskFromShift(result_type{kLargeShift});
  for (size_t n = 0; n < kLargeIters; ++n) {
    s = (s << kLargeShift) +
        (static_cast<result_type>(PowerOfTwoVariate(g)) & kLargeMask);
  }

  static_assert(
      kLargeShift == kSmallShift + 1 ||
          (kLargeShift == 0 &&
           kSmallShift == std::numeric_limits<result_type>::digits - 1),
      "Error in looping constant calculations");

  return s;
}

}  // namespace random_internal
}  // namespace absl

#endif  // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_