aboutsummaryrefslogtreecommitdiffhomepage
path: root/absl/synchronization/mutex.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/synchronization/mutex.cc')
-rw-r--r--absl/synchronization/mutex.cc2680
1 files changed, 2680 insertions, 0 deletions
diff --git a/absl/synchronization/mutex.cc b/absl/synchronization/mutex.cc
new file mode 100644
index 0000000..cb0a3a1
--- /dev/null
+++ b/absl/synchronization/mutex.cc
@@ -0,0 +1,2680 @@
+#include "absl/synchronization/mutex.h"
+
+#ifdef _WIN32
+#include <windows.h>
+#ifdef ERROR
+#undef ERROR
+#endif
+#else
+#include <fcntl.h>
+#include <pthread.h>
+#include <sched.h>
+#include <sys/time.h>
+#endif
+
+#include <assert.h>
+#include <errno.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+
+#include <algorithm>
+#include <atomic>
+#include <cinttypes>
+#include <thread> // NOLINT(build/c++11)
+
+#include "absl/base/attributes.h"
+#include "absl/base/config.h"
+#include "absl/base/dynamic_annotations.h"
+#include "absl/base/internal/atomic_hook.h"
+#include "absl/base/internal/cycleclock.h"
+#include "absl/base/internal/low_level_alloc.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/base/internal/spinlock.h"
+#include "absl/base/internal/sysinfo.h"
+#include "absl/base/internal/thread_identity.h"
+#include "absl/base/internal/tsan_mutex_interface.h"
+#include "absl/base/port.h"
+#include "absl/debugging/stacktrace.h"
+#include "absl/synchronization/internal/graphcycles.h"
+#include "absl/synchronization/internal/per_thread_sem.h"
+#include "absl/time/time.h"
+
+using absl::base_internal::CurrentThreadIdentityIfPresent;
+using absl::base_internal::PerThreadSynch;
+using absl::base_internal::ThreadIdentity;
+using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity;
+using absl::synchronization_internal::GraphCycles;
+using absl::synchronization_internal::GraphId;
+using absl::synchronization_internal::InvalidGraphId;
+using absl::synchronization_internal::KernelTimeout;
+using absl::synchronization_internal::PerThreadSem;
+
+extern "C" {
+ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); }
+} // extern "C"
+
+namespace absl {
+
+namespace {
+
+#if defined(THREAD_SANITIZER)
+constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore;
+#else
+constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort;
+#endif
+
+ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection(
+ kDeadlockDetectionDefault);
+ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false);
+
+// ------------------------------------------ spinlock support
+
+// Make sure read-only globals used in the Mutex code are contained on the
+// same cacheline and cacheline aligned to eliminate any false sharing with
+// other globals from this and other modules.
+static struct MutexGlobals {
+ MutexGlobals() {
+ // Find machine-specific data needed for Delay() and
+ // TryAcquireWithSpinning(). This runs in the global constructor
+ // sequence, and before that zeros are safe values.
+ num_cpus = absl::base_internal::NumCPUs();
+ spinloop_iterations = num_cpus > 1 ? 1500 : 0;
+ }
+ int num_cpus;
+ int spinloop_iterations;
+ // Pad this struct to a full cacheline to prevent false sharing.
+ char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)];
+} ABSL_CACHELINE_ALIGNED mutex_globals;
+static_assert(
+ sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE,
+ "MutexGlobals must occupy an entire cacheline to prevent false sharing");
+
+ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)>
+ submit_profile_data;
+ABSL_CONST_INIT absl::base_internal::AtomicHook<
+ void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer;
+ABSL_CONST_INIT absl::base_internal::AtomicHook<
+ void (*)(const char *msg, const void *cv)> cond_var_tracer;
+ABSL_CONST_INIT absl::base_internal::AtomicHook<
+ bool (*)(const void *pc, char *out, int out_size)> symbolizer;
+
+} // namespace
+
+void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) {
+ submit_profile_data.Store(fn);
+}
+
+void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
+ int64_t wait_cycles)) {
+ mutex_tracer.Store(fn);
+}
+
+void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) {
+ cond_var_tracer.Store(fn);
+}
+
+void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) {
+ symbolizer.Store(fn);
+}
+
+// spinlock delay on iteration c. Returns new c.
+namespace {
+ enum DelayMode { AGGRESSIVE, GENTLE };
+};
+static int Delay(int32_t c, DelayMode mode) {
+ // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is
+ // aggressive then spin many times before yielding. If the mode is
+ // gentle then spin only a few times before yielding. Aggressive spinning is
+ // used to ensure that an Unlock() call, which must get the spin lock for
+ // any thread to make progress gets it without undue delay.
+ int32_t limit = (mutex_globals.num_cpus > 1) ?
+ ((mode == AGGRESSIVE) ? 5000 : 250) : 0;
+ if (c < limit) {
+ c++; // spin
+ } else {
+ ABSL_TSAN_MUTEX_PRE_DIVERT(0, 0);
+ if (c == limit) { // yield once
+ AbslInternalMutexYield();
+ c++;
+ } else { // then wait
+ absl::SleepFor(absl::Microseconds(10));
+ c = 0;
+ }
+ ABSL_TSAN_MUTEX_POST_DIVERT(0, 0);
+ }
+ return (c);
+}
+
+// --------------------------Generic atomic ops
+// Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to
+// "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0
+// before making any change.
+// This is used to set flags in mutex and condition variable words.
+static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits,
+ intptr_t wait_until_clear) {
+ intptr_t v;
+ do {
+ v = pv->load(std::memory_order_relaxed);
+ } while ((v & bits) != bits &&
+ ((v & wait_until_clear) != 0 ||
+ !pv->compare_exchange_weak(v, v | bits,
+ std::memory_order_release,
+ std::memory_order_relaxed)));
+}
+
+// Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to
+// "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0
+// before making any change.
+// This is used to unset flags in mutex and condition variable words.
+static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits,
+ intptr_t wait_until_clear) {
+ intptr_t v;
+ do {
+ v = pv->load(std::memory_order_relaxed);
+ } while ((v & bits) != 0 &&
+ ((v & wait_until_clear) != 0 ||
+ !pv->compare_exchange_weak(v, v & ~bits,
+ std::memory_order_release,
+ std::memory_order_relaxed)));
+}
+
+//------------------------------------------------------------------
+
+// Data for doing deadlock detection.
+static absl::base_internal::SpinLock deadlock_graph_mu(
+ absl::base_internal::kLinkerInitialized);
+
+// graph used to detect deadlocks.
+static GraphCycles *deadlock_graph GUARDED_BY(deadlock_graph_mu)
+ PT_GUARDED_BY(deadlock_graph_mu);
+
+//------------------------------------------------------------------
+// An event mechanism for debugging mutex use.
+// It also allows mutexes to be given names for those who can't handle
+// addresses, and instead like to give their data structures names like
+// "Henry", "Fido", or "Rupert IV, King of Yondavia".
+
+namespace { // to prevent name pollution
+enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent
+ // Mutex events
+ SYNCH_EV_TRYLOCK_SUCCESS,
+ SYNCH_EV_TRYLOCK_FAILED,
+ SYNCH_EV_READERTRYLOCK_SUCCESS,
+ SYNCH_EV_READERTRYLOCK_FAILED,
+ SYNCH_EV_LOCK,
+ SYNCH_EV_LOCK_RETURNING,
+ SYNCH_EV_READERLOCK,
+ SYNCH_EV_READERLOCK_RETURNING,
+ SYNCH_EV_UNLOCK,
+ SYNCH_EV_READERUNLOCK,
+
+ // CondVar events
+ SYNCH_EV_WAIT,
+ SYNCH_EV_WAIT_RETURNING,
+ SYNCH_EV_SIGNAL,
+ SYNCH_EV_SIGNALALL,
+};
+
+enum { // Event flags
+ SYNCH_F_R = 0x01, // reader event
+ SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held
+ SYNCH_F_ACQ = 0x04, // event is an acquire
+
+ SYNCH_F_LCK_W = SYNCH_F_LCK,
+ SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R,
+ SYNCH_F_ACQ_W = SYNCH_F_ACQ,
+ SYNCH_F_ACQ_R = SYNCH_F_ACQ | SYNCH_F_R,
+};
+} // anonymous namespace
+
+// Properties of the events.
+static const struct {
+ int flags;
+ const char *msg;
+} event_properties[] = {
+ { SYNCH_F_LCK_W|SYNCH_F_ACQ_W, "TryLock succeeded " },
+ { 0, "TryLock failed " },
+ { SYNCH_F_LCK_R|SYNCH_F_ACQ_R, "ReaderTryLock succeeded " },
+ { 0, "ReaderTryLock failed " },
+ { SYNCH_F_ACQ_W, "Lock blocking " },
+ { SYNCH_F_LCK_W, "Lock returning " },
+ { SYNCH_F_ACQ_R, "ReaderLock blocking " },
+ { SYNCH_F_LCK_R, "ReaderLock returning " },
+ { SYNCH_F_LCK_W, "Unlock " },
+ { SYNCH_F_LCK_R, "ReaderUnlock " },
+ { 0, "Wait on " },
+ { 0, "Wait unblocked " },
+ { 0, "Signal on " },
+ { 0, "SignalAll on " },
+};
+
+static absl::base_internal::SpinLock synch_event_mu(
+ absl::base_internal::kLinkerInitialized);
+// protects synch_event
+
+// Hash table size; should be prime > 2.
+// Can't be too small, as it's used for deadlock detection information.
+static const uint32_t kNSynchEvent = 1031;
+
+// We need to hide Mutexes (or other deadlock detection's pointers)
+// from the leak detector.
+static const uintptr_t kHideMask = static_cast<uintptr_t>(0xF03A5F7BF03A5F7BLL);
+static uintptr_t MaskMu(const void *mu) {
+ return reinterpret_cast<uintptr_t>(mu) ^ kHideMask;
+}
+
+static struct SynchEvent { // this is a trivial hash table for the events
+ // struct is freed when refcount reaches 0
+ int refcount GUARDED_BY(synch_event_mu);
+
+ // buckets have linear, 0-terminated chains
+ SynchEvent *next GUARDED_BY(synch_event_mu);
+
+ // Constant after initialization
+ uintptr_t masked_addr; // object at this address is called "name"
+
+ // No explicit synchronization used. Instead we assume that the
+ // client who enables/disables invariants/logging on a Mutex does so
+ // while the Mutex is not being concurrently accessed by others.
+ void (*invariant)(void *arg); // called on each event
+ void *arg; // first arg to (*invariant)()
+ bool log; // logging turned on
+
+ // Constant after initialization
+ char name[1]; // actually longer---null-terminated std::string
+} *synch_event[kNSynchEvent] GUARDED_BY(synch_event_mu);
+
+// Ensure that the object at "addr" has a SynchEvent struct associated with it,
+// set "bits" in the word there (waiting until lockbit is clear before doing
+// so), and return a refcounted reference that will remain valid until
+// UnrefSynchEvent() is called. If a new SynchEvent is allocated,
+// the std::string name is copied into it.
+// When used with a mutex, the caller should also ensure that kMuEvent
+// is set in the mutex word, and similarly for condition variables and kCVEvent.
+static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr,
+ const char *name, intptr_t bits,
+ intptr_t lockbit) {
+ uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
+ SynchEvent *e;
+ // first look for existing SynchEvent struct..
+ synch_event_mu.Lock();
+ for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr);
+ e = e->next) {
+ }
+ if (e == nullptr) { // no SynchEvent struct found; make one.
+ if (name == nullptr) {
+ name = "";
+ }
+ size_t l = strlen(name);
+ e = reinterpret_cast<SynchEvent *>(
+ base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l));
+ e->refcount = 2; // one for return value, one for linked list
+ e->masked_addr = MaskMu(addr);
+ e->invariant = nullptr;
+ e->arg = nullptr;
+ e->log = false;
+ strcpy(e->name, name); // NOLINT(runtime/printf)
+ e->next = synch_event[h];
+ AtomicSetBits(addr, bits, lockbit);
+ synch_event[h] = e;
+ } else {
+ e->refcount++; // for return value
+ }
+ synch_event_mu.Unlock();
+ return e;
+}
+
+// Deallocate the SynchEvent *e, whose refcount has fallen to zero.
+static void DeleteSynchEvent(SynchEvent *e) {
+ base_internal::LowLevelAlloc::Free(e);
+}
+
+// Decrement the reference count of *e, or do nothing if e==null.
+static void UnrefSynchEvent(SynchEvent *e) {
+ if (e != nullptr) {
+ synch_event_mu.Lock();
+ bool del = (--(e->refcount) == 0);
+ synch_event_mu.Unlock();
+ if (del) {
+ DeleteSynchEvent(e);
+ }
+ }
+}
+
+// Forget the mapping from the object (Mutex or CondVar) at address addr
+// to SynchEvent object, and clear "bits" in its word (waiting until lockbit
+// is clear before doing so).
+static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits,
+ intptr_t lockbit) {
+ uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
+ SynchEvent **pe;
+ SynchEvent *e;
+ synch_event_mu.Lock();
+ for (pe = &synch_event[h];
+ (e = *pe) != nullptr && e->masked_addr != MaskMu(addr); pe = &e->next) {
+ }
+ bool del = false;
+ if (e != nullptr) {
+ *pe = e->next;
+ del = (--(e->refcount) == 0);
+ }
+ AtomicClearBits(addr, bits, lockbit);
+ synch_event_mu.Unlock();
+ if (del) {
+ DeleteSynchEvent(e);
+ }
+}
+
+// Return a refcounted reference to the SynchEvent of the object at address
+// "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is
+// called.
+static SynchEvent *GetSynchEvent(const void *addr) {
+ uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent;
+ SynchEvent *e;
+ synch_event_mu.Lock();
+ for (e = synch_event[h]; e != nullptr && e->masked_addr != MaskMu(addr);
+ e = e->next) {
+ }
+ if (e != nullptr) {
+ e->refcount++;
+ }
+ synch_event_mu.Unlock();
+ return e;
+}
+
+// Called when an event "ev" occurs on a Mutex of CondVar "obj"
+// if event recording is on
+static void PostSynchEvent(void *obj, int ev) {
+ SynchEvent *e = GetSynchEvent(obj);
+ // logging is on if event recording is on and either there's no event struct,
+ // or it explicitly says to log
+ if (e == nullptr || e->log) {
+ void *pcs[40];
+ int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1);
+ // A buffer with enough space for the ASCII for all the PCs, even on a
+ // 64-bit machine.
+ char buffer[ABSL_ARRAYSIZE(pcs) * 24];
+ int pos = snprintf(buffer, sizeof (buffer), " @");
+ for (int i = 0; i != n; i++) {
+ pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]);
+ }
+ ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj,
+ (e == nullptr ? "" : e->name), buffer);
+ }
+ if ((event_properties[ev].flags & SYNCH_F_LCK) != 0 && e != nullptr &&
+ e->invariant != nullptr) {
+ (*e->invariant)(e->arg);
+ }
+ UnrefSynchEvent(e);
+}
+
+//------------------------------------------------------------------
+
+// The SynchWaitParams struct encapsulates the way in which a thread is waiting:
+// whether it has a timeout, the condition, exclusive/shared, and whether a
+// condition variable wait has an associated Mutex (as opposed to another
+// type of lock). It also points to the PerThreadSynch struct of its thread.
+// cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue().
+//
+// This structure is held on the stack rather than directly in
+// PerThreadSynch because a thread can be waiting on multiple Mutexes if,
+// while waiting on one Mutex, the implementation calls a client callback
+// (such as a Condition function) that acquires another Mutex. We don't
+// strictly need to allow this, but programmers become confused if we do not
+// allow them to use functions such a LOG() within Condition functions. The
+// PerThreadSynch struct points at the most recent SynchWaitParams struct when
+// the thread is on a Mutex's waiter queue.
+struct SynchWaitParams {
+ SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg,
+ KernelTimeout timeout_arg, Mutex *cvmu_arg,
+ PerThreadSynch *thread_arg,
+ std::atomic<intptr_t> *cv_word_arg)
+ : how(how_arg),
+ cond(cond_arg),
+ timeout(timeout_arg),
+ cvmu(cvmu_arg),
+ thread(thread_arg),
+ cv_word(cv_word_arg),
+ contention_start_cycles(base_internal::CycleClock::Now()) {}
+
+ const Mutex::MuHow how; // How this thread needs to wait.
+ const Condition *cond; // The condition that this thread is waiting for.
+ // In Mutex, this field is set to zero if a timeout
+ // expires.
+ KernelTimeout timeout; // timeout expiry---absolute time
+ // In Mutex, this field is set to zero if a timeout
+ // expires.
+ Mutex *const cvmu; // used for transfer from cond var to mutex
+ PerThreadSynch *const thread; // thread that is waiting
+
+ // If not null, thread should be enqueued on the CondVar whose state
+ // word is cv_word instead of queueing normally on the Mutex.
+ std::atomic<intptr_t> *cv_word;
+
+ int64_t contention_start_cycles; // Time (in cycles) when this thread started
+ // to contend for the mutex.
+};
+
+struct SynchLocksHeld {
+ int n; // number of valid entries in locks[]
+ bool overflow; // true iff we overflowed the array at some point
+ struct {
+ Mutex *mu; // lock acquired
+ int32_t count; // times acquired
+ GraphId id; // deadlock_graph id of acquired lock
+ } locks[40];
+ // If a thread overfills the array during deadlock detection, we
+ // continue, discarding information as needed. If no overflow has
+ // taken place, we can provide more error checking, such as
+ // detecting when a thread releases a lock it does not hold.
+};
+
+// A sentinel value in lists that is not 0.
+// A 0 value is used to mean "not on a list".
+static PerThreadSynch *const kPerThreadSynchNull =
+ reinterpret_cast<PerThreadSynch *>(1);
+
+static SynchLocksHeld *LocksHeldAlloc() {
+ SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>(
+ base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld)));
+ ret->n = 0;
+ ret->overflow = false;
+ return ret;
+}
+
+// Return the PerThreadSynch-struct for this thread.
+static PerThreadSynch *Synch_GetPerThread() {
+ ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity();
+ return &identity->per_thread_synch;
+}
+
+static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) {
+ if (mu) {
+ ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
+ }
+ PerThreadSynch *w = Synch_GetPerThread();
+ if (mu) {
+ ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
+ }
+ return w;
+}
+
+static SynchLocksHeld *Synch_GetAllLocks() {
+ PerThreadSynch *s = Synch_GetPerThread();
+ if (s->all_locks == nullptr) {
+ s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity.
+ }
+ return s->all_locks;
+}
+
+// Post on "w"'s associated PerThreadSem.
+inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) {
+ if (mu) {
+ ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
+ }
+ PerThreadSem::Post(w->thread_identity());
+ if (mu) {
+ ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
+ }
+}
+
+// Wait on "w"'s associated PerThreadSem; returns false if timeout expired.
+bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) {
+ if (mu) {
+ ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
+ }
+ assert(w == Synch_GetPerThread());
+ static_cast<void>(w);
+ bool res = PerThreadSem::Wait(t);
+ if (mu) {
+ ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
+ }
+ return res;
+}
+
+// We're in a fatal signal handler that hopes to use Mutex and to get
+// lucky by not deadlocking. We try to improve its chances of success
+// by effectively disabling some of the consistency checks. This will
+// prevent certain ABSL_RAW_CHECK() statements from being triggered when
+// re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the
+// Mutex code checking that the "waitp" field has not been reused.
+void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() {
+ // Fix the per-thread state only if it exists.
+ ThreadIdentity *identity = CurrentThreadIdentityIfPresent();
+ if (identity != nullptr) {
+ identity->per_thread_synch.suppress_fatal_errors = true;
+ }
+ // Don't do deadlock detection when we are already failing.
+ synch_deadlock_detection.store(OnDeadlockCycle::kIgnore,
+ std::memory_order_release);
+}
+
+// --------------------------time support
+
+// Return the current time plus the timeout. Use the same clock as
+// PerThreadSem::Wait() for consistency. Unfortunately, we don't have
+// such a choice when a deadline is given directly.
+static absl::Time DeadlineFromTimeout(absl::Duration timeout) {
+#ifndef _WIN32
+ struct timeval tv;
+ gettimeofday(&tv, nullptr);
+ return absl::TimeFromTimeval(tv) + timeout;
+#else
+ return absl::Now() + timeout;
+#endif
+}
+
+// --------------------------Mutexes
+
+// In the layout below, the msb of the bottom byte is currently unused. Also,
+// the following constraints were considered in choosing the layout:
+// o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and
+// 0xcd) are illegal: reader and writer lock both held.
+// o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the
+// bit-twiddling trick in Mutex::Unlock().
+// o kMuWriter / kMuReader == kMuWrWait / kMuWait,
+// to enable the bit-twiddling trick in CheckForMutexCorruption().
+static const intptr_t kMuReader = 0x0001L; // a reader holds the lock
+static const intptr_t kMuDesig = 0x0002L; // there's a designated waker
+static const intptr_t kMuWait = 0x0004L; // threads are waiting
+static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock
+static const intptr_t kMuEvent = 0x0010L; // record this mutex's events
+// INVARIANT1: there's a thread that was blocked on the mutex, is
+// no longer, yet has not yet acquired the mutex. If there's a
+// designated waker, all threads can avoid taking the slow path in
+// unlock because the designated waker will subsequently acquire
+// the lock and wake someone. To maintain INVARIANT1 the bit is
+// set when a thread is unblocked(INV1a), and threads that were
+// unblocked reset the bit when they either acquire or re-block
+// (INV1b).
+static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting
+ // for a reader
+static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list
+static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits
+static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count
+
+// Hack to make constant values available to gdb pretty printer
+enum {
+ kGdbMuSpin = kMuSpin,
+ kGdbMuEvent = kMuEvent,
+ kGdbMuWait = kMuWait,
+ kGdbMuWriter = kMuWriter,
+ kGdbMuDesig = kMuDesig,
+ kGdbMuWrWait = kMuWrWait,
+ kGdbMuReader = kMuReader,
+ kGdbMuLow = kMuLow,
+};
+
+// kMuWrWait implies kMuWait.
+// kMuReader and kMuWriter are mutually exclusive.
+// If kMuReader is zero, there are no readers.
+// Otherwise, if kMuWait is zero, the high order bits contain a count of the
+// number of readers. Otherwise, the reader count is held in
+// PerThreadSynch::readers of the most recently queued waiter, again in the
+// bits above kMuLow.
+static const intptr_t kMuOne = 0x0100; // a count of one reader
+
+// flags passed to Enqueue and LockSlow{,WithTimeout,Loop}
+static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1)
+static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition)
+
+static_assert(PerThreadSynch::kAlignment > kMuLow,
+ "PerThreadSynch::kAlignment must be greater than kMuLow");
+
+// This struct contains various bitmasks to be used in
+// acquiring and releasing a mutex in a particular mode.
+struct MuHowS {
+ // if all the bits in fast_need_zero are zero, the lock can be acquired by
+ // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff
+ // this is the designated waker.
+ intptr_t fast_need_zero;
+ intptr_t fast_or;
+ intptr_t fast_add;
+
+ intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging)
+
+ intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are
+ // zero a reader can acquire a read share by
+ // setting the reader bit and incrementing
+ // the reader count (in last waiter since
+ // we're now slow-path). kMuWrWait be may
+ // be ignored if we already waited once.
+};
+
+static const MuHowS kSharedS = {
+ // shared or read lock
+ kMuWriter | kMuWait | kMuEvent, // fast_need_zero
+ kMuReader, // fast_or
+ kMuOne, // fast_add
+ kMuWriter | kMuWait, // slow_need_zero
+ kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero
+};
+static const MuHowS kExclusiveS = {
+ // exclusive or write lock
+ kMuWriter | kMuReader | kMuEvent, // fast_need_zero
+ kMuWriter, // fast_or
+ 0, // fast_add
+ kMuWriter | kMuReader, // slow_need_zero
+ ~static_cast<intptr_t>(0), // slow_inc_need_zero
+};
+static const Mutex::MuHow kShared = &kSharedS; // shared lock
+static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock
+
+#ifdef NDEBUG
+static constexpr bool kDebugMode = false;
+#else
+static constexpr bool kDebugMode = true;
+#endif
+
+#ifdef THREAD_SANITIZER
+static unsigned TsanFlags(Mutex::MuHow how) {
+ return how == kShared ? __tsan_mutex_read_lock : 0;
+}
+#endif
+
+Mutex::Mutex() : mu_(0) {
+ ABSL_TSAN_MUTEX_CREATE(this, 0);
+}
+
+static bool DebugOnlyIsExiting() {
+ return false;
+}
+
+Mutex::~Mutex() {
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) {
+ ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin);
+ }
+ if (kDebugMode) {
+ this->ForgetDeadlockInfo();
+ }
+ ABSL_TSAN_MUTEX_DESTROY(this, 0);
+}
+
+void Mutex::EnableDebugLog(const char *name) {
+ SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin);
+ e->log = true;
+ UnrefSynchEvent(e);
+}
+
+void EnableMutexInvariantDebugging(bool enabled) {
+ synch_check_invariants.store(enabled, std::memory_order_release);
+}
+
+void Mutex::EnableInvariantDebugging(void (*invariant)(void *),
+ void *arg) {
+ if (synch_check_invariants.load(std::memory_order_acquire) &&
+ invariant != nullptr) {
+ SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin);
+ e->invariant = invariant;
+ e->arg = arg;
+ UnrefSynchEvent(e);
+ }
+}
+
+void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) {
+ synch_deadlock_detection.store(mode, std::memory_order_release);
+}
+
+// Return true iff threads x and y are waiting on the same condition for the
+// same type of lock. Requires that x and y be waiting on the same Mutex
+// queue.
+static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) {
+ return x->waitp->how == y->waitp->how &&
+ Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond);
+}
+
+// Given the contents of a mutex word containing a PerThreadSynch pointer,
+// return the pointer.
+static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) {
+ return reinterpret_cast<PerThreadSynch *>(v & kMuHigh);
+}
+
+// The next several routines maintain the per-thread next and skip fields
+// used in the Mutex waiter queue.
+// The queue is a circular singly-linked list, of which the "head" is the
+// last element, and head->next if the first element.
+// The skip field has the invariant:
+// For thread x, x->skip is one of:
+// - invalid (iff x is not in a Mutex wait queue),
+// - null, or
+// - a pointer to a distinct thread waiting later in the same Mutex queue
+// such that all threads in [x, x->skip] have the same condition and
+// lock type (MuSameCondition() is true for all pairs in [x, x->skip]).
+// In addition, if x->skip is valid, (x->may_skip || x->skip == null)
+//
+// By the spec of MuSameCondition(), it is not necessary when removing the
+// first runnable thread y from the front a Mutex queue to adjust the skip
+// field of another thread x because if x->skip==y, x->skip must (have) become
+// invalid before y is removed. The function TryRemove can remove a specified
+// thread from an arbitrary position in the queue whether runnable or not, so
+// it fixes up skip fields that would otherwise be left dangling.
+// The statement
+// if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; }
+// maintains the invariant provided x is not the last waiter in a Mutex queue
+// The statement
+// if (x->skip != null) { x->skip = x->skip->skip; }
+// maintains the invariant.
+
+// Returns the last thread y in a mutex waiter queue such that all threads in
+// [x, y] inclusive share the same condition. Sets skip fields of some threads
+// in that range to optimize future evaluation of Skip() on x values in
+// the range. Requires thread x is in a mutex waiter queue.
+// The locking is unusual. Skip() is called under these conditions:
+// - spinlock is held in call from Enqueue(), with maybe_unlocking == false
+// - Mutex is held in call from UnlockSlow() by last unlocker, with
+// maybe_unlocking == true
+// - both Mutex and spinlock are held in call from DequeueAllWakeable() (from
+// UnlockSlow()) and TryRemove()
+// These cases are mutually exclusive, so Skip() never runs concurrently
+// with itself on the same Mutex. The skip chain is used in these other places
+// that cannot occur concurrently:
+// - FixSkip() (from TryRemove()) - spinlock and Mutex are held)
+// - Dequeue() (with spinlock and Mutex held)
+// - UnlockSlow() (with spinlock and Mutex held)
+// A more complex case is Enqueue()
+// - Enqueue() (with spinlock held and maybe_unlocking == false)
+// This is the first case in which Skip is called, above.
+// - Enqueue() (without spinlock held; but queue is empty and being freshly
+// formed)
+// - Enqueue() (with spinlock held and maybe_unlocking == true)
+// The first case has mutual exclusion, and the second isolation through
+// working on an otherwise unreachable data structure.
+// In the last case, Enqueue() is required to change no skip/next pointers
+// except those in the added node and the former "head" node. This implies
+// that the new node is added after head, and so must be the new head or the
+// new front of the queue.
+static PerThreadSynch *Skip(PerThreadSynch *x) {
+ PerThreadSynch *x0 = nullptr;
+ PerThreadSynch *x1 = x;
+ PerThreadSynch *x2 = x->skip;
+ if (x2 != nullptr) {
+ // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence
+ // such that x1 == x0->skip && x2 == x1->skip
+ while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) {
+ x0->skip = x2; // short-circuit skip from x0 to x2
+ }
+ x->skip = x1; // short-circuit skip from x to result
+ }
+ return x1;
+}
+
+// "ancestor" appears before "to_be_removed" in the same Mutex waiter queue.
+// The latter is going to be removed out of order, because of a timeout.
+// Check whether "ancestor" has a skip field pointing to "to_be_removed",
+// and fix it if it does.
+static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) {
+ if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling
+ if (to_be_removed->skip != nullptr) {
+ ancestor->skip = to_be_removed->skip; // can skip past to_be_removed
+ } else if (ancestor->next != to_be_removed) { // they are not adjacent
+ ancestor->skip = ancestor->next; // can skip one past ancestor
+ } else {
+ ancestor->skip = nullptr; // can't skip at all
+ }
+ }
+}
+
+static void CondVarEnqueue(SynchWaitParams *waitp);
+
+// Enqueue thread "waitp->thread" on a waiter queue.
+// Called with mutex spinlock held if head != nullptr
+// If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is
+// idempotent; it alters no state associated with the existing (empty)
+// queue.
+//
+// If waitp->cv_word == nullptr, queue the thread at either the front or
+// the end (according to its priority) of the circular mutex waiter queue whose
+// head is "head", and return the new head. mu is the previous mutex state,
+// which contains the reader count (perhaps adjusted for the operation in
+// progress) if the list was empty and a read lock held, and the holder hint if
+// the list was empty and a write lock held. (flags & kMuIsCond) indicates
+// whether this thread was transferred from a CondVar or is waiting for a
+// non-trivial condition. In this case, Enqueue() never returns nullptr
+//
+// If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is
+// returned. This mechanism is used by CondVar to queue a thread on the
+// condition variable queue instead of the mutex queue in implementing Wait().
+// In this case, Enqueue() can return nullptr (if head==nullptr).
+static PerThreadSynch *Enqueue(PerThreadSynch *head,
+ SynchWaitParams *waitp, intptr_t mu, int flags) {
+ // If we have been given a cv_word, call CondVarEnqueue() and return
+ // the previous head of the Mutex waiter queue.
+ if (waitp->cv_word != nullptr) {
+ CondVarEnqueue(waitp);
+ return head;
+ }
+
+ PerThreadSynch *s = waitp->thread;
+ ABSL_RAW_CHECK(
+ s->waitp == nullptr || // normal case
+ s->waitp == waitp || // Fer()---transfer from condition variable
+ s->suppress_fatal_errors,
+ "detected illegal recursion into Mutex code");
+ s->waitp = waitp;
+ s->skip = nullptr; // maintain skip invariant (see above)
+ s->may_skip = true; // always true on entering queue
+ s->wake = false; // not being woken
+ s->cond_waiter = ((flags & kMuIsCond) != 0);
+ if (head == nullptr) { // s is the only waiter
+ s->next = s; // it's the only entry in the cycle
+ s->readers = mu; // reader count is from mu word
+ s->maybe_unlocking = false; // no one is searching an empty list
+ head = s; // s is new head
+ } else {
+ PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element
+#ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM
+ int64_t now_cycles = base_internal::CycleClock::Now();
+ if (s->next_priority_read_cycles < now_cycles) {
+ // Every so often, update our idea of the thread's priority.
+ // pthread_getschedparam() is 5% of the block/wakeup time;
+ // base_internal::CycleClock::Now() is 0.5%.
+ int policy;
+ struct sched_param param;
+ pthread_getschedparam(pthread_self(), &policy, &param);
+ s->priority = param.sched_priority;
+ s->next_priority_read_cycles =
+ now_cycles +
+ static_cast<int64_t>(base_internal::CycleClock::Frequency());
+ }
+ if (s->priority > head->priority) { // s's priority is above head's
+ // try to put s in priority-fifo order, or failing that at the front.
+ if (!head->maybe_unlocking) {
+ // No unlocker can be scanning the queue, so we can insert between
+ // skip-chains, and within a skip-chain if it has the same condition as
+ // s. We insert in priority-fifo order, examining the end of every
+ // skip-chain, plus every element with the same condition as s.
+ PerThreadSynch *advance_to = head; // next value of enqueue_after
+ PerThreadSynch *cur; // successor of enqueue_after
+ do {
+ enqueue_after = advance_to;
+ cur = enqueue_after->next; // this advance ensures progress
+ advance_to = Skip(cur); // normally, advance to end of skip chain
+ // (side-effect: optimizes skip chain)
+ if (advance_to != cur && s->priority > advance_to->priority &&
+ MuSameCondition(s, cur)) {
+ // but this skip chain is not a singleton, s has higher priority
+ // than its tail and has the same condition as the chain,
+ // so we can insert within the skip-chain
+ advance_to = cur; // advance by just one
+ }
+ } while (s->priority <= advance_to->priority);
+ // termination guaranteed because s->priority > head->priority
+ // and head is the end of a skip chain
+ } else if (waitp->how == kExclusive &&
+ Condition::GuaranteedEqual(waitp->cond, nullptr)) {
+ // An unlocker could be scanning the queue, but we know it will recheck
+ // the queue front for writers that have no condition, which is what s
+ // is, so an insert at front is safe.
+ enqueue_after = head; // add after head, at front
+ }
+ }
+#endif
+ if (enqueue_after != nullptr) {
+ s->next = enqueue_after->next;
+ enqueue_after->next = s;
+
+ // enqueue_after can be: head, Skip(...), or cur.
+ // The first two imply enqueue_after->skip == nullptr, and
+ // the last is used only if MuSameCondition(s, cur).
+ // We require this because clearing enqueue_after->skip
+ // is impossible; enqueue_after's predecessors might also
+ // incorrectly skip over s if we were to allow other
+ // insertion points.
+ ABSL_RAW_CHECK(
+ enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s),
+ "Mutex Enqueue failure");
+
+ if (enqueue_after != head && enqueue_after->may_skip &&
+ MuSameCondition(enqueue_after, enqueue_after->next)) {
+ // enqueue_after can skip to its new successor, s
+ enqueue_after->skip = enqueue_after->next;
+ }
+ if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true
+ s->skip = s->next; // s may skip to its successor
+ }
+ } else { // enqueue not done any other way, so
+ // we're inserting s at the back
+ // s will become new head; copy data from head into it
+ s->next = head->next; // add s after head
+ head->next = s;
+ s->readers = head->readers; // reader count is from previous head
+ s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint
+ if (head->may_skip && MuSameCondition(head, s)) {
+ // head now has successor; may skip
+ head->skip = s;
+ }
+ head = s; // s is new head
+ }
+ }
+ s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed);
+ return head;
+}
+
+// Dequeue the successor pw->next of thread pw from the Mutex waiter queue
+// whose last element is head. The new head element is returned, or null
+// if the list is made empty.
+// Dequeue is called with both spinlock and Mutex held.
+static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) {
+ PerThreadSynch *w = pw->next;
+ pw->next = w->next; // snip w out of list
+ if (head == w) { // we removed the head
+ head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head
+ } else if (pw != head && MuSameCondition(pw, pw->next)) {
+ // pw can skip to its new successor
+ if (pw->next->skip !=
+ nullptr) { // either skip to its successors skip target
+ pw->skip = pw->next->skip;
+ } else { // or to pw's successor
+ pw->skip = pw->next;
+ }
+ }
+ return head;
+}
+
+// Traverse the elements [ pw->next, h] of the circular list whose last element
+// is head.
+// Remove all elements with wake==true and place them in the
+// singly-linked list wake_list in the order found. Assumes that
+// there is only one such element if the element has how == kExclusive.
+// Return the new head.
+static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head,
+ PerThreadSynch *pw,
+ PerThreadSynch **wake_tail) {
+ PerThreadSynch *orig_h = head;
+ PerThreadSynch *w = pw->next;
+ bool skipped = false;
+ do {
+ if (w->wake) { // remove this element
+ ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable");
+ // we're removing pw's successor so either pw->skip is zero or we should
+ // already have removed pw since if pw->skip!=null, pw has the same
+ // condition as w.
+ head = Dequeue(head, pw);
+ w->next = *wake_tail; // keep list terminated
+ *wake_tail = w; // add w to wake_list;
+ wake_tail = &w->next; // next addition to end
+ if (w->waitp->how == kExclusive) { // wake at most 1 writer
+ break;
+ }
+ } else { // not waking this one; skip
+ pw = Skip(w); // skip as much as possible
+ skipped = true;
+ }
+ w = pw->next;
+ // We want to stop processing after we've considered the original head,
+ // orig_h. We can't test for w==orig_h in the loop because w may skip over
+ // it; we are guaranteed only that w's predecessor will not skip over
+ // orig_h. When we've considered orig_h, either we've processed it and
+ // removed it (so orig_h != head), or we considered it and skipped it (so
+ // skipped==true && pw == head because skipping from head always skips by
+ // just one, leaving pw pointing at head). So we want to
+ // continue the loop with the negation of that expression.
+ } while (orig_h == head && (pw != head || !skipped));
+ return head;
+}
+
+// Try to remove thread s from the list of waiters on this mutex.
+// Does nothing if s is not on the waiter list.
+void Mutex::TryRemove(PerThreadSynch *s) {
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ // acquire spinlock & lock
+ if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait &&
+ mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ PerThreadSynch *h = GetPerThreadSynch(v);
+ if (h != nullptr) {
+ PerThreadSynch *pw = h; // pw is w's predecessor
+ PerThreadSynch *w;
+ if ((w = pw->next) != s) { // search for thread,
+ do { // processing at least one element
+ if (!MuSameCondition(s, w)) { // seeking different condition
+ pw = Skip(w); // so skip all that won't match
+ // we don't have to worry about dangling skip fields
+ // in the threads we skipped; none can point to s
+ // because their condition differs from s
+ } else { // seeking same condition
+ FixSkip(w, s); // fix up any skip pointer from w to s
+ pw = w;
+ }
+ // don't search further if we found the thread, or we're about to
+ // process the first thread again.
+ } while ((w = pw->next) != s && pw != h);
+ }
+ if (w == s) { // found thread; remove it
+ // pw->skip may be non-zero here; the loop above ensured that
+ // no ancestor of s can skip to s, so removal is safe anyway.
+ h = Dequeue(h, pw);
+ s->next = nullptr;
+ s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
+ }
+ }
+ intptr_t nv;
+ do { // release spinlock and lock
+ v = mu_.load(std::memory_order_relaxed);
+ nv = v & (kMuDesig | kMuEvent);
+ if (h != nullptr) {
+ nv |= kMuWait | reinterpret_cast<intptr_t>(h);
+ h->readers = 0; // we hold writer lock
+ h->maybe_unlocking = false; // finished unlocking
+ }
+ } while (!mu_.compare_exchange_weak(v, nv,
+ std::memory_order_release,
+ std::memory_order_relaxed));
+ }
+}
+
+// Wait until thread "s", which must be the current thread, is removed from the
+// this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up
+// if the wait extends past the absolute time specified, even if "s" is still
+// on the mutex queue. In this case, remove "s" from the queue and return
+// true, otherwise return false.
+void Mutex::Block(PerThreadSynch *s) {
+ while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) {
+ if (!DecrementSynchSem(this, s, s->waitp->timeout)) {
+ // After a timeout, we go into a spin loop until we remove ourselves
+ // from the queue, or someone else removes us. We can't be sure to be
+ // able to remove ourselves in a single lock acquisition because this
+ // mutex may be held, and the holder has the right to read the centre
+ // of the waiter queue without holding the spinlock.
+ this->TryRemove(s);
+ int c = 0;
+ while (s->next != nullptr) {
+ c = Delay(c, GENTLE);
+ this->TryRemove(s);
+ }
+ if (kDebugMode) {
+ // This ensures that we test the case that TryRemove() is called when s
+ // is not on the queue.
+ this->TryRemove(s);
+ }
+ s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied
+ s->waitp->cond = nullptr; // condition no longer relevant for wakeups
+ }
+ }
+ ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors,
+ "detected illegal recursion in Mutex code");
+ s->waitp = nullptr;
+}
+
+// Wake thread w, and return the next thread in the list.
+PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) {
+ PerThreadSynch *next = w->next;
+ w->next = nullptr;
+ w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
+ IncrementSynchSem(this, w);
+
+ return next;
+}
+
+static GraphId GetGraphIdLocked(Mutex *mu)
+ EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) {
+ if (!deadlock_graph) { // (re)create the deadlock graph.
+ deadlock_graph =
+ new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph)))
+ GraphCycles;
+ }
+ return deadlock_graph->GetId(mu);
+}
+
+static GraphId GetGraphId(Mutex *mu) LOCKS_EXCLUDED(deadlock_graph_mu) {
+ deadlock_graph_mu.Lock();
+ GraphId id = GetGraphIdLocked(mu);
+ deadlock_graph_mu.Unlock();
+ return id;
+}
+
+// Record a lock acquisition. This is used in debug mode for deadlock
+// detection. The held_locks pointer points to the relevant data
+// structure for each case.
+static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
+ int n = held_locks->n;
+ int i = 0;
+ while (i != n && held_locks->locks[i].id != id) {
+ i++;
+ }
+ if (i == n) {
+ if (n == ABSL_ARRAYSIZE(held_locks->locks)) {
+ held_locks->overflow = true; // lost some data
+ } else { // we have room for lock
+ held_locks->locks[i].mu = mu;
+ held_locks->locks[i].count = 1;
+ held_locks->locks[i].id = id;
+ held_locks->n = n + 1;
+ }
+ } else {
+ held_locks->locks[i].count++;
+ }
+}
+
+// Record a lock release. Each call to LockEnter(mu, id, x) should be
+// eventually followed by a call to LockLeave(mu, id, x) by the same thread.
+// It does not process the event if is not needed when deadlock detection is
+// disabled.
+static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) {
+ int n = held_locks->n;
+ int i = 0;
+ while (i != n && held_locks->locks[i].id != id) {
+ i++;
+ }
+ if (i == n) {
+ if (!held_locks->overflow) {
+ // The deadlock id may have been reassigned after ForgetDeadlockInfo,
+ // but in that case mu should still be present.
+ i = 0;
+ while (i != n && held_locks->locks[i].mu != mu) {
+ i++;
+ }
+ if (i == n) { // mu missing means releasing unheld lock
+ SynchEvent *mu_events = GetSynchEvent(mu);
+ ABSL_RAW_LOG(FATAL,
+ "thread releasing lock it does not hold: %p %s; "
+ ,
+ static_cast<void *>(mu),
+ mu_events == nullptr ? "" : mu_events->name);
+ }
+ }
+ } else if (held_locks->locks[i].count == 1) {
+ held_locks->n = n - 1;
+ held_locks->locks[i] = held_locks->locks[n - 1];
+ held_locks->locks[n - 1].id = InvalidGraphId();
+ held_locks->locks[n - 1].mu =
+ nullptr; // clear mu to please the leak detector.
+ } else {
+ assert(held_locks->locks[i].count > 0);
+ held_locks->locks[i].count--;
+ }
+}
+
+// Call LockEnter() if in debug mode and deadlock detection is enabled.
+static inline void DebugOnlyLockEnter(Mutex *mu) {
+ if (kDebugMode) {
+ if (synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks());
+ }
+ }
+}
+
+// Call LockEnter() if in debug mode and deadlock detection is enabled.
+static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) {
+ if (kDebugMode) {
+ if (synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ LockEnter(mu, id, Synch_GetAllLocks());
+ }
+ }
+}
+
+// Call LockLeave() if in debug mode and deadlock detection is enabled.
+static inline void DebugOnlyLockLeave(Mutex *mu) {
+ if (kDebugMode) {
+ if (synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks());
+ }
+ }
+}
+
+static char *StackString(void **pcs, int n, char *buf, int maxlen,
+ bool symbolize) {
+ static const int kSymLen = 200;
+ char sym[kSymLen];
+ int len = 0;
+ for (int i = 0; i != n; i++) {
+ if (symbolize) {
+ if (!symbolizer(pcs[i], sym, kSymLen)) {
+ sym[0] = '\0';
+ }
+ snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n",
+ (i == 0 ? "\n" : ""),
+ pcs[i], sym);
+ } else {
+ snprintf(buf + len, maxlen - len, " %p", pcs[i]);
+ }
+ len += strlen(&buf[len]);
+ }
+ return buf;
+}
+
+static char *CurrentStackString(char *buf, int maxlen, bool symbolize) {
+ void *pcs[40];
+ return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf,
+ maxlen, symbolize);
+}
+
+namespace {
+enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle;
+ // a path this long would be remarkable
+// Buffers required to report a deadlock.
+// We do not allocate them on stack to avoid large stack frame.
+struct DeadlockReportBuffers {
+ char buf[6100];
+ GraphId path[kMaxDeadlockPathLen];
+};
+
+struct ScopedDeadlockReportBuffers {
+ ScopedDeadlockReportBuffers() {
+ b = reinterpret_cast<DeadlockReportBuffers *>(
+ base_internal::LowLevelAlloc::Alloc(sizeof(*b)));
+ }
+ ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); }
+ DeadlockReportBuffers *b;
+};
+
+// Helper to pass to GraphCycles::UpdateStackTrace.
+int GetStack(void** stack, int max_depth) {
+ return absl::GetStackTrace(stack, max_depth, 3);
+}
+} // anonymous namespace
+
+// Called in debug mode when a thread is about to acquire a lock in a way that
+// may block.
+static GraphId DeadlockCheck(Mutex *mu) {
+ if (synch_deadlock_detection.load(std::memory_order_acquire) ==
+ OnDeadlockCycle::kIgnore) {
+ return InvalidGraphId();
+ }
+
+ SynchLocksHeld *all_locks = Synch_GetAllLocks();
+
+ absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu);
+ const GraphId mu_id = GetGraphIdLocked(mu);
+
+ if (all_locks->n == 0) {
+ // There are no other locks held. Return now so that we don't need to
+ // call GetSynchEvent(). This way we do not record the stack trace
+ // for this Mutex. It's ok, since if this Mutex is involved in a deadlock,
+ // it can't always be the first lock acquired by a thread.
+ return mu_id;
+ }
+
+ // We prefer to keep stack traces that show a thread holding and acquiring
+ // as many locks as possible. This increases the chances that a given edge
+ // in the acquires-before graph will be represented in the stack traces
+ // recorded for the locks.
+ deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack);
+
+ // For each other mutex already held by this thread:
+ for (int i = 0; i != all_locks->n; i++) {
+ const GraphId other_node_id = all_locks->locks[i].id;
+ const Mutex *other =
+ static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id));
+ if (other == nullptr) {
+ // Ignore stale lock
+ continue;
+ }
+
+ // Add the acquired-before edge to the graph.
+ if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) {
+ ScopedDeadlockReportBuffers scoped_buffers;
+ DeadlockReportBuffers *b = scoped_buffers.b;
+ static int number_of_reported_deadlocks = 0;
+ number_of_reported_deadlocks++;
+ // Symbolize only 2 first deadlock report to avoid huge slowdowns.
+ bool symbolize = number_of_reported_deadlocks <= 2;
+ ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s",
+ CurrentStackString(b->buf, sizeof (b->buf), symbolize));
+ int len = 0;
+ for (int j = 0; j != all_locks->n; j++) {
+ void* pr = deadlock_graph->Ptr(all_locks->locks[j].id);
+ if (pr != nullptr) {
+ snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr);
+ len += static_cast<int>(strlen(&b->buf[len]));
+ }
+ }
+ ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s",
+ static_cast<void *>(mu), b->buf);
+ ABSL_RAW_LOG(ERROR, "Cycle: ");
+ int path_len = deadlock_graph->FindPath(
+ mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path);
+ for (int j = 0; j != path_len; j++) {
+ GraphId id = b->path[j];
+ Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id));
+ if (path_mu == nullptr) continue;
+ void** stack;
+ int depth = deadlock_graph->GetStackTrace(id, &stack);
+ snprintf(b->buf, sizeof(b->buf),
+ "mutex@%p stack: ", static_cast<void *>(path_mu));
+ StackString(stack, depth, b->buf + strlen(b->buf),
+ static_cast<int>(sizeof(b->buf) - strlen(b->buf)),
+ symbolize);
+ ABSL_RAW_LOG(ERROR, "%s", b->buf);
+ }
+ if (synch_deadlock_detection.load(std::memory_order_acquire) ==
+ OnDeadlockCycle::kAbort) {
+ deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler
+ ABSL_RAW_LOG(FATAL, "dying due to potential deadlock");
+ return mu_id;
+ }
+ break; // report at most one potential deadlock per acquisition
+ }
+ }
+
+ return mu_id;
+}
+
+// Invoke DeadlockCheck() iff we're in debug mode and
+// deadlock checking has been enabled.
+static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) {
+ if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ return DeadlockCheck(mu);
+ } else {
+ return InvalidGraphId();
+ }
+}
+
+void Mutex::ForgetDeadlockInfo() {
+ if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ deadlock_graph_mu.Lock();
+ if (deadlock_graph != nullptr) {
+ deadlock_graph->RemoveNode(this);
+ }
+ deadlock_graph_mu.Unlock();
+ }
+}
+
+void Mutex::AssertNotHeld() const {
+ // We have the data to allow this check only if in debug mode and deadlock
+ // detection is enabled.
+ if (kDebugMode &&
+ (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 &&
+ synch_deadlock_detection.load(std::memory_order_acquire) !=
+ OnDeadlockCycle::kIgnore) {
+ GraphId id = GetGraphId(const_cast<Mutex *>(this));
+ SynchLocksHeld *locks = Synch_GetAllLocks();
+ for (int i = 0; i != locks->n; i++) {
+ if (locks->locks[i].id == id) {
+ SynchEvent *mu_events = GetSynchEvent(this);
+ ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s",
+ static_cast<const void *>(this),
+ (mu_events == nullptr ? "" : mu_events->name));
+ }
+ }
+ }
+}
+
+// Attempt to acquire *mu, and return whether successful. The implementation
+// may spin for a short while if the lock cannot be acquired immediately.
+static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) {
+ int c = mutex_globals.spinloop_iterations;
+ int result = -1; // result of operation: 0=false, 1=true, -1=unknown
+
+ do { // do/while somewhat faster on AMD
+ intptr_t v = mu->load(std::memory_order_relaxed);
+ if ((v & (kMuReader|kMuEvent)) != 0) { // a reader or tracing -> give up
+ result = 0;
+ } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire
+ mu->compare_exchange_strong(v, kMuWriter | v,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ result = 1;
+ }
+ } while (result == -1 && --c > 0);
+ return result == 1;
+}
+
+ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ // try fast acquire, then spin loop
+ if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 ||
+ !mu_.compare_exchange_strong(v, kMuWriter | v,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ // try spin acquire, then slow loop
+ if (!TryAcquireWithSpinning(&this->mu_)) {
+ this->LockSlow(kExclusive, nullptr, 0);
+ }
+ }
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
+}
+
+ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ // try fast acquire, then slow loop
+ if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 ||
+ !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ this->LockSlow(kShared, nullptr, 0);
+ }
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
+}
+
+void Mutex::LockWhen(const Condition &cond) {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ this->LockSlow(kExclusive, &cond, 0);
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
+}
+
+bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) {
+ return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
+}
+
+bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ bool res = LockSlowWithDeadline(kExclusive, &cond,
+ KernelTimeout(deadline), 0);
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
+ return res;
+}
+
+void Mutex::ReaderLockWhen(const Condition &cond) {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ this->LockSlow(kShared, &cond, 0);
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
+}
+
+bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond,
+ absl::Duration timeout) {
+ return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout));
+}
+
+bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond,
+ absl::Time deadline) {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock);
+ GraphId id = DebugOnlyDeadlockCheck(this);
+ bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0);
+ DebugOnlyLockEnter(this, id);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0);
+ return res;
+}
+
+void Mutex::Await(const Condition &cond) {
+ if (cond.Eval()) { // condition already true; nothing to do
+ if (kDebugMode) {
+ this->AssertReaderHeld();
+ }
+ } else { // normal case
+ ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()),
+ "condition untrue on return from Await");
+ }
+}
+
+bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) {
+ return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout));
+}
+
+bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) {
+ if (cond.Eval()) { // condition already true; nothing to do
+ if (kDebugMode) {
+ this->AssertReaderHeld();
+ }
+ return true;
+ }
+
+ KernelTimeout t{deadline};
+ bool res = this->AwaitCommon(cond, t);
+ ABSL_RAW_CHECK(res || t.has_timeout(),
+ "condition untrue on return from Await");
+ return res;
+}
+
+bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) {
+ this->AssertReaderHeld();
+ MuHow how =
+ (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared;
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how));
+ SynchWaitParams waitp(
+ how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
+ nullptr /*no cv_word*/);
+ int flags = kMuHasBlocked;
+ if (!Condition::GuaranteedEqual(&cond, nullptr)) {
+ flags |= kMuIsCond;
+ }
+ this->UnlockSlow(&waitp);
+ this->Block(waitp.thread);
+ ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how));
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how));
+ this->LockSlowLoop(&waitp, flags);
+ bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop
+ cond.Eval();
+ ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0);
+ return res;
+}
+
+ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire
+ mu_.compare_exchange_strong(v, kMuWriter | v,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ DebugOnlyLockEnter(this);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
+ return true;
+ }
+ if ((v & kMuEvent) != 0) { // we're recording events
+ if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire
+ mu_.compare_exchange_strong(
+ v, (kExclusive->fast_or | v) + kExclusive->fast_add,
+ std::memory_order_acquire, std::memory_order_relaxed)) {
+ DebugOnlyLockEnter(this);
+ PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS);
+ ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0);
+ return true;
+ } else {
+ PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED);
+ }
+ }
+ ABSL_TSAN_MUTEX_POST_LOCK(
+ this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0);
+ return false;
+}
+
+ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() {
+ ABSL_TSAN_MUTEX_PRE_LOCK(this,
+ __tsan_mutex_read_lock | __tsan_mutex_try_lock);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ // The while-loops (here and below) iterate only if the mutex word keeps
+ // changing (typically because the reader count changes) under the CAS. We
+ // limit the number of attempts to avoid having to think about livelock.
+ int loop_limit = 5;
+ while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) {
+ if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ DebugOnlyLockEnter(this);
+ ABSL_TSAN_MUTEX_POST_LOCK(
+ this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
+ return true;
+ }
+ loop_limit--;
+ v = mu_.load(std::memory_order_relaxed);
+ }
+ if ((v & kMuEvent) != 0) { // we're recording events
+ loop_limit = 5;
+ while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) {
+ if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ DebugOnlyLockEnter(this);
+ PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS);
+ ABSL_TSAN_MUTEX_POST_LOCK(
+ this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0);
+ return true;
+ }
+ loop_limit--;
+ v = mu_.load(std::memory_order_relaxed);
+ }
+ if ((v & kMuEvent) != 0) {
+ PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED);
+ }
+ }
+ ABSL_TSAN_MUTEX_POST_LOCK(this,
+ __tsan_mutex_read_lock | __tsan_mutex_try_lock |
+ __tsan_mutex_try_lock_failed,
+ 0);
+ return false;
+}
+
+ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() {
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
+ DebugOnlyLockLeave(this);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+
+ if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) {
+ ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x",
+ static_cast<unsigned>(v));
+ }
+
+ // should_try_cas is whether we'll try a compare-and-swap immediately.
+ // NOTE: optimized out when kDebugMode is false.
+ bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter &&
+ (v & (kMuWait | kMuDesig)) != kMuWait);
+ // But, we can use an alternate computation of it, that compilers
+ // currently don't find on their own. When that changes, this function
+ // can be simplified.
+ intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent);
+ intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig);
+ // Claim: "x == 0 && y > 0" is equal to should_try_cas.
+ // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait,
+ // all possible non-zero values for x exceed all possible values for y.
+ // Therefore, (x == 0 && y > 0) == (x < y).
+ if (kDebugMode && should_try_cas != (x < y)) {
+ // We would usually use PRIdPTR here, but is not correctly implemented
+ // within the android toolchain.
+ ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n",
+ static_cast<long long>(v), static_cast<long long>(x),
+ static_cast<long long>(y));
+ }
+ if (x < y &&
+ mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
+ std::memory_order_release,
+ std::memory_order_relaxed)) {
+ // fast writer release (writer with no waiters or with designated waker)
+ } else {
+ this->UnlockSlow(nullptr /*no waitp*/); // take slow path
+ }
+ ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
+}
+
+// Requires v to represent a reader-locked state.
+static bool ExactlyOneReader(intptr_t v) {
+ assert((v & (kMuWriter|kMuReader)) == kMuReader);
+ assert((v & kMuHigh) != 0);
+ // The more straightforward "(v & kMuHigh) == kMuOne" also works, but
+ // on some architectures the following generates slightly smaller code.
+ // It may be faster too.
+ constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne;
+ return (v & kMuMultipleWaitersMask) == 0;
+}
+
+ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() {
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock);
+ DebugOnlyLockLeave(this);
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ assert((v & (kMuWriter|kMuReader)) == kMuReader);
+ if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) {
+ // fast reader release (reader with no waiters)
+ intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne;
+ if (mu_.compare_exchange_strong(v, v - clear,
+ std::memory_order_release,
+ std::memory_order_relaxed)) {
+ ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
+ return;
+ }
+ }
+ this->UnlockSlow(nullptr /*no waitp*/); // take slow path
+ ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock);
+}
+
+// The zap_desig_waker bitmask is used to clear the designated waker flag in
+// the mutex if this thread has blocked, and therefore may be the designated
+// waker.
+static const intptr_t zap_desig_waker[] = {
+ ~static_cast<intptr_t>(0), // not blocked
+ ~static_cast<intptr_t>(
+ kMuDesig) // blocked; turn off the designated waker bit
+};
+
+// The ignore_waiting_writers bitmask is used to ignore the existence
+// of waiting writers if a reader that has already blocked once
+// wakes up.
+static const intptr_t ignore_waiting_writers[] = {
+ ~static_cast<intptr_t>(0), // not blocked
+ ~static_cast<intptr_t>(
+ kMuWrWait) // blocked; pretend there are no waiting writers
+};
+
+// Internal version of LockWhen(). See LockSlowWithDeadline()
+void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) {
+ ABSL_RAW_CHECK(
+ this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags),
+ "condition untrue on return from LockSlow");
+}
+
+// Compute cond->Eval() and tell race detectors that we do it under mutex mu.
+static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu,
+ bool locking, Mutex::MuHow how) {
+ // Delicate annotation dance.
+ // We are currently inside of read/write lock/unlock operation.
+ // All memory accesses are ignored inside of mutex operations + for unlock
+ // operation tsan considers that we've already released the mutex.
+ bool res = false;
+ if (locking) {
+ // For lock we pretend that we have finished the operation,
+ // evaluate the predicate, then unlock the mutex and start locking it again
+ // to match the annotation at the end of outer lock operation.
+ // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan
+ // will think the lock acquisition is recursive which will trigger
+ // deadlock detector.
+ ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
+ res = cond->Eval();
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
+ ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
+ ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
+ } else {
+ // Similarly, for unlock we pretend that we have unlocked the mutex,
+ // lock the mutex, evaluate the predicate, and start unlocking it again
+ // to match the annotation at the end of outer unlock operation.
+ ABSL_TSAN_MUTEX_POST_UNLOCK(mu, TsanFlags(how));
+ ABSL_TSAN_MUTEX_PRE_LOCK(mu, TsanFlags(how));
+ ABSL_TSAN_MUTEX_POST_LOCK(mu, TsanFlags(how), 0);
+ res = cond->Eval();
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, TsanFlags(how));
+ }
+ // Prevent unused param warnings in non-TSAN builds.
+ static_cast<void>(mu);
+ static_cast<void>(how);
+ return res;
+}
+
+// Compute cond->Eval() hiding it from race detectors.
+// We are hiding it because inside of UnlockSlow we can evaluate a predicate
+// that was just added by a concurrent Lock operation; Lock adds the predicate
+// to the internal Mutex list without actually acquiring the Mutex
+// (it only acquires the internal spinlock, which is rightfully invisible for
+// tsan). As the result there is no tsan-visible synchronization between the
+// addition and this thread. So if we would enable race detection here,
+// it would race with the predicate initialization.
+static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) {
+ // Memory accesses are already ignored inside of lock/unlock operations,
+ // but synchronization operations are also ignored. When we evaluate the
+ // predicate we must ignore only memory accesses but not synchronization,
+ // because missed synchronization can lead to false reports later.
+ // So we "divert" (which un-ignores both memory accesses and synchronization)
+ // and then separately turn on ignores of memory accesses.
+ ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0);
+ ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
+ bool res = cond->Eval();
+ ANNOTATE_IGNORE_READS_AND_WRITES_END();
+ ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0);
+ static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds.
+ return res;
+}
+
+// Internal equivalent of *LockWhenWithDeadline(), where
+// "t" represents the absolute timeout; !t.has_timeout() means "forever".
+// "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen)
+// In flags, bits are ored together:
+// - kMuHasBlocked indicates that the client has already blocked on the call so
+// the designated waker bit must be cleared and waiting writers should not
+// obstruct this call
+// - kMuIsCond indicates that this is a conditional acquire (condition variable,
+// Await, LockWhen) so contention profiling should be suppressed.
+bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond,
+ KernelTimeout t, int flags) {
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ bool unlock = false;
+ if ((v & how->fast_need_zero) == 0 && // try fast acquire
+ mu_.compare_exchange_strong(
+ v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) +
+ how->fast_add,
+ std::memory_order_acquire, std::memory_order_relaxed)) {
+ if (cond == nullptr || EvalConditionAnnotated(cond, this, true, how)) {
+ return true;
+ }
+ unlock = true;
+ }
+ SynchWaitParams waitp(
+ how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this),
+ nullptr /*no cv_word*/);
+ if (!Condition::GuaranteedEqual(cond, nullptr)) {
+ flags |= kMuIsCond;
+ }
+ if (unlock) {
+ this->UnlockSlow(&waitp);
+ this->Block(waitp.thread);
+ flags |= kMuHasBlocked;
+ }
+ this->LockSlowLoop(&waitp, flags);
+ return waitp.cond != nullptr || // => cond known true from LockSlowLoop
+ cond == nullptr || EvalConditionAnnotated(cond, this, true, how);
+}
+
+// RAW_CHECK_FMT() takes a condition, a printf-style format std::string, and
+// the printf-style argument list. The format std::string must be a literal.
+// Arguments after the first are not evaluated unless the condition is true.
+#define RAW_CHECK_FMT(cond, ...) \
+ do { \
+ if (ABSL_PREDICT_FALSE(!(cond))) { \
+ ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \
+ } \
+ } while (0)
+
+static void CheckForMutexCorruption(intptr_t v, const char* label) {
+ // Test for either of two situations that should not occur in v:
+ // kMuWriter and kMuReader
+ // kMuWrWait and !kMuWait
+ const intptr_t w = v ^ kMuWait;
+ // By flipping that bit, we can now test for:
+ // kMuWriter and kMuReader in w
+ // kMuWrWait and kMuWait in w
+ // We've chosen these two pairs of values to be so that they will overlap,
+ // respectively, when the word is left shifted by three. This allows us to
+ // save a branch in the common (correct) case of them not being coincident.
+ static_assert(kMuReader << 3 == kMuWriter, "must match");
+ static_assert(kMuWait << 3 == kMuWrWait, "must match");
+ if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return;
+ RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader),
+ "%s: Mutex corrupt: both reader and writer lock held: %p",
+ label, reinterpret_cast<void *>(v));
+ RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait,
+ "%s: Mutex corrupt: waiting writer with no waiters: %p",
+ label, reinterpret_cast<void *>(v));
+ assert(false);
+}
+
+void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) {
+ int c = 0;
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ if ((v & kMuEvent) != 0) {
+ PostSynchEvent(this,
+ waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK);
+ }
+ ABSL_RAW_CHECK(
+ waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
+ "detected illegal recursion into Mutex code");
+ for (;;) {
+ v = mu_.load(std::memory_order_relaxed);
+ CheckForMutexCorruption(v, "Lock");
+ if ((v & waitp->how->slow_need_zero) == 0) {
+ if (mu_.compare_exchange_strong(
+ v, (waitp->how->fast_or |
+ (v & zap_desig_waker[flags & kMuHasBlocked])) +
+ waitp->how->fast_add,
+ std::memory_order_acquire, std::memory_order_relaxed)) {
+ if (waitp->cond == nullptr ||
+ EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
+ break; // we timed out, or condition true, so return
+ }
+ this->UnlockSlow(waitp); // got lock but condition false
+ this->Block(waitp->thread);
+ flags |= kMuHasBlocked;
+ c = 0;
+ }
+ } else { // need to access waiter list
+ bool dowait = false;
+ if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
+ // This thread tries to become the one and only waiter.
+ PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags);
+ intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) |
+ kMuWait;
+ ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed");
+ if (waitp->how == kExclusive && (v & kMuReader) != 0) {
+ nv |= kMuWrWait;
+ }
+ if (mu_.compare_exchange_strong(
+ v, reinterpret_cast<intptr_t>(new_h) | nv,
+ std::memory_order_release, std::memory_order_relaxed)) {
+ dowait = true;
+ } else { // attempted Enqueue() failed
+ // zero out the waitp field set by Enqueue()
+ waitp->thread->waitp = nullptr;
+ }
+ } else if ((v & waitp->how->slow_inc_need_zero &
+ ignore_waiting_writers[flags & kMuHasBlocked]) == 0) {
+ // This is a reader that needs to increment the reader count,
+ // but the count is currently held in the last waiter.
+ if (mu_.compare_exchange_strong(
+ v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
+ kMuReader,
+ std::memory_order_acquire, std::memory_order_relaxed)) {
+ PerThreadSynch *h = GetPerThreadSynch(v);
+ h->readers += kMuOne; // inc reader count in waiter
+ do { // release spinlock
+ v = mu_.load(std::memory_order_relaxed);
+ } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader,
+ std::memory_order_release,
+ std::memory_order_relaxed));
+ if (waitp->cond == nullptr ||
+ EvalConditionAnnotated(waitp->cond, this, true, waitp->how)) {
+ break; // we timed out, or condition true, so return
+ }
+ this->UnlockSlow(waitp); // got lock but condition false
+ this->Block(waitp->thread);
+ flags |= kMuHasBlocked;
+ c = 0;
+ }
+ } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves
+ mu_.compare_exchange_strong(
+ v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin |
+ kMuWait,
+ std::memory_order_acquire, std::memory_order_relaxed)) {
+ PerThreadSynch *h = GetPerThreadSynch(v);
+ PerThreadSynch *new_h = Enqueue(h, waitp, v, flags);
+ intptr_t wr_wait = 0;
+ ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed");
+ if (waitp->how == kExclusive && (v & kMuReader) != 0) {
+ wr_wait = kMuWrWait; // give priority to a waiting writer
+ }
+ do { // release spinlock
+ v = mu_.load(std::memory_order_relaxed);
+ } while (!mu_.compare_exchange_weak(
+ v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait |
+ reinterpret_cast<intptr_t>(new_h),
+ std::memory_order_release, std::memory_order_relaxed));
+ dowait = true;
+ }
+ if (dowait) {
+ this->Block(waitp->thread); // wait until removed from list or timeout
+ flags |= kMuHasBlocked;
+ c = 0;
+ }
+ }
+ ABSL_RAW_CHECK(
+ waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
+ "detected illegal recursion into Mutex code");
+ c = Delay(c, GENTLE); // delay, then try again
+ }
+ ABSL_RAW_CHECK(
+ waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors,
+ "detected illegal recursion into Mutex code");
+ if ((v & kMuEvent) != 0) {
+ PostSynchEvent(this,
+ waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING :
+ SYNCH_EV_READERLOCK_RETURNING);
+ }
+}
+
+// Unlock this mutex, which is held by the current thread.
+// If waitp is non-zero, it must be the wait parameters for the current thread
+// which holds the lock but is not runnable because its condition is false
+// or it n the process of blocking on a condition variable; it must requeue
+// itself on the mutex/condvar to wait for its condition to become true.
+void Mutex::UnlockSlow(SynchWaitParams *waitp) {
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ this->AssertReaderHeld();
+ CheckForMutexCorruption(v, "Unlock");
+ if ((v & kMuEvent) != 0) {
+ PostSynchEvent(this,
+ (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK);
+ }
+ int c = 0;
+ // the waiter under consideration to wake, or zero
+ PerThreadSynch *w = nullptr;
+ // the predecessor to w or zero
+ PerThreadSynch *pw = nullptr;
+ // head of the list searched previously, or zero
+ PerThreadSynch *old_h = nullptr;
+ // a condition that's known to be false.
+ const Condition *known_false = nullptr;
+ PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake
+ intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a
+ // later writer could have acquired the lock
+ // (starvation avoidance)
+ ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr ||
+ waitp->thread->suppress_fatal_errors,
+ "detected illegal recursion into Mutex code");
+ // This loop finds threads wake_list to wakeup if any, and removes them from
+ // the list of waiters. In addition, it places waitp.thread on the queue of
+ // waiters if waitp is non-zero.
+ for (;;) {
+ v = mu_.load(std::memory_order_relaxed);
+ if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait &&
+ waitp == nullptr) {
+ // fast writer release (writer with no waiters or with designated waker)
+ if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter),
+ std::memory_order_release,
+ std::memory_order_relaxed)) {
+ return;
+ }
+ } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) {
+ // fast reader release (reader with no waiters)
+ intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne;
+ if (mu_.compare_exchange_strong(v, v - clear,
+ std::memory_order_release,
+ std::memory_order_relaxed)) {
+ return;
+ }
+ } else if ((v & kMuSpin) == 0 && // attempt to get spinlock
+ mu_.compare_exchange_strong(v, v | kMuSpin,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ if ((v & kMuWait) == 0) { // no one to wake
+ intptr_t nv;
+ bool do_enqueue = true; // always Enqueue() the first time
+ ABSL_RAW_CHECK(waitp != nullptr,
+ "UnlockSlow is confused"); // about to sleep
+ do { // must loop to release spinlock as reader count may change
+ v = mu_.load(std::memory_order_relaxed);
+ // decrement reader count if there are readers
+ intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v;
+ PerThreadSynch *new_h = nullptr;
+ if (do_enqueue) {
+ // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then
+ // we must not retry here. The initial attempt will always have
+ // succeeded, further attempts would enqueue us against *this due to
+ // Fer() handling.
+ do_enqueue = (waitp->cv_word == nullptr);
+ new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond);
+ }
+ intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit
+ if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader
+ clear = kMuWrWait | kMuReader; // clear read bit
+ }
+ nv = (v & kMuLow & ~clear & ~kMuSpin);
+ if (new_h != nullptr) {
+ nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
+ } else { // new_h could be nullptr if we queued ourselves on a
+ // CondVar
+ // In that case, we must place the reader count back in the mutex
+ // word, as Enqueue() did not store it in the new waiter.
+ nv |= new_readers & kMuHigh;
+ }
+ // release spinlock & our lock; retry if reader-count changed
+ // (writer count cannot change since we hold lock)
+ } while (!mu_.compare_exchange_weak(v, nv,
+ std::memory_order_release,
+ std::memory_order_relaxed));
+ break;
+ }
+
+ // There are waiters.
+ // Set h to the head of the circular waiter list.
+ PerThreadSynch *h = GetPerThreadSynch(v);
+ if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) {
+ // a reader but not the last
+ h->readers -= kMuOne; // release our lock
+ intptr_t nv = v; // normally just release spinlock
+ if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves
+ PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
+ ABSL_RAW_CHECK(new_h != nullptr,
+ "waiters disappeared during Enqueue()!");
+ nv &= kMuLow;
+ nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
+ }
+ mu_.store(nv, std::memory_order_release); // release spinlock
+ // can release with a store because there were waiters
+ break;
+ }
+
+ // Either we didn't search before, or we marked the queue
+ // as "maybe_unlocking" and no one else should have changed it.
+ ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking,
+ "Mutex queue changed beneath us");
+
+ // The lock is becoming free, and there's a waiter
+ if (old_h != nullptr &&
+ !old_h->may_skip) { // we used old_h as a terminator
+ old_h->may_skip = true; // allow old_h to skip once more
+ ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head");
+ if (h != old_h && MuSameCondition(old_h, old_h->next)) {
+ old_h->skip = old_h->next; // old_h not head & can skip to successor
+ }
+ }
+ if (h->next->waitp->how == kExclusive &&
+ Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) {
+ // easy case: writer with no condition; no need to search
+ pw = h; // wake w, the successor of h (=pw)
+ w = h->next;
+ w->wake = true;
+ // We are waking up a writer. This writer may be racing against
+ // an already awake reader for the lock. We want the
+ // writer to usually win this race,
+ // because if it doesn't, we can potentially keep taking a reader
+ // perpetually and writers will starve. Worse than
+ // that, this can also starve other readers if kMuWrWait gets set
+ // later.
+ wr_wait = kMuWrWait;
+ } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) {
+ // we found a waiter w to wake on a previous iteration and either it's
+ // a writer, or we've searched the entire list so we have all the
+ // readers.
+ if (pw == nullptr) { // if w's predecessor is unknown, it must be h
+ pw = h;
+ }
+ } else {
+ // At this point we don't know all the waiters to wake, and the first
+ // waiter has a condition or is a reader. We avoid searching over
+ // waiters we've searched on previous iterations by starting at
+ // old_h if it's set. If old_h==h, there's no one to wakeup at all.
+ if (old_h == h) { // we've searched before, and nothing's new
+ // so there's no one to wake.
+ intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait));
+ h->readers = 0;
+ h->maybe_unlocking = false; // finished unlocking
+ if (waitp != nullptr) { // we must queue ourselves and sleep
+ PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond);
+ nv &= kMuLow;
+ if (new_h != nullptr) {
+ nv |= kMuWait | reinterpret_cast<intptr_t>(new_h);
+ } // else new_h could be nullptr if we queued ourselves on a
+ // CondVar
+ }
+ // release spinlock & lock
+ // can release with a store because there were waiters
+ mu_.store(nv, std::memory_order_release);
+ break;
+ }
+
+ // set up to walk the list
+ PerThreadSynch *w_walk; // current waiter during list walk
+ PerThreadSynch *pw_walk; // previous waiter during list walk
+ if (old_h != nullptr) { // we've searched up to old_h before
+ pw_walk = old_h;
+ w_walk = old_h->next;
+ } else { // no prior search, start at beginning
+ pw_walk =
+ nullptr; // h->next's predecessor may change; don't record it
+ w_walk = h->next;
+ }
+
+ h->may_skip = false; // ensure we never skip past h in future searches
+ // even if other waiters are queued after it.
+ ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head");
+
+ h->maybe_unlocking = true; // we're about to scan the waiter list
+ // without the spinlock held.
+ // Enqueue must be conservative about
+ // priority queuing.
+
+ // We must release the spinlock to evaluate the conditions.
+ mu_.store(v, std::memory_order_release); // release just spinlock
+ // can release with a store because there were waiters
+
+ // h is the last waiter queued, and w_walk the first unsearched waiter.
+ // Without the spinlock, the locations mu_ and h->next may now change
+ // underneath us, but since we hold the lock itself, the only legal
+ // change is to add waiters between h and w_walk. Therefore, it's safe
+ // to walk the path from w_walk to h inclusive. (TryRemove() can remove
+ // a waiter anywhere, but it acquires both the spinlock and the Mutex)
+
+ old_h = h; // remember we searched to here
+
+ // Walk the path upto and including h looking for waiters we can wake.
+ while (pw_walk != h) {
+ w_walk->wake = false;
+ if (w_walk->waitp->cond ==
+ nullptr || // no condition => vacuously true OR
+ (w_walk->waitp->cond != known_false &&
+ // this thread's condition is not known false, AND
+ // is in fact true
+ EvalConditionIgnored(this, w_walk->waitp->cond))) {
+ if (w == nullptr) {
+ w_walk->wake = true; // can wake this waiter
+ w = w_walk;
+ pw = pw_walk;
+ if (w_walk->waitp->how == kExclusive) {
+ wr_wait = kMuWrWait;
+ break; // bail if waking this writer
+ }
+ } else if (w_walk->waitp->how == kShared) { // wake if a reader
+ w_walk->wake = true;
+ } else { // writer with true condition
+ wr_wait = kMuWrWait;
+ }
+ } else { // can't wake; condition false
+ known_false = w_walk->waitp->cond; // remember last false condition
+ }
+ if (w_walk->wake) { // we're waking reader w_walk
+ pw_walk = w_walk; // don't skip similar waiters
+ } else { // not waking; skip as much as possible
+ pw_walk = Skip(w_walk);
+ }
+ // If pw_walk == h, then load of pw_walk->next can race with
+ // concurrent write in Enqueue(). However, at the same time
+ // we do not need to do the load, because we will bail out
+ // from the loop anyway.
+ if (pw_walk != h) {
+ w_walk = pw_walk->next;
+ }
+ }
+
+ continue; // restart for(;;)-loop to wakeup w or to find more waiters
+ }
+ ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor");
+ // The first (and perhaps only) waiter we've chosen to wake is w, whose
+ // predecessor is pw. If w is a reader, we must wake all the other
+ // waiters with wake==true as well. We may also need to queue
+ // ourselves if waitp != null. The spinlock and the lock are still
+ // held.
+
+ // This traverses the list in [ pw->next, h ], where h is the head,
+ // removing all elements with wake==true and placing them in the
+ // singly-linked list wake_list. Returns the new head.
+ h = DequeueAllWakeable(h, pw, &wake_list);
+
+ intptr_t nv = (v & kMuEvent) | kMuDesig;
+ // assume no waiters left,
+ // set kMuDesig for INV1a
+
+ if (waitp != nullptr) { // we must queue ourselves and sleep
+ h = Enqueue(h, waitp, v, kMuIsCond);
+ // h is new last waiter; could be null if we queued ourselves on a
+ // CondVar
+ }
+
+ ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull,
+ "unexpected empty wake list");
+
+ if (h != nullptr) { // there are waiters left
+ h->readers = 0;
+ h->maybe_unlocking = false; // finished unlocking
+ nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h);
+ }
+
+ // release both spinlock & lock
+ // can release with a store because there were waiters
+ mu_.store(nv, std::memory_order_release);
+ break; // out of for(;;)-loop
+ }
+ c = Delay(c, AGGRESSIVE); // aggressive here; no one can proceed till we do
+ } // end of for(;;)-loop
+
+ if (wake_list != kPerThreadSynchNull) {
+ int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles;
+ bool cond_waiter = wake_list->cond_waiter;
+ do {
+ wake_list = Wakeup(wake_list); // wake waiters
+ } while (wake_list != kPerThreadSynchNull);
+ if (!cond_waiter) {
+ // Sample lock contention events only if the (first) waiter was trying to
+ // acquire the lock, not waiting on a condition variable or Condition.
+ int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp;
+ mutex_tracer("slow release", this, wait_cycles);
+ ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0);
+ submit_profile_data(enqueue_timestamp);
+ ABSL_TSAN_MUTEX_POST_DIVERT(this, 0);
+ }
+ }
+}
+
+// Used by CondVar implementation to reacquire mutex after waking from
+// condition variable. This routine is used instead of Lock() because the
+// waiting thread may have been moved from the condition variable queue to the
+// mutex queue without a wakeup, by Trans(). In that case, when the thread is
+// finally woken, the woken thread will believe it has been woken from the
+// condition variable (i.e. its PC will be in when in the CondVar code), when
+// in fact it has just been woken from the mutex. Thus, it must enter the slow
+// path of the mutex in the same state as if it had just woken from the mutex.
+// That is, it must ensure to clear kMuDesig (INV1b).
+void Mutex::Trans(MuHow how) {
+ this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond);
+}
+
+// Used by CondVar implementation to effectively wake thread w from the
+// condition variable. If this mutex is free, we simply wake the thread.
+// It will later acquire the mutex with high probability. Otherwise, we
+// enqueue thread w on this mutex.
+void Mutex::Fer(PerThreadSynch *w) {
+ int c = 0;
+ ABSL_RAW_CHECK(w->waitp->cond == nullptr,
+ "Mutex::Fer while waiting on Condition");
+ ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(),
+ "Mutex::Fer while in timed wait");
+ ABSL_RAW_CHECK(w->waitp->cv_word == nullptr,
+ "Mutex::Fer with pending CondVar queueing");
+ for (;;) {
+ intptr_t v = mu_.load(std::memory_order_relaxed);
+ // Note: must not queue if the mutex is unlocked (nobody will wake it).
+ // For example, we can have only kMuWait (conditional) or maybe
+ // kMuWait|kMuWrWait.
+ // conflicting != 0 implies that the waking thread cannot currently take
+ // the mutex, which in turn implies that someone else has it and can wake
+ // us if we queue.
+ const intptr_t conflicting =
+ kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader);
+ if ((v & conflicting) == 0) {
+ w->next = nullptr;
+ w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
+ IncrementSynchSem(this, w);
+ return;
+ } else {
+ if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters
+ // This thread tries to become the one and only waiter.
+ PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond);
+ ABSL_RAW_CHECK(new_h != nullptr,
+ "Enqueue failed"); // we must queue ourselves
+ if (mu_.compare_exchange_strong(
+ v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait,
+ std::memory_order_release, std::memory_order_relaxed)) {
+ return;
+ }
+ } else if ((v & kMuSpin) == 0 &&
+ mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) {
+ PerThreadSynch *h = GetPerThreadSynch(v);
+ PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond);
+ ABSL_RAW_CHECK(new_h != nullptr,
+ "Enqueue failed"); // we must queue ourselves
+ do {
+ v = mu_.load(std::memory_order_relaxed);
+ } while (!mu_.compare_exchange_weak(
+ v,
+ (v & kMuLow & ~kMuSpin) | kMuWait |
+ reinterpret_cast<intptr_t>(new_h),
+ std::memory_order_release, std::memory_order_relaxed));
+ return;
+ }
+ }
+ c = Delay(c, GENTLE);
+ }
+}
+
+void Mutex::AssertHeld() const {
+ if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) {
+ SynchEvent *e = GetSynchEvent(this);
+ ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s",
+ static_cast<const void *>(this),
+ (e == nullptr ? "" : e->name));
+ }
+}
+
+void Mutex::AssertReaderHeld() const {
+ if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) {
+ SynchEvent *e = GetSynchEvent(this);
+ ABSL_RAW_LOG(
+ FATAL, "thread should hold at least a read lock on Mutex %p %s",
+ static_cast<const void *>(this), (e == nullptr ? "" : e->name));
+ }
+}
+
+// -------------------------------- condition variables
+static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list
+static const intptr_t kCvEvent = 0x0002L; // record events
+
+static const intptr_t kCvLow = 0x0003L; // low order bits of CV
+
+// Hack to make constant values available to gdb pretty printer
+enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, };
+
+static_assert(PerThreadSynch::kAlignment > kCvLow,
+ "PerThreadSynch::kAlignment must be greater than kCvLow");
+
+void CondVar::EnableDebugLog(const char *name) {
+ SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin);
+ e->log = true;
+ UnrefSynchEvent(e);
+}
+
+CondVar::~CondVar() {
+ if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) {
+ ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin);
+ }
+}
+
+
+// Remove thread s from the list of waiters on this condition variable.
+void CondVar::Remove(PerThreadSynch *s) {
+ intptr_t v;
+ int c = 0;
+ for (v = cv_.load(std::memory_order_relaxed);;
+ v = cv_.load(std::memory_order_relaxed)) {
+ if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
+ cv_.compare_exchange_strong(v, v | kCvSpin,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
+ if (h != nullptr) {
+ PerThreadSynch *w = h;
+ while (w->next != s && w->next != h) { // search for thread
+ w = w->next;
+ }
+ if (w->next == s) { // found thread; remove it
+ w->next = s->next;
+ if (h == s) {
+ h = (w == s) ? nullptr : w;
+ }
+ s->next = nullptr;
+ s->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
+ }
+ }
+ // release spinlock
+ cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
+ std::memory_order_release);
+ return;
+ } else {
+ c = Delay(c, GENTLE); // try again after a delay
+ }
+ }
+}
+
+// Queue thread waitp->thread on condition variable word cv_word using
+// wait parameters waitp.
+// We split this into a separate routine, rather than simply doing it as part
+// of WaitCommon(). If we were to queue ourselves on the condition variable
+// before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via
+// the logging code, or via a Condition function) and might potentially attempt
+// to block this thread. That would be a problem if the thread were already on
+// a the condition variable waiter queue. Thus, we use the waitp->cv_word
+// to tell the unlock code to call CondVarEnqueue() to queue the thread on the
+// condition variable queue just before the mutex is to be unlocked, and (most
+// importantly) after any call to an external routine that might re-enter the
+// mutex code.
+static void CondVarEnqueue(SynchWaitParams *waitp) {
+ // This thread might be transferred to the Mutex queue by Fer() when
+ // we are woken. To make sure that is what happens, Enqueue() doesn't
+ // call CondVarEnqueue() again but instead uses its normal code. We
+ // must do this before we queue ourselves so that cv_word will be null
+ // when seen by the dequeuer, who may wish immediately to requeue
+ // this thread on another queue.
+ std::atomic<intptr_t> *cv_word = waitp->cv_word;
+ waitp->cv_word = nullptr;
+
+ intptr_t v = cv_word->load(std::memory_order_relaxed);
+ int c = 0;
+ while ((v & kCvSpin) != 0 || // acquire spinlock
+ !cv_word->compare_exchange_weak(v, v | kCvSpin,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ c = Delay(c, GENTLE);
+ v = cv_word->load(std::memory_order_relaxed);
+ }
+ ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be");
+ waitp->thread->waitp = waitp; // prepare ourselves for waiting
+ PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
+ if (h == nullptr) { // add this thread to waiter list
+ waitp->thread->next = waitp->thread;
+ } else {
+ waitp->thread->next = h->next;
+ h->next = waitp->thread;
+ }
+ waitp->thread->state.store(PerThreadSynch::kQueued,
+ std::memory_order_relaxed);
+ cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread),
+ std::memory_order_release);
+}
+
+bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) {
+ bool rc = false; // return value; true iff we timed-out
+
+ intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed);
+ Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared;
+ ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how));
+
+ // maybe trace this call
+ intptr_t v = cv_.load(std::memory_order_relaxed);
+ cond_var_tracer("Wait", this);
+ if ((v & kCvEvent) != 0) {
+ PostSynchEvent(this, SYNCH_EV_WAIT);
+ }
+
+ // Release mu and wait on condition variable.
+ SynchWaitParams waitp(mutex_how, nullptr, t, mutex,
+ Synch_GetPerThreadAnnotated(mutex), &cv_);
+ // UnlockSlow() will call CondVarEnqueue() just before releasing the
+ // Mutex, thus queuing this thread on the condition variable. See
+ // CondVarEnqueue() for the reasons.
+ mutex->UnlockSlow(&waitp);
+
+ // wait for signal
+ while (waitp.thread->state.load(std::memory_order_acquire) ==
+ PerThreadSynch::kQueued) {
+ if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) {
+ this->Remove(waitp.thread);
+ rc = true;
+ }
+ }
+
+ ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be");
+ waitp.thread->waitp = nullptr; // cleanup
+
+ // maybe trace this call
+ cond_var_tracer("Unwait", this);
+ if ((v & kCvEvent) != 0) {
+ PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING);
+ }
+
+ // From synchronization point of view Wait is unlock of the mutex followed
+ // by lock of the mutex. We've annotated start of unlock in the beginning
+ // of the function. Now, finish unlock and annotate lock of the mutex.
+ // (Trans is effectively lock).
+ ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how));
+ ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how));
+ mutex->Trans(mutex_how); // Reacquire mutex
+ ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0);
+ return rc;
+}
+
+bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) {
+ return WaitWithDeadline(mu, DeadlineFromTimeout(timeout));
+}
+
+bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) {
+ return WaitCommon(mu, KernelTimeout(deadline));
+}
+
+void CondVar::Wait(Mutex *mu) {
+ WaitCommon(mu, KernelTimeout::Never());
+}
+
+// Wake thread w
+// If it was a timed wait, w will be waiting on w->cv
+// Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem
+// Otherwise, w is transferred to the Mutex mutex via Mutex::Fer().
+void CondVar::Wakeup(PerThreadSynch *w) {
+ if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) {
+ // The waiting thread only needs to observe "w->state == kAvailable" to be
+ // released, we must cache "cvmu" before clearing "next".
+ Mutex *mu = w->waitp->cvmu;
+ w->next = nullptr;
+ w->state.store(PerThreadSynch::kAvailable, std::memory_order_release);
+ Mutex::IncrementSynchSem(mu, w);
+ } else {
+ w->waitp->cvmu->Fer(w);
+ }
+}
+
+void CondVar::Signal() {
+ ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
+ intptr_t v;
+ int c = 0;
+ for (v = cv_.load(std::memory_order_relaxed); v != 0;
+ v = cv_.load(std::memory_order_relaxed)) {
+ if ((v & kCvSpin) == 0 && // attempt to acquire spinlock
+ cv_.compare_exchange_strong(v, v | kCvSpin,
+ std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
+ PerThreadSynch *w = nullptr;
+ if (h != nullptr) { // remove first waiter
+ w = h->next;
+ if (w == h) {
+ h = nullptr;
+ } else {
+ h->next = w->next;
+ }
+ }
+ // release spinlock
+ cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h),
+ std::memory_order_release);
+ if (w != nullptr) {
+ CondVar::Wakeup(w); // wake waiter, if there was one
+ cond_var_tracer("Signal wakeup", this);
+ }
+ if ((v & kCvEvent) != 0) {
+ PostSynchEvent(this, SYNCH_EV_SIGNAL);
+ }
+ ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
+ return;
+ } else {
+ c = Delay(c, GENTLE);
+ }
+ }
+ ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
+}
+
+void CondVar::SignalAll () {
+ ABSL_TSAN_MUTEX_PRE_SIGNAL(0, 0);
+ intptr_t v;
+ int c = 0;
+ for (v = cv_.load(std::memory_order_relaxed); v != 0;
+ v = cv_.load(std::memory_order_relaxed)) {
+ // empty the list if spinlock free
+ // We do this by simply setting the list to empty using
+ // compare and swap. We then have the entire list in our hands,
+ // which cannot be changing since we grabbed it while no one
+ // held the lock.
+ if ((v & kCvSpin) == 0 &&
+ cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire,
+ std::memory_order_relaxed)) {
+ PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow);
+ if (h != nullptr) {
+ PerThreadSynch *w;
+ PerThreadSynch *n = h->next;
+ do { // for every thread, wake it up
+ w = n;
+ n = n->next;
+ CondVar::Wakeup(w);
+ } while (w != h);
+ cond_var_tracer("SignalAll wakeup", this);
+ }
+ if ((v & kCvEvent) != 0) {
+ PostSynchEvent(this, SYNCH_EV_SIGNALALL);
+ }
+ ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
+ return;
+ } else {
+ c = Delay(c, GENTLE); // try again after a delay
+ }
+ }
+ ABSL_TSAN_MUTEX_POST_SIGNAL(0, 0);
+}
+
+void ReleasableMutexLock::Release() {
+ ABSL_RAW_CHECK(this->mu_ != nullptr,
+ "ReleasableMutexLock::Release may only be called once");
+ this->mu_->Unlock();
+ this->mu_ = nullptr;
+}
+
+#ifdef THREAD_SANITIZER
+extern "C" void __tsan_read1(void *addr);
+#else
+#define __tsan_read1(addr) // do nothing if TSan not enabled
+#endif
+
+// A function that just returns its argument, dereferenced
+static bool Dereference(void *arg) {
+ // ThreadSanitizer does not instrument this file for memory accesses.
+ // This function dereferences a user variable that can participate
+ // in a data race, so we need to manually tell TSan about this memory access.
+ __tsan_read1(arg);
+ return *(static_cast<bool *>(arg));
+}
+
+Condition::Condition() {} // null constructor, used for kTrue only
+const Condition Condition::kTrue;
+
+Condition::Condition(bool (*func)(void *), void *arg)
+ : eval_(&CallVoidPtrFunction),
+ function_(func),
+ method_(nullptr),
+ arg_(arg) {}
+
+bool Condition::CallVoidPtrFunction(const Condition *c) {
+ return (*c->function_)(c->arg_);
+}
+
+Condition::Condition(const bool *cond)
+ : eval_(CallVoidPtrFunction),
+ function_(Dereference),
+ method_(nullptr),
+ // const_cast is safe since Dereference does not modify arg
+ arg_(const_cast<bool *>(cond)) {}
+
+bool Condition::Eval() const {
+ // eval_ == null for kTrue
+ return (this->eval_ == nullptr) || (*this->eval_)(this);
+}
+
+bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) {
+ if (a == nullptr) {
+ return b == nullptr || b->eval_ == nullptr;
+ }
+ if (b == nullptr || b->eval_ == nullptr) {
+ return a->eval_ == nullptr;
+ }
+ return a->eval_ == b->eval_ && a->function_ == b->function_ &&
+ a->arg_ == b->arg_ && a->method_ == b->method_;
+}
+
+} // namespace absl