aboutsummaryrefslogtreecommitdiffhomepage
path: root/absl/algorithm
diff options
context:
space:
mode:
authorGravatar misterg <misterg@google.com>2017-09-19 16:54:40 -0400
committerGravatar misterg <misterg@google.com>2017-09-19 16:54:40 -0400
commitc2e754829628d1e9b7a16b3389cfdace76950fdf (patch)
tree5a7f056f44e27c30e10025113b644f0b3b5801fc /absl/algorithm
Initial Commit
Diffstat (limited to 'absl/algorithm')
-rw-r--r--absl/algorithm/BUILD.bazel69
-rw-r--r--absl/algorithm/algorithm.h138
-rw-r--r--absl/algorithm/algorithm_test.cc182
-rw-r--r--absl/algorithm/container.h1652
-rw-r--r--absl/algorithm/container_test.cc1010
5 files changed, 3051 insertions, 0 deletions
diff --git a/absl/algorithm/BUILD.bazel b/absl/algorithm/BUILD.bazel
new file mode 100644
index 0000000..5890bf1
--- /dev/null
+++ b/absl/algorithm/BUILD.bazel
@@ -0,0 +1,69 @@
+#
+# Copyright 2017 The Abseil Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+load(
+ "//absl:copts.bzl",
+ "ABSL_DEFAULT_COPTS",
+ "ABSL_TEST_COPTS",
+)
+load(
+ "//absl:test_dependencies.bzl",
+ "GUNIT_MAIN_DEPS_SELECTOR",
+)
+
+package(default_visibility = ["//visibility:public"])
+
+licenses(["notice"]) # Apache 2.0
+
+cc_library(
+ name = "algorithm",
+ hdrs = ["algorithm.h"],
+ copts = ABSL_DEFAULT_COPTS,
+)
+
+cc_test(
+ name = "algorithm_test",
+ size = "small",
+ srcs = ["algorithm_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [":algorithm"] + select(GUNIT_MAIN_DEPS_SELECTOR),
+)
+
+cc_library(
+ name = "container",
+ hdrs = [
+ "container.h",
+ ],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":algorithm",
+ "//absl/base:core_headers",
+ "//absl/meta:type_traits",
+ ],
+)
+
+cc_test(
+ name = "container_test",
+ srcs = ["container_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":container",
+ "//absl/base",
+ "//absl/base:core_headers",
+ "//absl/memory",
+ "//absl/types:span",
+ ] + select(GUNIT_MAIN_DEPS_SELECTOR),
+)
diff --git a/absl/algorithm/algorithm.h b/absl/algorithm/algorithm.h
new file mode 100644
index 0000000..341b68b
--- /dev/null
+++ b/absl/algorithm/algorithm.h
@@ -0,0 +1,138 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: algorithm.h
+// -----------------------------------------------------------------------------
+//
+// This header file contains Google extensions to the standard <algorithm> C++
+// header.
+
+#ifndef ABSL_ALGORITHM_ALGORITHM_H_
+#define ABSL_ALGORITHM_ALGORITHM_H_
+
+#include <algorithm>
+#include <iterator>
+#include <type_traits>
+
+namespace absl {
+
+namespace algorithm_internal {
+
+// Performs comparisons with operator==, similar to C++14's `std::equal_to<>`.
+struct EqualTo {
+ template <typename T, typename U>
+ bool operator()(const T& a, const U& b) const {
+ return a == b;
+ }
+};
+
+template <typename InputIter1, typename InputIter2, typename Pred>
+bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
+ InputIter2 last2, Pred pred, std::input_iterator_tag,
+ std::input_iterator_tag) {
+ while (true) {
+ if (first1 == last1) return first2 == last2;
+ if (first2 == last2) return false;
+ if (!pred(*first1, *first2)) return false;
+ ++first1;
+ ++first2;
+ }
+}
+
+template <typename InputIter1, typename InputIter2, typename Pred>
+bool EqualImpl(InputIter1 first1, InputIter1 last1, InputIter2 first2,
+ InputIter2 last2, Pred&& pred, std::random_access_iterator_tag,
+ std::random_access_iterator_tag) {
+ return (last1 - first1 == last2 - first2) &&
+ std::equal(first1, last1, first2, std::forward<Pred>(pred));
+}
+
+template <typename It>
+It RotateImpl(It first, It middle, It last, std::true_type) {
+ return std::rotate(first, middle, last);
+}
+
+template <typename It>
+It RotateImpl(It first, It middle, It last, std::false_type) {
+ std::rotate(first, middle, last);
+ return std::next(first, std::distance(middle, last));
+}
+
+} // namespace algorithm_internal
+
+// Compares the equality of two ranges specified by pairs of iterators, using
+// the given predicate, returning true iff for each corresponding iterator i1
+// and i2 in the first and second range respectively, pred(*i1, *i2) == true
+//
+// This comparison takes at most min(`last1` - `first1`, `last2` - `first2`)
+// invocations of the predicate. Additionally, if InputIter1 and InputIter2 are
+// both random-access iterators, and `last1` - `first1` != `last2` - `first2`,
+// then the predicate is never invoked and the function returns false.
+//
+// This is a C++11-compatible implementation of C++14 `std::equal`. See
+// http://en.cppreference.com/w/cpp/algorithm/equal for more information.
+template <typename InputIter1, typename InputIter2, typename Pred>
+bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
+ InputIter2 last2, Pred&& pred) {
+ return algorithm_internal::EqualImpl(
+ first1, last1, first2, last2, std::forward<Pred>(pred),
+ typename std::iterator_traits<InputIter1>::iterator_category{},
+ typename std::iterator_traits<InputIter2>::iterator_category{});
+}
+
+// Performs comparison of two ranges specified by pairs of iterators using
+// operator==.
+template <typename InputIter1, typename InputIter2>
+bool equal(InputIter1 first1, InputIter1 last1, InputIter2 first2,
+ InputIter2 last2) {
+ return absl::equal(first1, last1, first2, last2,
+ algorithm_internal::EqualTo{});
+}
+
+// Performs a linear search for `value` using the iterator `first` up to
+// but not including `last`, returning true if [`first`, `last`) contains an
+// element equal to `value`.
+//
+// A linear search is of O(n) complexity which is guaranteed to make at most
+// n = (`last` - `first`) comparisons. A linear search over short containers
+// may be faster than a binary search, even when the container is sorted.
+template <typename InputIterator, typename EqualityComparable>
+bool linear_search(InputIterator first, InputIterator last,
+ const EqualityComparable& value) {
+ return std::find(first, last, value) != last;
+}
+
+// Performs a left rotation on a range of elements (`first`, `last`) such that
+// `middle` is now the first element. `rotate()` returns an iterator pointing to
+// the first element before rotation. This function is exactly the same as
+// `std::rotate`, but fixes a bug in gcc
+// <= 4.9 where `std::rotate` returns `void` instead of an iterator.
+//
+// The complexity of this algorithm is the same as that of `std::rotate`, but if
+// `ForwardIterator` is not a random-access iterator, then `absl::rotate`
+// performs an additional pass over the range to construct the return value.
+
+template <typename ForwardIterator>
+ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
+ ForwardIterator last) {
+ return algorithm_internal::RotateImpl(
+ first, middle, last,
+ std::is_same<decltype(std::rotate(first, middle, last)),
+ ForwardIterator>());
+}
+
+} // namespace absl
+
+#endif // ABSL_ALGORITHM_ALGORITHM_H_
diff --git a/absl/algorithm/algorithm_test.cc b/absl/algorithm/algorithm_test.cc
new file mode 100644
index 0000000..e4322bc
--- /dev/null
+++ b/absl/algorithm/algorithm_test.cc
@@ -0,0 +1,182 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/algorithm/algorithm.h"
+
+#include <algorithm>
+#include <list>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+
+namespace {
+
+TEST(EqualTest, DefaultComparisonRandomAccess) {
+ std::vector<int> v1{1, 2, 3};
+ std::vector<int> v2 = v1;
+ std::vector<int> v3 = {1, 2};
+ std::vector<int> v4 = {1, 2, 4};
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v3.begin(), v3.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v4.begin(), v4.end()));
+}
+
+TEST(EqualTest, DefaultComparison) {
+ std::list<int> lst1{1, 2, 3};
+ std::list<int> lst2 = lst1;
+ std::list<int> lst3{1, 2};
+ std::list<int> lst4{1, 2, 4};
+
+ EXPECT_TRUE(absl::equal(lst1.begin(), lst1.end(), lst2.begin(), lst2.end()));
+ EXPECT_FALSE(absl::equal(lst1.begin(), lst1.end(), lst3.begin(), lst3.end()));
+ EXPECT_FALSE(absl::equal(lst1.begin(), lst1.end(), lst4.begin(), lst4.end()));
+}
+
+TEST(EqualTest, EmptyRange) {
+ std::vector<int> v1{1, 2, 3};
+ std::vector<int> empty1;
+ std::vector<int> empty2;
+
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), empty1.begin(), empty1.end()));
+ EXPECT_FALSE(absl::equal(empty1.begin(), empty1.end(), v1.begin(), v1.end()));
+ EXPECT_TRUE(
+ absl::equal(empty1.begin(), empty1.end(), empty2.begin(), empty2.end()));
+}
+
+TEST(EqualTest, MixedIterTypes) {
+ std::vector<int> v1{1, 2, 3};
+ std::list<int> lst1{v1.begin(), v1.end()};
+ std::list<int> lst2{1, 2, 4};
+ std::list<int> lst3{1, 2};
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), lst1.begin(), lst1.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), lst2.begin(), lst2.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), lst3.begin(), lst3.end()));
+}
+
+TEST(EqualTest, MixedValueTypes) {
+ std::vector<int> v1{1, 2, 3};
+ std::vector<char> v2{1, 2, 3};
+ std::vector<char> v3{1, 2};
+ std::vector<char> v4{1, 2, 4};
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v3.begin(), v3.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v4.begin(), v4.end()));
+}
+
+TEST(EqualTest, WeirdIterators) {
+ std::vector<bool> v1{true, false};
+ std::vector<bool> v2 = v1;
+ std::vector<bool> v3{true};
+ std::vector<bool> v4{true, true, true};
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v3.begin(), v3.end()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v4.begin(), v4.end()));
+}
+
+TEST(EqualTest, CustomComparison) {
+ int n[] = {1, 2, 3, 4};
+ std::vector<int*> v1{&n[0], &n[1], &n[2]};
+ std::vector<int*> v2 = v1;
+ std::vector<int*> v3{&n[0], &n[1], &n[3]};
+ std::vector<int*> v4{&n[0], &n[1]};
+
+ auto eq = [](int* a, int* b) { return *a == *b; };
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end(), eq));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v3.begin(), v3.end(), eq));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v4.begin(), v4.end(), eq));
+}
+
+TEST(EqualTest, MoveOnlyPredicate) {
+ std::vector<int> v1{1, 2, 3};
+ std::vector<int> v2{4, 5, 6};
+
+ // move-only equality predicate
+ struct Eq {
+ Eq() = default;
+ Eq(Eq &&) = default;
+ Eq(const Eq &) = delete;
+ Eq &operator=(const Eq &) = delete;
+ bool operator()(const int a, const int b) const { return a == b; }
+ };
+
+ EXPECT_TRUE(absl::equal(v1.begin(), v1.end(), v1.begin(), v1.end(), Eq()));
+ EXPECT_FALSE(absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end(), Eq()));
+}
+
+struct CountingTrivialPred {
+ int* count;
+ bool operator()(int, int) const {
+ ++*count;
+ return true;
+ }
+};
+
+TEST(EqualTest, RandomAccessComplexity) {
+ std::vector<int> v1{1, 1, 3};
+ std::vector<int> v2 = v1;
+ std::vector<int> v3{1, 2};
+
+ do {
+ int count = 0;
+ absl::equal(v1.begin(), v1.end(), v2.begin(), v2.end(),
+ CountingTrivialPred{&count});
+ EXPECT_LE(count, 3);
+ } while (std::next_permutation(v2.begin(), v2.end()));
+
+ int count = 0;
+ absl::equal(v1.begin(), v1.end(), v3.begin(), v3.end(),
+ CountingTrivialPred{&count});
+ EXPECT_EQ(count, 0);
+}
+
+class LinearSearchTest : public testing::Test {
+ protected:
+ LinearSearchTest() : container_{1, 2, 3} {}
+
+ static bool Is3(int n) { return n == 3; }
+ static bool Is4(int n) { return n == 4; }
+
+ std::vector<int> container_;
+};
+
+TEST_F(LinearSearchTest, linear_search) {
+ EXPECT_TRUE(absl::linear_search(container_.begin(), container_.end(), 3));
+ EXPECT_FALSE(absl::linear_search(container_.begin(), container_.end(), 4));
+}
+
+TEST_F(LinearSearchTest, linear_searchConst) {
+ const std::vector<int> *const const_container = &container_;
+ EXPECT_TRUE(
+ absl::linear_search(const_container->begin(), const_container->end(), 3));
+ EXPECT_FALSE(
+ absl::linear_search(const_container->begin(), const_container->end(), 4));
+}
+
+TEST(RotateTest, Rotate) {
+ std::vector<int> v{0, 1, 2, 3, 4};
+ EXPECT_EQ(*absl::rotate(v.begin(), v.begin() + 2, v.end()), 0);
+ EXPECT_THAT(v, testing::ElementsAreArray({2, 3, 4, 0, 1}));
+
+ std::list<int> l{0, 1, 2, 3, 4};
+ EXPECT_EQ(*absl::rotate(l.begin(), std::next(l.begin(), 3), l.end()), 0);
+ EXPECT_THAT(l, testing::ElementsAreArray({3, 4, 0, 1, 2}));
+}
+
+} // namespace
diff --git a/absl/algorithm/container.h b/absl/algorithm/container.h
new file mode 100644
index 0000000..dbdc5c8
--- /dev/null
+++ b/absl/algorithm/container.h
@@ -0,0 +1,1652 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: container.h
+// -----------------------------------------------------------------------------
+//
+// This header file provides Container-based versions of algorithmic functions
+// within the C++ standard library. The following standard library sets of
+// functions are covered within this file:
+//
+// * Algorithmic <iterator> functions
+// * Algorithmic <numeric> functions
+// * <algorithm> functions
+//
+// The standard library functions operate on iterator ranges; the functions
+// within this API operate on containers, though many return iterator ranges.
+//
+// All functions within this API are named with a `c_` prefix. Calls such as
+// `absl::c_xx(container, ...) are equivalent to std:: functions such as
+// `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on
+// iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`)
+// have no equivalent here.
+//
+// For template parameter and variable naming, `C` indicates the container type
+// to which the function is applied, `Pred` indicates the predicate object type
+// to be used by the function and `T` indicates the applicable element type.
+//
+
+#ifndef ABSL_ALGORITHM_CONTAINER_H_
+#define ABSL_ALGORITHM_CONTAINER_H_
+
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <numeric>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/algorithm/algorithm.h"
+#include "absl/base/macros.h"
+#include "absl/meta/type_traits.h"
+
+namespace absl {
+
+namespace container_algorithm_internal {
+
+// NOTE: it is important to defer to ADL lookup for building with C++ modules,
+// especially for headers like <valarray> which are not visible from this file
+// but specialize std::begin and std::end.
+using std::begin;
+using std::end;
+
+// The type of the iterator given by begin(c) (possibly std::begin(c)).
+// ContainerIter<const vector<T>> gives vector<T>::const_iterator,
+// while ContainerIter<vector<T>> gives vector<T>::iterator.
+template <typename C>
+using ContainerIter = decltype(begin(std::declval<C&>()));
+
+template <typename C>
+using ContainerDifferenceType =
+ decltype(std::distance(std::declval<ContainerIter<C>>(),
+ std::declval<ContainerIter<C>>()));
+
+template <typename C>
+using ContainerPointerType =
+ typename std::iterator_traits<ContainerIter<C>>::pointer;
+
+// container_algorithm_internal::c_begin and
+// container_algorithm_internal::c_end are abbreviations for proper ADL
+// lookup of std::begin and std::end, i.e.
+// using std::begin;
+// using std::end;
+// std::foo(begin(c), end(c);
+// becomes
+// std::foo(container_algorithm_internal::begin(c),
+// container_algorithm_internal::end(c));
+// These are meant for internal use only.
+
+template <typename C>
+ContainerIter<C> c_begin(C& c) { return begin(c); }
+
+template <typename C>
+ContainerIter<C> c_end(C& c) { return end(c); }
+
+} // namespace container_algorithm_internal
+
+// PUBLIC API
+
+//------------------------------------------------------------------------------
+// Abseil algorithm.h functions
+//------------------------------------------------------------------------------
+
+// c_linear_search()
+//
+// Container-based version of absl::linear_search() for performing a linear
+// search within a container.
+template <typename C, typename EqualityComparable>
+bool c_linear_search(const C& c, EqualityComparable&& value) {
+ return linear_search(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<EqualityComparable>(value));
+}
+
+//------------------------------------------------------------------------------
+// <iterator> algorithms
+//------------------------------------------------------------------------------
+
+// c_distance()
+//
+// Container-based version of the <iterator> `std::distance()` function to
+// return the number of elements within a container.
+template <typename C>
+container_algorithm_internal::ContainerDifferenceType<const C> c_distance(
+ const C& c) {
+ return std::distance(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Non-modifying sequence operations
+//------------------------------------------------------------------------------
+
+// c_all_of()
+//
+// Container-based version of the <algorithm> `std::all_of()` function to
+// test a condition on all elements within a container.
+template <typename C, typename Pred>
+bool c_all_of(const C& c, Pred&& pred) {
+ return std::all_of(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_any_of()
+//
+// Container-based version of the <algorithm> `std::any_of()` function to
+// test if any element in a container fulfills a condition.
+template <typename C, typename Pred>
+bool c_any_of(const C& c, Pred&& pred) {
+ return std::any_of(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_none_of()
+//
+// Container-based version of the <algorithm> `std::none_of()` function to
+// test if no elements in a container fulfil a condition.
+template <typename C, typename Pred>
+bool c_none_of(const C& c, Pred&& pred) {
+ return std::none_of(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_for_each()
+//
+// Container-based version of the <algorithm> `std::for_each()` function to
+// apply a function to a container's elements.
+template <typename C, typename Function>
+decay_t<Function> c_for_each(C&& c, Function&& f) {
+ return std::for_each(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Function>(f));
+}
+
+// c_find()
+//
+// Container-based version of the <algorithm> `std::find()` function to find
+// the first element containing the passed value within a container value.
+template <typename C, typename T>
+container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) {
+ return std::find(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<T>(value));
+}
+
+// c_find_if()
+//
+// Container-based version of the <algorithm> `std::find_if()` function to find
+// the first element in a container matching the given condition.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) {
+ return std::find_if(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_find_if_not()
+//
+// Container-based version of the <algorithm> `std::find_if_not()` function to
+// find the first element in a container not matching the given condition.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c,
+ Pred&& pred) {
+ return std::find_if_not(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_find_end()
+//
+// Container-based version of the <algorithm> `std::find_end()` function to
+// find the last subsequence within a container.
+template <typename Sequence1, typename Sequence2>
+container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
+ Sequence1& sequence, Sequence2& subsequence) {
+ return std::find_end(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(subsequence),
+ container_algorithm_internal::c_end(subsequence));
+}
+
+// Overload of c_find_end() for using a predicate evaluation other than `==` as
+// the function's test condition.
+template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
+container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
+ Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
+ return std::find_end(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(subsequence),
+ container_algorithm_internal::c_end(subsequence),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_find_first_of()
+//
+// Container-based version of the <algorithm> `std::find_first_of()` function to
+// find the first elements in an ordered set within a container.
+template <typename C1, typename C2>
+container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container,
+ C2& options) {
+ return std::find_first_of(container_algorithm_internal::c_begin(container),
+ container_algorithm_internal::c_end(container),
+ container_algorithm_internal::c_begin(options),
+ container_algorithm_internal::c_end(options));
+}
+
+// Overload of c_find_first_of() for using a predicate evaluation other than
+// `==` as the function's test condition.
+template <typename C1, typename C2, typename BinaryPredicate>
+container_algorithm_internal::ContainerIter<C1> c_find_first_of(
+ C1& container, C2& options, BinaryPredicate&& pred) {
+ return std::find_first_of(container_algorithm_internal::c_begin(container),
+ container_algorithm_internal::c_end(container),
+ container_algorithm_internal::c_begin(options),
+ container_algorithm_internal::c_end(options),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_adjacent_find()
+//
+// Container-based version of the <algorithm> `std::adjacent_find()` function to
+// find equal adjacent elements within a container.
+template <typename Sequence>
+container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
+ Sequence& sequence) {
+ return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_adjacent_find() for using a predicate evaluation other than
+// `==` as the function's test condition.
+template <typename Sequence, typename BinaryPredicate>
+container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
+ Sequence& sequence, BinaryPredicate&& pred) {
+ return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_count()
+//
+// Container-based version of the <algorithm> `std::count()` function to count
+// values that match within a container.
+template <typename C, typename T>
+container_algorithm_internal::ContainerDifferenceType<const C> c_count(
+ const C& c, T&& value) {
+ return std::count(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<T>(value));
+}
+
+// c_count_if()
+//
+// Container-based version of the <algorithm> `std::count_if()` function to
+// count values matching a condition within a container.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerDifferenceType<const C> c_count_if(
+ const C& c, Pred&& pred) {
+ return std::count_if(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_mismatch()
+//
+// Container-based version of the <algorithm> `std::mismatchf()` function to
+// return the first element where two ordered containers differ.
+template <typename C1, typename C2>
+std::pair<container_algorithm_internal::ContainerIter<C1>,
+ container_algorithm_internal::ContainerIter<C2>>
+c_mismatch(C1& c1, C2& c2) {
+ return std::mismatch(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2));
+}
+
+// Overload of c_mismatch() for using a predicate evaluation other than `==` as
+// the function's test condition.
+template <typename C1, typename C2, typename BinaryPredicate>
+std::pair<container_algorithm_internal::ContainerIter<C1>,
+ container_algorithm_internal::ContainerIter<C2>>
+c_mismatch(C1& c1, C2& c2, BinaryPredicate&& pred) {
+ return std::mismatch(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_equal()
+//
+// Container-based version of the <algorithm> `std::equal()` function to
+// test whether two containers are equal.
+//
+// NOTE: the semantics of c_equal() are slightly different than those of
+// equal(): while the latter iterates over the second container only up to the
+// size of the first container, c_equal() also checks whether the container
+// sizes are equal. This better matches expectations about c_equal() based on
+// its signature.
+//
+// Example:
+// vector v1 = <1, 2, 3>;
+// vector v2 = <1, 2, 3, 4>;
+// equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true
+// c_equal(v1, v2) returns false
+
+template <typename C1, typename C2>
+bool c_equal(const C1& c1, const C2& c2) {
+ return ((c1.size() == c2.size()) &&
+ std::equal(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2)));
+}
+
+// Overload of c_equal() for using a predicate evaluation other than `==` as
+// the function's test condition.
+template <typename C1, typename C2, typename BinaryPredicate>
+bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
+ return ((c1.size() == c2.size()) &&
+ std::equal(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ std::forward<BinaryPredicate>(pred)));
+}
+
+// c_is_permutation()
+//
+// Container-based version of the <algorithm> `std::is_permutation()` function
+// to test whether a container is a permutation of another.
+template <typename C1, typename C2>
+bool c_is_permutation(const C1& c1, const C2& c2) {
+ using std::begin;
+ using std::end;
+ return c1.size() == c2.size() &&
+ std::is_permutation(begin(c1), end(c1), begin(c2));
+}
+
+// Overload of c_is_permutation() for using a predicate evaluation other than
+// `==` as the function's test condition.
+template <typename C1, typename C2, typename BinaryPredicate>
+bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
+ using std::begin;
+ using std::end;
+ return c1.size() == c2.size() &&
+ std::is_permutation(begin(c1), end(c1), begin(c2),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_search()
+//
+// Container-based version of the <algorithm> `std::search()` function to search
+// a container for a subsequence.
+template <typename Sequence1, typename Sequence2>
+container_algorithm_internal::ContainerIter<Sequence1> c_search(
+ Sequence1& sequence, Sequence2& subsequence) {
+ return std::search(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(subsequence),
+ container_algorithm_internal::c_end(subsequence));
+}
+
+// Overload of c_search() for using a predicate evaluation other than
+// `==` as the function's test condition.
+template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
+container_algorithm_internal::ContainerIter<Sequence1> c_search(
+ Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
+ return std::search(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(subsequence),
+ container_algorithm_internal::c_end(subsequence),
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_search_n()
+//
+// Container-based version of the <algorithm> `std::search_n()` function to
+// search a container for the first sequence of N elements.
+template <typename Sequence, typename Size, typename T>
+container_algorithm_internal::ContainerIter<Sequence> c_search_n(
+ Sequence& sequence, Size count, T&& value) {
+ return std::search_n(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence), count,
+ std::forward<T>(value));
+}
+
+// Overload of c_search_n() for using a predicate evaluation other than
+// `==` as the function's test condition.
+template <typename Sequence, typename Size, typename T,
+ typename BinaryPredicate>
+container_algorithm_internal::ContainerIter<Sequence> c_search_n(
+ Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) {
+ return std::search_n(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence), count,
+ std::forward<T>(value),
+ std::forward<BinaryPredicate>(pred));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Modifying sequence operations
+//------------------------------------------------------------------------------
+
+// c_copy()
+//
+// Container-based version of the <algorithm> `std::copy()` function to copy a
+// container's elements into an iterator.
+template <typename InputSequence, typename OutputIterator>
+OutputIterator c_copy(const InputSequence& input, OutputIterator output) {
+ return std::copy(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input), output);
+}
+
+// c_copy_n()
+//
+// Container-based version of the <algorithm> `std::copy_n()` function to copy a
+// container's first N elements into an iterator.
+template <typename C, typename Size, typename OutputIterator>
+OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) {
+ return std::copy_n(container_algorithm_internal::c_begin(input), n, output);
+}
+
+// c_copy_if()
+//
+// Container-based version of the <algorithm> `std::copy_if()` function to copy
+// a container's elements satisfying some condition into an iterator.
+template <typename InputSequence, typename OutputIterator, typename Pred>
+OutputIterator c_copy_if(const InputSequence& input, OutputIterator output,
+ Pred&& pred) {
+ return std::copy_if(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input), output,
+ std::forward<Pred>(pred));
+}
+
+// c_copy_backward()
+//
+// Container-based version of the <algorithm> `std::copy_backward()` function to
+// copy a container's elements in reverse order into an iterator.
+template <typename C, typename BidirectionalIterator>
+BidirectionalIterator c_copy_backward(const C& src,
+ BidirectionalIterator dest) {
+ return std::copy_backward(container_algorithm_internal::c_begin(src),
+ container_algorithm_internal::c_end(src), dest);
+}
+
+// c_move()
+//
+// Container-based version of the <algorithm> `std::move()` function to move
+// a container's elements into an iterator.
+template <typename C, typename OutputIterator>
+OutputIterator c_move(C& src, OutputIterator dest) {
+ return std::move(container_algorithm_internal::c_begin(src),
+ container_algorithm_internal::c_end(src), dest);
+}
+
+// c_move_backward()
+//
+// Container-based version of the <algorithm> `std::move_backward()` function to
+// move a container's elements into an iterator in reverse order.
+template <typename C, typename BidirectionalIterator>
+BidirectionalIterator c_move_backward(C& src, BidirectionalIterator dest) {
+ return std::move_backward(container_algorithm_internal::c_begin(src),
+ container_algorithm_internal::c_end(src), dest);
+}
+
+// c_swap_ranges()
+//
+// Container-based version of the <algorithm> `std::swap_ranges()` function to
+// swap a container's elements with another container's elements.
+template <typename C1, typename C2>
+container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) {
+ return std::swap_ranges(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2));
+}
+
+// c_transform()
+//
+// Container-based version of the <algorithm> `std::transform()` function to
+// transform a container's elements using the unary operation, storing the
+// result in an iterator pointing to the last transformed element in the output
+// range.
+template <typename InputSequence, typename OutputIterator, typename UnaryOp>
+OutputIterator c_transform(const InputSequence& input, OutputIterator output,
+ UnaryOp&& unary_op) {
+ return std::transform(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input), output,
+ std::forward<UnaryOp>(unary_op));
+}
+
+// Overload of c_transform() for performing a transformation using a binary
+// predicate.
+template <typename InputSequence1, typename InputSequence2,
+ typename OutputIterator, typename BinaryOp>
+OutputIterator c_transform(const InputSequence1& input1,
+ const InputSequence2& input2, OutputIterator output,
+ BinaryOp&& binary_op) {
+ return std::transform(container_algorithm_internal::c_begin(input1),
+ container_algorithm_internal::c_end(input1),
+ container_algorithm_internal::c_begin(input2), output,
+ std::forward<BinaryOp>(binary_op));
+}
+
+// c_replace()
+//
+// Container-based version of the <algorithm> `std::replace()` function to
+// replace a container's elements of some value with a new value. The container
+// is modified in place.
+template <typename Sequence, typename T>
+void c_replace(Sequence& sequence, const T& old_value, const T& new_value) {
+ std::replace(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence), old_value,
+ new_value);
+}
+
+// c_replace_if()
+//
+// Container-based version of the <algorithm> `std::replace_if()` function to
+// replace a container's elements of some value with a new value based on some
+// condition. The container is modified in place.
+template <typename C, typename Pred, typename T>
+void c_replace_if(C& c, Pred&& pred, T&& new_value) {
+ std::replace_if(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred), std::forward<T>(new_value));
+}
+
+// c_replace_copy()
+//
+// Container-based version of the <algorithm> `std::replace_copy()` function to
+// replace a container's elements of some value with a new value and return the
+// results within an iterator.
+template <typename C, typename OutputIterator, typename T>
+OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value,
+ T&& new_value) {
+ return std::replace_copy(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result,
+ std::forward<T>(old_value),
+ std::forward<T>(new_value));
+}
+
+// c_replace_copy_if()
+//
+// Container-based version of the <algorithm> `std::replace_copy_if()` function
+// to replace a container's elements of some value with a new value based on
+// some condition, and return the results within an iterator.
+template <typename C, typename OutputIterator, typename Pred, typename T>
+OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred,
+ T&& new_value) {
+ return std::replace_copy_if(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result,
+ std::forward<Pred>(pred),
+ std::forward<T>(new_value));
+}
+
+// c_fill()
+//
+// Container-based version of the <algorithm> `std::fill()` function to fill a
+// container with some value.
+template <typename C, typename T>
+void c_fill(C& c, T&& value) {
+ std::fill(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), std::forward<T>(value));
+}
+
+// c_fill_n()
+//
+// Container-based version of the <algorithm> `std::fill_n()` function to fill
+// the first N elements in a container with some value.
+template <typename C, typename Size, typename T>
+void c_fill_n(C& c, Size n, T&& value) {
+ std::fill_n(container_algorithm_internal::c_begin(c), n,
+ std::forward<T>(value));
+}
+
+// c_generate()
+//
+// Container-based version of the <algorithm> `std::generate()` function to
+// assign a container's elements to the values provided by the given generator.
+template <typename C, typename Generator>
+void c_generate(C& c, Generator&& gen) {
+ std::generate(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Generator>(gen));
+}
+
+// c_generate_n()
+//
+// Container-based version of the <algorithm> `std::generate_n()` function to
+// assign a container's first N elements to the values provided by the given
+// generator.
+template <typename C, typename Size, typename Generator>
+container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n,
+ Generator&& gen) {
+ return std::generate_n(container_algorithm_internal::c_begin(c), n,
+ std::forward<Generator>(gen));
+}
+
+// Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`,
+// and `unique()` are omitted, because it's not clear whether or not such
+// functions should call erase their supplied sequences afterwards. Either
+// behavior would be surprising for a different set of users.
+//
+
+// c_remove_copy()
+//
+// Container-based version of the <algorithm> `std::remove_copy()` function to
+// copy a container's elements while removing any elements matching the given
+// `value`.
+template <typename C, typename OutputIterator, typename T>
+OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) {
+ return std::remove_copy(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result,
+ std::forward<T>(value));
+}
+
+// c_remove_copy_if()
+//
+// Container-based version of the <algorithm> `std::remove_copy_if()` function
+// to copy a container's elements while removing any elements matching the given
+// condition.
+template <typename C, typename OutputIterator, typename Pred>
+OutputIterator c_remove_copy_if(const C& c, OutputIterator result,
+ Pred&& pred) {
+ return std::remove_copy_if(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result,
+ std::forward<Pred>(pred));
+}
+
+// c_unique_copy()
+//
+// Container-based version of the <algorithm> `std::unique_copy()` function to
+// copy a container's elements while removing any elements containing duplicate
+// values.
+template <typename C, typename OutputIterator>
+OutputIterator c_unique_copy(const C& c, OutputIterator result) {
+ return std::unique_copy(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result);
+}
+
+// Overload of c_unique_copy() for using a predicate evaluation other than
+// `==` for comparing uniqueness of the element values.
+template <typename C, typename OutputIterator, typename BinaryPredicate>
+OutputIterator c_unique_copy(const C& c, OutputIterator result,
+ BinaryPredicate&& pred) {
+ return std::unique_copy(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), result,
+ std::forward<BinaryPredicate>(pred));
+}
+
+// c_reverse()
+//
+// Container-based version of the <algorithm> `std::reverse()` function to
+// reverse a container's elements.
+template <typename Sequence>
+void c_reverse(Sequence& sequence) {
+ std::reverse(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// c_reverse_copy()
+//
+// Container-based version of the <algorithm> `std::reverse()` function to
+// reverse a container's elements and write them to an iterator range.
+template <typename C, typename OutputIterator>
+OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) {
+ return std::reverse_copy(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ result);
+}
+
+// c_rotate()
+//
+// Container-based version of the <algorithm> `std::rotate()` function to
+// shift a container's elements leftward such that the `middle` element becomes
+// the first element in the container.
+template <typename C,
+ typename Iterator = container_algorithm_internal::ContainerIter<C>>
+Iterator c_rotate(C& sequence, Iterator middle) {
+ return absl::rotate(container_algorithm_internal::c_begin(sequence), middle,
+ container_algorithm_internal::c_end(sequence));
+}
+
+// c_rotate_copy()
+//
+// Container-based version of the <algorithm> `std::rotate_copy()` function to
+// shift a container's elements leftward such that the `middle` element becomes
+// the first element in a new iterator range.
+template <typename C, typename OutputIterator>
+OutputIterator c_rotate_copy(
+ const C& sequence,
+ container_algorithm_internal::ContainerIter<const C> middle,
+ OutputIterator result) {
+ return std::rotate_copy(container_algorithm_internal::c_begin(sequence),
+ middle, container_algorithm_internal::c_end(sequence),
+ result);
+}
+
+// c_shuffle()
+//
+// Container-based version of the <algorithm> `std::shuffle()` function to
+// randomly shuffle elements within the container using a `gen()` uniform random
+// number generator.
+template <typename RandomAccessContainer, typename UniformRandomBitGenerator>
+void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) {
+ std::shuffle(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<UniformRandomBitGenerator>(gen));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Partition functions
+//------------------------------------------------------------------------------
+
+// c_is_partitioned()
+//
+// Container-based version of the <algorithm> `std::is_partitioned()` function
+// to test whether all elements in the container for which `pred` returns `true`
+// precede those for which `pred` is `false`.
+template <typename C, typename Pred>
+bool c_is_partitioned(const C& c, Pred&& pred) {
+ return std::is_partitioned(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_partition()
+//
+// Container-based version of the <algorithm> `std::partition()` function
+// to rearrange all elements in a container in such a way that all elements for
+// which `pred` returns `true` precede all those for which it returns `false`,
+// returning an iterator to the first element of the second group.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) {
+ return std::partition(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_stable_partition()
+//
+// Container-based version of the <algorithm> `std::stable_partition()` function
+// to rearrange all elements in a container in such a way that all elements for
+// which `pred` returns `true` precede all those for which it returns `false`,
+// preserving the relative ordering between the two groups. The function returns
+// an iterator to the first element of the second group.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c,
+ Pred&& pred) {
+ return std::stable_partition(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+// c_partition_copy()
+//
+// Container-based version of the <algorithm> `std::partition_copy()` function
+// to partition a container's elements and return them into two iterators: one
+// for which `pred` returns `true`, and one for which `pred` returns `false.`
+
+template <typename C, typename OutputIterator1, typename OutputIterator2,
+ typename Pred>
+std::pair<OutputIterator1, OutputIterator2> c_partition_copy(
+ const C& c, OutputIterator1 out_true, OutputIterator2 out_false,
+ Pred&& pred) {
+ return std::partition_copy(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c), out_true,
+ out_false, std::forward<Pred>(pred));
+}
+
+// c_partition_point()
+//
+// Container-based version of the <algorithm> `std::partition_point()` function
+// to return the first element of an already partitioned container for which
+// the given `pred` is not `true`.
+template <typename C, typename Pred>
+container_algorithm_internal::ContainerIter<C> c_partition_point(C& c,
+ Pred&& pred) {
+ return std::partition_point(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Pred>(pred));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Sorting functions
+//------------------------------------------------------------------------------
+
+// c_sort()
+//
+// Container-based version of the <algorithm> `std::sort()` function
+// to sort elements in ascending order of their values.
+template <typename C>
+void c_sort(C& c) {
+ std::sort(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_sort() for performing a `comp` comparison other than the
+// default `operator<`.
+template <typename C, typename Compare>
+void c_sort(C& c, Compare&& comp) {
+ std::sort(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_stable_sort()
+//
+// Container-based version of the <algorithm> `std::stable_sort()` function
+// to sort elements in ascending order of their values, preserving the order
+// of equivalents.
+template <typename C>
+void c_stable_sort(C& c) {
+ std::stable_sort(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_stable_sort() for performing a `comp` comparison other than the
+// default `operator<`.
+template <typename C, typename Compare>
+void c_stable_sort(C& c, Compare&& comp) {
+ std::stable_sort(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_is_sorted()
+//
+// Container-based version of the <algorithm> `std::is_sorted()` function
+// to evaluate whethr the given containter is sorted in ascending order.
+template <typename C>
+bool c_is_sorted(const C& c) {
+ return std::is_sorted(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// c_is_sorted() overload for performing a `comp` comparison other than the
+// default `operator<`.
+template <typename C, typename Compare>
+bool c_is_sorted(const C& c, Compare&& comp) {
+ return std::is_sorted(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_partial_sort()
+//
+// Container-based version of the <algorithm> `std::partial_sort()` function
+// to rearrange elements within a container such that elements before `middle`
+// are sorted in ascending order.
+template <typename RandomAccessContainer>
+void c_partial_sort(
+ RandomAccessContainer& sequence,
+ container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) {
+ std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_partial_sort() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename RandomAccessContainer, typename Compare>
+void c_partial_sort(
+ RandomAccessContainer& sequence,
+ container_algorithm_internal::ContainerIter<RandomAccessContainer> middle,
+ Compare&& comp) {
+ std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_partial_sort_copy()
+//
+// Container-based version of the <algorithm> `std::partial_sort_copy()`
+// function to sort elements within a container such that elements before
+// `middle` are sorted in ascending order, and return the result within an
+// iterator.
+template <typename C, typename RandomAccessContainer>
+container_algorithm_internal::ContainerIter<RandomAccessContainer>
+c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) {
+ return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(result),
+ container_algorithm_internal::c_end(result));
+}
+
+// Overload of c_partial_sort_copy() for performing a `comp` comparison other
+// than the default `operator<`.
+template <typename C, typename RandomAccessContainer, typename Compare>
+container_algorithm_internal::ContainerIter<RandomAccessContainer>
+c_partial_sort_copy(const C& sequence, RandomAccessContainer& result,
+ Compare&& comp) {
+ return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ container_algorithm_internal::c_begin(result),
+ container_algorithm_internal::c_end(result),
+ std::forward<Compare>(comp));
+}
+
+// c_is_sorted_until()
+//
+// Container-based version of the <algorithm> `std::is_sorted_until()` function
+// to return the first element within a container that is not sorted in
+// ascending order as an iterator.
+template <typename C>
+container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) {
+ return std::is_sorted_until(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_is_sorted_until() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename C, typename Compare>
+container_algorithm_internal::ContainerIter<C> c_is_sorted_until(
+ C& c, Compare&& comp) {
+ return std::is_sorted_until(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_nth_element()
+//
+// Container-based version of the <algorithm> `std::nth_element()` function
+// to rearrange the elements within a container such that the `nth` element
+// would be in that position in an ordered sequence; other elements may be in
+// any order, except that all preceding `nth` will be less than that element,
+// and all following `nth` will be greater than that element.
+template <typename RandomAccessContainer>
+void c_nth_element(
+ RandomAccessContainer& sequence,
+ container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) {
+ std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_nth_element() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename RandomAccessContainer, typename Compare>
+void c_nth_element(
+ RandomAccessContainer& sequence,
+ container_algorithm_internal::ContainerIter<RandomAccessContainer> nth,
+ Compare&& comp) {
+ std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Binary Search
+//------------------------------------------------------------------------------
+
+// c_lower_bound()
+//
+// Container-based version of the <algorithm> `std::lower_bound()` function
+// to return an iterator pointing to the first element in a sorted container
+// which does not compare less than `value`.
+template <typename Sequence, typename T>
+container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
+ Sequence& sequence, T&& value) {
+ return std::lower_bound(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value));
+}
+
+// Overload of c_lower_bound() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename Sequence, typename T, typename Compare>
+container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
+ Sequence& sequence, T&& value, Compare&& comp) {
+ return std::lower_bound(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value), std::forward<Compare>(comp));
+}
+
+// c_upper_bound()
+//
+// Container-based version of the <algorithm> `std::upper_bound()` function
+// to return an iterator pointing to the first element in a sorted container
+// which is greater than `value`.
+template <typename Sequence, typename T>
+container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
+ Sequence& sequence, T&& value) {
+ return std::upper_bound(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value));
+}
+
+// Overload of c_upper_bound() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename Sequence, typename T, typename Compare>
+container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
+ Sequence& sequence, T&& value, Compare&& comp) {
+ return std::upper_bound(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value), std::forward<Compare>(comp));
+}
+
+// c_equal_range()
+//
+// Container-based version of the <algorithm> `std::equal_range()` function
+// to return an iterator pair pointing to the first and last elements in a
+// sorted container which compare equal to `value`.
+template <typename Sequence, typename T>
+std::pair<container_algorithm_internal::ContainerIter<Sequence>,
+ container_algorithm_internal::ContainerIter<Sequence>>
+c_equal_range(Sequence& sequence, T&& value) {
+ return std::equal_range(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value));
+}
+
+// Overload of c_equal_range() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename Sequence, typename T, typename Compare>
+std::pair<container_algorithm_internal::ContainerIter<Sequence>,
+ container_algorithm_internal::ContainerIter<Sequence>>
+c_equal_range(Sequence& sequence, T&& value, Compare&& comp) {
+ return std::equal_range(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value), std::forward<Compare>(comp));
+}
+
+// c_binary_search()
+//
+// Container-based version of the <algorithm> `std::binary_search()` function
+// to test if any element in the sorted container contains a value equivalent to
+// 'value'.
+template <typename Sequence, typename T>
+bool c_binary_search(Sequence&& sequence, T&& value) {
+ return std::binary_search(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value));
+}
+
+// Overload of c_binary_search() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename Sequence, typename T, typename Compare>
+bool c_binary_search(Sequence&& sequence, T&& value, Compare&& comp) {
+ return std::binary_search(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value),
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Merge functions
+//------------------------------------------------------------------------------
+
+// c_merge()
+//
+// Container-based version of the <algorithm> `std::merge()` function
+// to merge two sorted containers into a single sorted iterator.
+template <typename C1, typename C2, typename OutputIterator>
+OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) {
+ return std::merge(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), result);
+}
+
+// Overload of c_merge() for performing a `comp` comparison other than
+// the default `operator<`.
+template <typename C1, typename C2, typename OutputIterator, typename Compare>
+OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result,
+ Compare&& comp) {
+ return std::merge(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), result,
+ std::forward<Compare>(comp));
+}
+
+// c_inplace_merge()
+//
+// Container-based version of the <algorithm> `std::inplace_merge()` function
+// to merge a supplied iterator `middle` into a container.
+template <typename C>
+void c_inplace_merge(C& c,
+ container_algorithm_internal::ContainerIter<C> middle) {
+ std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_inplace_merge() for performing a merge using a `comp` other
+// than `operator<`.
+template <typename C, typename Compare>
+void c_inplace_merge(C& c,
+ container_algorithm_internal::ContainerIter<C> middle,
+ Compare&& comp) {
+ std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_includes()
+//
+// Container-based version of the <algorithm> `std::includes()` function
+// to test whether a sorted container `c1` entirely contains another sorted
+// container `c2`.
+template <typename C1, typename C2>
+bool c_includes(const C1& c1, const C2& c2) {
+ return std::includes(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2));
+}
+
+// Overload of c_includes() for performing a merge using a `comp` other than
+// `operator<`.
+template <typename C1, typename C2, typename Compare>
+bool c_includes(const C1& c1, const C2& c2, Compare&& comp) {
+ return std::includes(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2),
+ std::forward<Compare>(comp));
+}
+
+// c_set_union()
+//
+// Container-based version of the <algorithm> `std::set_union()` function
+// to return an iterator containing the union of two containers; duplicate
+// values are not copied into the output.
+template <typename C1, typename C2, typename OutputIterator>
+OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) {
+ return std::set_union(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output);
+}
+
+// Overload of c_set_union() for performing a merge using a `comp` other than
+// `operator<`.
+template <typename C1, typename C2, typename OutputIterator, typename Compare>
+OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output,
+ Compare&& comp) {
+ return std::set_union(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output,
+ std::forward<Compare>(comp));
+}
+
+// c_set_intersection()
+//
+// Container-based version of the <algorithm> `std::set_intersection()` function
+// to return an iterator containing the intersection of two containers.
+template <typename C1, typename C2, typename OutputIterator>
+OutputIterator c_set_intersection(const C1& c1, const C2& c2,
+ OutputIterator output) {
+ return std::set_intersection(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output);
+}
+
+// Overload of c_set_intersection() for performing a merge using a `comp` other
+// than `operator<`.
+template <typename C1, typename C2, typename OutputIterator, typename Compare>
+OutputIterator c_set_intersection(const C1& c1, const C2& c2,
+ OutputIterator output, Compare&& comp) {
+ return std::set_intersection(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output,
+ std::forward<Compare>(comp));
+}
+
+// c_set_difference()
+//
+// Container-based version of the <algorithm> `std::set_difference()` function
+// to return an iterator containing elements present in the first container but
+// not in the second.
+template <typename C1, typename C2, typename OutputIterator>
+OutputIterator c_set_difference(const C1& c1, const C2& c2,
+ OutputIterator output) {
+ return std::set_difference(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output);
+}
+
+// Overload of c_set_difference() for performing a merge using a `comp` other
+// than `operator<`.
+template <typename C1, typename C2, typename OutputIterator, typename Compare>
+OutputIterator c_set_difference(const C1& c1, const C2& c2,
+ OutputIterator output, Compare&& comp) {
+ return std::set_difference(container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output,
+ std::forward<Compare>(comp));
+}
+
+// c_set_symmetric_difference()
+//
+// Container-based version of the <algorithm> `std::set_symmetric_difference()`
+// function to return an iterator containing elements present in either one
+// container or the other, but not both.
+template <typename C1, typename C2, typename OutputIterator>
+OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
+ OutputIterator output) {
+ return std::set_symmetric_difference(
+ container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output);
+}
+
+// Overload of c_set_symmetric_difference() for performing a merge using a
+// `comp` other than `operator<`.
+template <typename C1, typename C2, typename OutputIterator, typename Compare>
+OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
+ OutputIterator output,
+ Compare&& comp) {
+ return std::set_symmetric_difference(
+ container_algorithm_internal::c_begin(c1),
+ container_algorithm_internal::c_end(c1),
+ container_algorithm_internal::c_begin(c2),
+ container_algorithm_internal::c_end(c2), output,
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Heap functions
+//------------------------------------------------------------------------------
+
+// c_push_heap()
+//
+// Container-based version of the <algorithm> `std::push_heap()` function
+// to push a value onto a container heap.
+template <typename RandomAccessContainer>
+void c_push_heap(RandomAccessContainer& sequence) {
+ std::push_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_push_heap() for performing a push operation on a heap using a
+// `comp` other than `operator<`.
+template <typename RandomAccessContainer, typename Compare>
+void c_push_heap(RandomAccessContainer& sequence, Compare&& comp) {
+ std::push_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_pop_heap()
+//
+// Container-based version of the <algorithm> `std::pop_heap()` function
+// to pop a value from a heap container.
+template <typename RandomAccessContainer>
+void c_pop_heap(RandomAccessContainer& sequence) {
+ std::pop_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_pop_heap() for performing a pop operation on a heap using a
+// `comp` other than `operator<`.
+template <typename RandomAccessContainer, typename Compare>
+void c_pop_heap(RandomAccessContainer& sequence, Compare&& comp) {
+ std::pop_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_make_heap()
+//
+// Container-based version of the <algorithm> `std::make_heap()` function
+// to make a container a heap.
+template <typename RandomAccessContainer>
+void c_make_heap(RandomAccessContainer& sequence) {
+ std::make_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_make_heap() for performing heap comparisons using a
+// `comp` other than `operator<`
+template <typename RandomAccessContainer, typename Compare>
+void c_make_heap(RandomAccessContainer& sequence, Compare&& comp) {
+ std::make_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_sort_heap()
+//
+// Container-based version of the <algorithm> `std::sort_heap()` function
+// to sort a heap into ascending order (after which it is no longer a heap).
+template <typename RandomAccessContainer>
+void c_sort_heap(RandomAccessContainer& sequence) {
+ std::sort_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_sort_heap() for performing heap comparisons using a
+// `comp` other than `operator<`
+template <typename RandomAccessContainer, typename Compare>
+void c_sort_heap(RandomAccessContainer& sequence, Compare&& comp) {
+ std::sort_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_is_heap()
+//
+// Container-based version of the <algorithm> `std::is_heap()` function
+// to check whether the given container is a heap.
+template <typename RandomAccessContainer>
+bool c_is_heap(const RandomAccessContainer& sequence) {
+ return std::is_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_is_heap() for performing heap comparisons using a
+// `comp` other than `operator<`
+template <typename RandomAccessContainer, typename Compare>
+bool c_is_heap(const RandomAccessContainer& sequence, Compare&& comp) {
+ return std::is_heap(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_is_heap_until()
+//
+// Container-based version of the <algorithm> `std::is_heap_until()` function
+// to find the first element in a given container which is not in heap order.
+template <typename RandomAccessContainer>
+container_algorithm_internal::ContainerIter<RandomAccessContainer>
+c_is_heap_until(RandomAccessContainer& sequence) {
+ return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_is_heap_until() for performing heap comparisons using a
+// `comp` other than `operator<`
+template <typename RandomAccessContainer, typename Compare>
+container_algorithm_internal::ContainerIter<RandomAccessContainer>
+c_is_heap_until(RandomAccessContainer& sequence, Compare&& comp) {
+ return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Min/max
+//------------------------------------------------------------------------------
+
+// c_min_element()
+//
+// Container-based version of the <algorithm> `std::min_element()` function
+// to return an iterator pointing to the element with the smallest value, using
+// `operator<` to make the comparisons.
+template <typename Sequence>
+container_algorithm_internal::ContainerIter<Sequence> c_min_element(
+ Sequence& sequence) {
+ return std::min_element(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_min_element() for performing a `comp` comparison other than
+// `operator<`.
+template <typename Sequence, typename Compare>
+container_algorithm_internal::ContainerIter<Sequence> c_min_element(
+ Sequence& sequence, Compare&& comp) {
+ return std::min_element(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_max_element()
+//
+// Container-based version of the <algorithm> `std::max_element()` function
+// to return an iterator pointing to the element with the largest value, using
+// `operator<` to make the comparisons.
+template <typename Sequence>
+container_algorithm_internal::ContainerIter<Sequence> c_max_element(
+ Sequence& sequence) {
+ return std::max_element(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence));
+}
+
+// Overload of c_max_element() for performing a `comp` comparison other than
+// `operator<`.
+template <typename Sequence, typename Compare>
+container_algorithm_internal::ContainerIter<Sequence> c_max_element(
+ Sequence& sequence, Compare&& comp) {
+ return std::max_element(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<Compare>(comp));
+}
+
+// c_minmax_element()
+//
+// Container-based version of the <algorithm> `std::minmax_element()` function
+// to return a pair of iterators pointing to the elements containing the
+// smallest and largest values, respectively, using `operator<` to make the
+// comparisons.
+template <typename C>
+std::pair<container_algorithm_internal::ContainerIter<C>,
+ container_algorithm_internal::ContainerIter<C>>
+c_minmax_element(C& c) {
+ return std::minmax_element(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_minmax_element() for performing `comp` comparisons other than
+// `operator<`.
+template <typename C, typename Compare>
+std::pair<container_algorithm_internal::ContainerIter<C>,
+ container_algorithm_internal::ContainerIter<C>>
+c_minmax_element(C& c, Compare&& comp) {
+ return std::minmax_element(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <algorithm> Lexicographical Comparisons
+//------------------------------------------------------------------------------
+
+// c_lexicographical_compare()
+//
+// Container-based version of the <algorithm> `std::lexicographical_compare()`
+// function to lexicographically compare (e.g. sort words alphabetically) two
+// container sequences. The comparison is performed using `operator<`. Note
+// that capital letters ("A-Z") have ASCII values less than lowercase letters
+// ("a-z").
+template <typename Sequence1, typename Sequence2>
+bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) {
+ return std::lexicographical_compare(
+ container_algorithm_internal::c_begin(sequence1),
+ container_algorithm_internal::c_end(sequence1),
+ container_algorithm_internal::c_begin(sequence2),
+ container_algorithm_internal::c_end(sequence2));
+}
+
+// Overload of c_lexicographical_compare() for performing a lexicographical
+// comparison using a `comp` operator instead of `operator<`.
+template <typename Sequence1, typename Sequence2, typename Compare>
+bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2,
+ Compare&& comp) {
+ return std::lexicographical_compare(
+ container_algorithm_internal::c_begin(sequence1),
+ container_algorithm_internal::c_end(sequence1),
+ container_algorithm_internal::c_begin(sequence2),
+ container_algorithm_internal::c_end(sequence2),
+ std::forward<Compare>(comp));
+}
+
+// c_next_permutation()
+//
+// Container-based version of the <algorithm> `std::next_permutation()` function
+// to rearrange a container's elements into the next lexicographically greater
+// permutation.
+template <typename C>
+bool c_next_permutation(C& c) {
+ return std::next_permutation(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_next_permutation() for performing a lexicographical
+// comparison using a `comp` operator instead of `operator<`.
+template <typename C, typename Compare>
+bool c_next_permutation(C& c, Compare&& comp) {
+ return std::next_permutation(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+// c_prev_permutation()
+//
+// Container-based version of the <algorithm> `std::prev_permutation()` function
+// to rearrange a container's elements into the next lexicographically lesser
+// permutation.
+template <typename C>
+bool c_prev_permutation(C& c) {
+ return std::prev_permutation(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c));
+}
+
+// Overload of c_prev_permutation() for performing a lexicographical
+// comparison using a `comp` operator instead of `operator<`.
+template <typename C, typename Compare>
+bool c_prev_permutation(C& c, Compare&& comp) {
+ return std::prev_permutation(container_algorithm_internal::c_begin(c),
+ container_algorithm_internal::c_end(c),
+ std::forward<Compare>(comp));
+}
+
+//------------------------------------------------------------------------------
+// <numeric> algorithms
+//------------------------------------------------------------------------------
+
+// c_iota()
+//
+// Container-based version of the <algorithm> `std::iota()` function
+// to compute successive values of `value`, as if incremented with `++value`
+// after each element is written. and write them to the container.
+template <typename Sequence, typename T>
+void c_iota(Sequence& sequence, T&& value) {
+ std::iota(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(value));
+}
+// c_accumulate()
+//
+// Container-based version of the <algorithm> `std::accumulate()` function
+// to accumulate the element values of a container to `init` and return that
+// accumulation by value.
+//
+// Note: Due to a language technicality this function has return type
+// absl::decay_t<T>. As a user of this function you can casually read
+// this as "returns T by value" and assume it does the right thing.
+template <typename Sequence, typename T>
+decay_t<T> c_accumulate(const Sequence& sequence, T&& init) {
+ return std::accumulate(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(init));
+}
+
+// Overload of c_accumulate() for using a binary operations other than
+// addition for computing the accumulation.
+template <typename Sequence, typename T, typename BinaryOp>
+decay_t<T> c_accumulate(const Sequence& sequence, T&& init,
+ BinaryOp&& binary_op) {
+ return std::accumulate(container_algorithm_internal::c_begin(sequence),
+ container_algorithm_internal::c_end(sequence),
+ std::forward<T>(init),
+ std::forward<BinaryOp>(binary_op));
+}
+
+// c_inner_product()
+//
+// Container-based version of the <algorithm> `std::inner_product()` function
+// to compute the cumulative inner product of container element pairs.
+//
+// Note: Due to a language technicality this function has return type
+// absl::decay_t<T>. As a user of this function you can casually read
+// this as "returns T by value" and assume it does the right thing.
+template <typename Sequence1, typename Sequence2, typename T>
+decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
+ T&& sum) {
+ return std::inner_product(container_algorithm_internal::c_begin(factors1),
+ container_algorithm_internal::c_end(factors1),
+ container_algorithm_internal::c_begin(factors2),
+ std::forward<T>(sum));
+}
+
+// Overload of c_inner_product() for using binary operations other than
+// `operator+` (for computing the accumlation) and `operator*` (for computing
+// the product between the two container's element pair).
+template <typename Sequence1, typename Sequence2, typename T,
+ typename BinaryOp1, typename BinaryOp2>
+decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
+ T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) {
+ return std::inner_product(container_algorithm_internal::c_begin(factors1),
+ container_algorithm_internal::c_end(factors1),
+ container_algorithm_internal::c_begin(factors2),
+ std::forward<T>(sum), std::forward<BinaryOp1>(op1),
+ std::forward<BinaryOp2>(op2));
+}
+
+// c_adjacent_difference()
+//
+// Container-based version of the <algorithm> `std::adjacent_difference()`
+// function to compute the difference between each element and the one preceding
+// it and write it to an iterator.
+template <typename InputSequence, typename OutputIt>
+OutputIt c_adjacent_difference(const InputSequence& input,
+ OutputIt output_first) {
+ return std::adjacent_difference(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input),
+ output_first);
+}
+
+// Overload of c_adjacent_difference() for using a binary operation other than
+// subtraction to compute the adjacent difference.
+template <typename InputSequence, typename OutputIt, typename BinaryOp>
+OutputIt c_adjacent_difference(const InputSequence& input,
+ OutputIt output_first, BinaryOp&& op) {
+ return std::adjacent_difference(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input),
+ output_first, std::forward<BinaryOp>(op));
+}
+
+// c_partial_sum()
+//
+// Container-based version of the <algorithm> `std::partial_sum()` function
+// to compute the partial sum of the elements in a sequence and write them
+// to an iterator. The partial sum is the sum of all element values so far in
+// the sequence.
+template <typename InputSequence, typename OutputIt>
+OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) {
+ return std::partial_sum(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input),
+ output_first);
+}
+
+// Overload of c_partial_sum() for using a binary operation other than addition
+// to compute the "partial sum".
+template <typename InputSequence, typename OutputIt, typename BinaryOp>
+OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first,
+ BinaryOp&& op) {
+ return std::partial_sum(container_algorithm_internal::c_begin(input),
+ container_algorithm_internal::c_end(input),
+ output_first, std::forward<BinaryOp>(op));
+}
+
+} // namespace absl
+
+#endif // ABSL_ALGORITHM_CONTAINER_H_
diff --git a/absl/algorithm/container_test.cc b/absl/algorithm/container_test.cc
new file mode 100644
index 0000000..093b281
--- /dev/null
+++ b/absl/algorithm/container_test.cc
@@ -0,0 +1,1010 @@
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/algorithm/container.h"
+
+#include <functional>
+#include <initializer_list>
+#include <iterator>
+#include <list>
+#include <memory>
+#include <ostream>
+#include <random>
+#include <set>
+#include <unordered_set>
+#include <utility>
+#include <valarray>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/casts.h"
+#include "absl/base/macros.h"
+#include "absl/memory/memory.h"
+#include "absl/types/span.h"
+
+namespace {
+
+using ::testing::Each;
+using ::testing::ElementsAre;
+using ::testing::Gt;
+using ::testing::IsNull;
+using ::testing::Lt;
+using ::testing::Pointee;
+using ::testing::Truly;
+using ::testing::UnorderedElementsAre;
+
+// Most of these tests just check that the code compiles, not that it
+// does the right thing. That's fine since the functions just forward
+// to the STL implementation.
+class NonMutatingTest : public testing::Test {
+ protected:
+ std::unordered_set<int> container_ = {1, 2, 3};
+ std::list<int> sequence_ = {1, 2, 3};
+ std::vector<int> vector_ = {1, 2, 3};
+ int array_[3] = {1, 2, 3};
+};
+
+struct AccumulateCalls {
+ void operator()(int value) {
+ calls.push_back(value);
+ }
+ std::vector<int> calls;
+};
+
+bool Predicate(int value) { return value < 3; }
+bool BinPredicate(int v1, int v2) { return v1 < v2; }
+bool Equals(int v1, int v2) { return v1 == v2; }
+bool IsOdd(int x) { return x % 2 != 0; }
+
+
+TEST_F(NonMutatingTest, Distance) {
+ EXPECT_EQ(container_.size(), absl::c_distance(container_));
+ EXPECT_EQ(sequence_.size(), absl::c_distance(sequence_));
+ EXPECT_EQ(vector_.size(), absl::c_distance(vector_));
+ EXPECT_EQ(ABSL_ARRAYSIZE(array_), absl::c_distance(array_));
+
+ // Works with a temporary argument.
+ EXPECT_EQ(vector_.size(), absl::c_distance(std::vector<int>(vector_)));
+}
+
+TEST_F(NonMutatingTest, Distance_OverloadedBeginEnd) {
+ // Works with classes which have custom ADL-selected overloads of std::begin
+ // and std::end.
+ std::initializer_list<int> a = {1, 2, 3};
+ std::valarray<int> b = {1, 2, 3};
+ EXPECT_EQ(3, absl::c_distance(a));
+ EXPECT_EQ(3, absl::c_distance(b));
+
+ // It is assumed that other c_* functions use the same mechanism for
+ // ADL-selecting begin/end overloads.
+}
+
+TEST_F(NonMutatingTest, ForEach) {
+ AccumulateCalls c = absl::c_for_each(container_, AccumulateCalls());
+ // Don't rely on the unordered_set's order.
+ std::sort(c.calls.begin(), c.calls.end());
+ EXPECT_EQ(vector_, c.calls);
+
+ // Works with temporary container, too.
+ AccumulateCalls c2 =
+ absl::c_for_each(std::unordered_set<int>(container_), AccumulateCalls());
+ std::sort(c2.calls.begin(), c2.calls.end());
+ EXPECT_EQ(vector_, c2.calls);
+}
+
+TEST_F(NonMutatingTest, FindReturnsCorrectType) {
+ auto it = absl::c_find(container_, 3);
+ EXPECT_EQ(3, *it);
+ absl::c_find(absl::implicit_cast<const std::list<int>&>(sequence_), 3);
+}
+
+TEST_F(NonMutatingTest, FindIf) { absl::c_find_if(container_, Predicate); }
+
+TEST_F(NonMutatingTest, FindIfNot) {
+ absl::c_find_if_not(container_, Predicate);
+}
+
+TEST_F(NonMutatingTest, FindEnd) {
+ absl::c_find_end(sequence_, vector_);
+ absl::c_find_end(vector_, sequence_);
+}
+
+TEST_F(NonMutatingTest, FindEndWithPredicate) {
+ absl::c_find_end(sequence_, vector_, BinPredicate);
+ absl::c_find_end(vector_, sequence_, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, FindFirstOf) {
+ absl::c_find_first_of(container_, sequence_);
+ absl::c_find_first_of(sequence_, container_);
+}
+
+TEST_F(NonMutatingTest, FindFirstOfWithPredicate) {
+ absl::c_find_first_of(container_, sequence_, BinPredicate);
+ absl::c_find_first_of(sequence_, container_, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, AdjacentFind) { absl::c_adjacent_find(sequence_); }
+
+TEST_F(NonMutatingTest, AdjacentFindWithPredicate) {
+ absl::c_adjacent_find(sequence_, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, Count) { EXPECT_EQ(1, absl::c_count(container_, 3)); }
+
+TEST_F(NonMutatingTest, CountIf) {
+ EXPECT_EQ(2, absl::c_count_if(container_, Predicate));
+ const std::unordered_set<int>& const_container = container_;
+ EXPECT_EQ(2, absl::c_count_if(const_container, Predicate));
+}
+
+TEST_F(NonMutatingTest, Mismatch) {
+ absl::c_mismatch(container_, sequence_);
+ absl::c_mismatch(sequence_, container_);
+}
+
+TEST_F(NonMutatingTest, MismatchWithPredicate) {
+ absl::c_mismatch(container_, sequence_, BinPredicate);
+ absl::c_mismatch(sequence_, container_, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, Equal) {
+ EXPECT_TRUE(absl::c_equal(vector_, sequence_));
+ EXPECT_TRUE(absl::c_equal(sequence_, vector_));
+
+ // Test that behavior appropriately differs from that of equal().
+ std::vector<int> vector_plus = {1, 2, 3};
+ vector_plus.push_back(4);
+ EXPECT_FALSE(absl::c_equal(vector_plus, sequence_));
+ EXPECT_FALSE(absl::c_equal(sequence_, vector_plus));
+}
+
+TEST_F(NonMutatingTest, EqualWithPredicate) {
+ EXPECT_TRUE(absl::c_equal(vector_, sequence_, Equals));
+ EXPECT_TRUE(absl::c_equal(sequence_, vector_, Equals));
+
+ // Test that behavior appropriately differs from that of equal().
+ std::vector<int> vector_plus = {1, 2, 3};
+ vector_plus.push_back(4);
+ EXPECT_FALSE(absl::c_equal(vector_plus, sequence_, Equals));
+ EXPECT_FALSE(absl::c_equal(sequence_, vector_plus, Equals));
+}
+
+TEST_F(NonMutatingTest, IsPermutation) {
+ auto vector_permut_ = vector_;
+ std::next_permutation(vector_permut_.begin(), vector_permut_.end());
+ EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_));
+ EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_));
+
+ // Test that behavior appropriately differs from that of is_permutation().
+ std::vector<int> vector_plus = {1, 2, 3};
+ vector_plus.push_back(4);
+ EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_));
+ EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus));
+}
+
+TEST_F(NonMutatingTest, IsPermutationWithPredicate) {
+ auto vector_permut_ = vector_;
+ std::next_permutation(vector_permut_.begin(), vector_permut_.end());
+ EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_, Equals));
+ EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_, Equals));
+
+ // Test that behavior appropriately differs from that of is_permutation().
+ std::vector<int> vector_plus = {1, 2, 3};
+ vector_plus.push_back(4);
+ EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_, Equals));
+ EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus, Equals));
+}
+
+TEST_F(NonMutatingTest, Search) {
+ absl::c_search(sequence_, vector_);
+ absl::c_search(vector_, sequence_);
+ absl::c_search(array_, sequence_);
+}
+
+TEST_F(NonMutatingTest, SearchWithPredicate) {
+ absl::c_search(sequence_, vector_, BinPredicate);
+ absl::c_search(vector_, sequence_, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, SearchN) { absl::c_search_n(sequence_, 3, 1); }
+
+TEST_F(NonMutatingTest, SearchNWithPredicate) {
+ absl::c_search_n(sequence_, 3, 1, BinPredicate);
+}
+
+TEST_F(NonMutatingTest, LowerBound) {
+ std::list<int>::iterator i = absl::c_lower_bound(sequence_, 3);
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(2, std::distance(sequence_.begin(), i));
+ EXPECT_EQ(3, *i);
+}
+
+TEST_F(NonMutatingTest, LowerBoundWithPredicate) {
+ std::vector<int> v(vector_);
+ std::sort(v.begin(), v.end(), std::greater<int>());
+ std::vector<int>::iterator i = absl::c_lower_bound(v, 3, std::greater<int>());
+ EXPECT_TRUE(i == v.begin());
+ EXPECT_EQ(3, *i);
+}
+
+TEST_F(NonMutatingTest, UpperBound) {
+ std::list<int>::iterator i = absl::c_upper_bound(sequence_, 1);
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(1, std::distance(sequence_.begin(), i));
+ EXPECT_EQ(2, *i);
+}
+
+TEST_F(NonMutatingTest, UpperBoundWithPredicate) {
+ std::vector<int> v(vector_);
+ std::sort(v.begin(), v.end(), std::greater<int>());
+ std::vector<int>::iterator i = absl::c_upper_bound(v, 1, std::greater<int>());
+ EXPECT_EQ(3, i - v.begin());
+ EXPECT_TRUE(i == v.end());
+}
+
+TEST_F(NonMutatingTest, EqualRange) {
+ std::pair<std::list<int>::iterator, std::list<int>::iterator> p =
+ absl::c_equal_range(sequence_, 2);
+ EXPECT_EQ(1, std::distance(sequence_.begin(), p.first));
+ EXPECT_EQ(2, std::distance(sequence_.begin(), p.second));
+}
+
+TEST_F(NonMutatingTest, EqualRangeArray) {
+ auto p = absl::c_equal_range(array_, 2);
+ EXPECT_EQ(1, std::distance(std::begin(array_), p.first));
+ EXPECT_EQ(2, std::distance(std::begin(array_), p.second));
+}
+
+TEST_F(NonMutatingTest, EqualRangeWithPredicate) {
+ std::vector<int> v(vector_);
+ std::sort(v.begin(), v.end(), std::greater<int>());
+ std::pair<std::vector<int>::iterator, std::vector<int>::iterator> p =
+ absl::c_equal_range(v, 2, std::greater<int>());
+ EXPECT_EQ(1, std::distance(v.begin(), p.first));
+ EXPECT_EQ(2, std::distance(v.begin(), p.second));
+}
+
+TEST_F(NonMutatingTest, BinarySearch) {
+ EXPECT_TRUE(absl::c_binary_search(vector_, 2));
+ EXPECT_TRUE(absl::c_binary_search(std::vector<int>(vector_), 2));
+}
+
+TEST_F(NonMutatingTest, BinarySearchWithPredicate) {
+ std::vector<int> v(vector_);
+ std::sort(v.begin(), v.end(), std::greater<int>());
+ EXPECT_TRUE(absl::c_binary_search(v, 2, std::greater<int>()));
+ EXPECT_TRUE(
+ absl::c_binary_search(std::vector<int>(v), 2, std::greater<int>()));
+}
+
+TEST_F(NonMutatingTest, MinElement) {
+ std::list<int>::iterator i = absl::c_min_element(sequence_);
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(*i, 1);
+}
+
+TEST_F(NonMutatingTest, MinElementWithPredicate) {
+ std::list<int>::iterator i =
+ absl::c_min_element(sequence_, std::greater<int>());
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(*i, 3);
+}
+
+TEST_F(NonMutatingTest, MaxElement) {
+ std::list<int>::iterator i = absl::c_max_element(sequence_);
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(*i, 3);
+}
+
+TEST_F(NonMutatingTest, MaxElementWithPredicate) {
+ std::list<int>::iterator i =
+ absl::c_max_element(sequence_, std::greater<int>());
+ ASSERT_TRUE(i != sequence_.end());
+ EXPECT_EQ(*i, 1);
+}
+
+TEST_F(NonMutatingTest, LexicographicalCompare) {
+ EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_));
+
+ std::vector<int> v;
+ v.push_back(1);
+ v.push_back(2);
+ v.push_back(4);
+
+ EXPECT_TRUE(absl::c_lexicographical_compare(sequence_, v));
+ EXPECT_TRUE(absl::c_lexicographical_compare(std::list<int>(sequence_), v));
+}
+
+TEST_F(NonMutatingTest, LexicographicalCopmareWithPredicate) {
+ EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_,
+ std::greater<int>()));
+
+ std::vector<int> v;
+ v.push_back(1);
+ v.push_back(2);
+ v.push_back(4);
+
+ EXPECT_TRUE(
+ absl::c_lexicographical_compare(v, sequence_, std::greater<int>()));
+ EXPECT_TRUE(absl::c_lexicographical_compare(
+ std::vector<int>(v), std::list<int>(sequence_), std::greater<int>()));
+}
+
+TEST_F(NonMutatingTest, Includes) {
+ std::set<int> s(vector_.begin(), vector_.end());
+ s.insert(4);
+ EXPECT_TRUE(absl::c_includes(s, vector_));
+}
+
+TEST_F(NonMutatingTest, IncludesWithPredicate) {
+ std::vector<int> v = {3, 2, 1};
+ std::set<int, std::greater<int>> s(v.begin(), v.end());
+ s.insert(4);
+ EXPECT_TRUE(absl::c_includes(s, v, std::greater<int>()));
+}
+
+class NumericMutatingTest : public testing::Test {
+ protected:
+ std::list<int> list_ = {1, 2, 3};
+ std::vector<int> output_;
+};
+
+TEST_F(NumericMutatingTest, Iota) {
+ absl::c_iota(list_, 5);
+ std::list<int> expected{5, 6, 7};
+ EXPECT_EQ(list_, expected);
+}
+
+TEST_F(NonMutatingTest, Accumulate) {
+ EXPECT_EQ(absl::c_accumulate(sequence_, 4), 1 + 2 + 3 + 4);
+}
+
+TEST_F(NonMutatingTest, AccumulateWithBinaryOp) {
+ EXPECT_EQ(absl::c_accumulate(sequence_, 4, std::multiplies<int>()),
+ 1 * 2 * 3 * 4);
+}
+
+TEST_F(NonMutatingTest, AccumulateLvalueInit) {
+ int lvalue = 4;
+ EXPECT_EQ(absl::c_accumulate(sequence_, lvalue), 1 + 2 + 3 + 4);
+}
+
+TEST_F(NonMutatingTest, AccumulateWithBinaryOpLvalueInit) {
+ int lvalue = 4;
+ EXPECT_EQ(absl::c_accumulate(sequence_, lvalue, std::multiplies<int>()),
+ 1 * 2 * 3 * 4);
+}
+
+TEST_F(NonMutatingTest, InnerProduct) {
+ EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 1000),
+ 1000 + 1 * 1 + 2 * 2 + 3 * 3);
+}
+
+TEST_F(NonMutatingTest, InnerProductWithBinaryOps) {
+ EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 10,
+ std::multiplies<int>(), std::plus<int>()),
+ 10 * (1 + 1) * (2 + 2) * (3 + 3));
+}
+
+TEST_F(NonMutatingTest, InnerProductLvalueInit) {
+ int lvalue = 1000;
+ EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue),
+ 1000 + 1 * 1 + 2 * 2 + 3 * 3);
+}
+
+TEST_F(NonMutatingTest, InnerProductWithBinaryOpsLvalueInit) {
+ int lvalue = 10;
+ EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue,
+ std::multiplies<int>(), std::plus<int>()),
+ 10 * (1 + 1) * (2 + 2) * (3 + 3));
+}
+
+TEST_F(NumericMutatingTest, AdjacentDifference) {
+ auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_));
+ *last = 1000;
+ std::vector<int> expected{1, 2 - 1, 3 - 2, 1000};
+ EXPECT_EQ(output_, expected);
+}
+
+TEST_F(NumericMutatingTest, AdjacentDifferenceWithBinaryOp) {
+ auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_),
+ std::multiplies<int>());
+ *last = 1000;
+ std::vector<int> expected{1, 2 * 1, 3 * 2, 1000};
+ EXPECT_EQ(output_, expected);
+}
+
+TEST_F(NumericMutatingTest, PartialSum) {
+ auto last = absl::c_partial_sum(list_, std::back_inserter(output_));
+ *last = 1000;
+ std::vector<int> expected{1, 1 + 2, 1 + 2 + 3, 1000};
+ EXPECT_EQ(output_, expected);
+}
+
+TEST_F(NumericMutatingTest, PartialSumWithBinaryOp) {
+ auto last = absl::c_partial_sum(list_, std::back_inserter(output_),
+ std::multiplies<int>());
+ *last = 1000;
+ std::vector<int> expected{1, 1 * 2, 1 * 2 * 3, 1000};
+ EXPECT_EQ(output_, expected);
+}
+
+TEST_F(NonMutatingTest, LinearSearch) {
+ EXPECT_TRUE(absl::c_linear_search(container_, 3));
+ EXPECT_FALSE(absl::c_linear_search(container_, 4));
+}
+
+TEST_F(NonMutatingTest, AllOf) {
+ const std::vector<int>& v = vector_;
+ EXPECT_FALSE(absl::c_all_of(v, [](int x) { return x > 1; }));
+ EXPECT_TRUE(absl::c_all_of(v, [](int x) { return x > 0; }));
+}
+
+TEST_F(NonMutatingTest, AnyOf) {
+ const std::vector<int>& v = vector_;
+ EXPECT_TRUE(absl::c_any_of(v, [](int x) { return x > 2; }));
+ EXPECT_FALSE(absl::c_any_of(v, [](int x) { return x > 5; }));
+}
+
+TEST_F(NonMutatingTest, NoneOf) {
+ const std::vector<int>& v = vector_;
+ EXPECT_FALSE(absl::c_none_of(v, [](int x) { return x > 2; }));
+ EXPECT_TRUE(absl::c_none_of(v, [](int x) { return x > 5; }));
+}
+
+TEST_F(NonMutatingTest, MinMaxElementLess) {
+ std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
+ p = absl::c_minmax_element(vector_, std::less<int>());
+ EXPECT_TRUE(p.first == vector_.begin());
+ EXPECT_TRUE(p.second == vector_.begin() + 2);
+}
+
+TEST_F(NonMutatingTest, MinMaxElementGreater) {
+ std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
+ p = absl::c_minmax_element(vector_, std::greater<int>());
+ EXPECT_TRUE(p.first == vector_.begin() + 2);
+ EXPECT_TRUE(p.second == vector_.begin());
+}
+
+TEST_F(NonMutatingTest, MinMaxElementNoPredicate) {
+ std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
+ p = absl::c_minmax_element(vector_);
+ EXPECT_TRUE(p.first == vector_.begin());
+ EXPECT_TRUE(p.second == vector_.begin() + 2);
+}
+
+class SortingTest : public testing::Test {
+ protected:
+ std::list<int> sorted_ = {1, 2, 3, 4};
+ std::list<int> unsorted_ = {2, 4, 1, 3};
+ std::list<int> reversed_ = {4, 3, 2, 1};
+};
+
+TEST_F(SortingTest, IsSorted) {
+ EXPECT_TRUE(absl::c_is_sorted(sorted_));
+ EXPECT_FALSE(absl::c_is_sorted(unsorted_));
+ EXPECT_FALSE(absl::c_is_sorted(reversed_));
+}
+
+TEST_F(SortingTest, IsSortedWithPredicate) {
+ EXPECT_FALSE(absl::c_is_sorted(sorted_, std::greater<int>()));
+ EXPECT_FALSE(absl::c_is_sorted(unsorted_, std::greater<int>()));
+ EXPECT_TRUE(absl::c_is_sorted(reversed_, std::greater<int>()));
+}
+
+TEST_F(SortingTest, IsSortedUntil) {
+ EXPECT_EQ(1, *absl::c_is_sorted_until(unsorted_));
+ EXPECT_EQ(4, *absl::c_is_sorted_until(unsorted_, std::greater<int>()));
+}
+
+TEST_F(SortingTest, NthElement) {
+ std::vector<int> unsorted = {2, 4, 1, 3};
+ absl::c_nth_element(unsorted, unsorted.begin() + 2);
+ EXPECT_THAT(unsorted,
+ ElementsAre(Lt(3), Lt(3), 3, Gt(3)));
+ absl::c_nth_element(unsorted, unsorted.begin() + 2, std::greater<int>());
+ EXPECT_THAT(unsorted,
+ ElementsAre(Gt(2), Gt(2), 2, Lt(2)));
+}
+
+TEST(MutatingTest, IsPartitioned) {
+ EXPECT_TRUE(
+ absl::c_is_partitioned(std::vector<int>{1, 3, 5, 2, 4, 6}, IsOdd));
+ EXPECT_FALSE(
+ absl::c_is_partitioned(std::vector<int>{1, 2, 3, 4, 5, 6}, IsOdd));
+ EXPECT_FALSE(
+ absl::c_is_partitioned(std::vector<int>{2, 4, 6, 1, 3, 5}, IsOdd));
+}
+
+TEST(MutatingTest, Partition) {
+ std::vector<int> actual = {1, 2, 3, 4, 5};
+ absl::c_partition(actual, IsOdd);
+ EXPECT_THAT(actual, Truly([](const std::vector<int>& c) {
+ return absl::c_is_partitioned(c, IsOdd);
+ }));
+}
+
+TEST(MutatingTest, StablePartition) {
+ std::vector<int> actual = {1, 2, 3, 4, 5};
+ absl::c_stable_partition(actual, IsOdd);
+ EXPECT_THAT(actual, ElementsAre(1, 3, 5, 2, 4));
+}
+
+TEST(MutatingTest, PartitionCopy) {
+ const std::vector<int> initial = {1, 2, 3, 4, 5};
+ std::vector<int> odds, evens;
+ auto ends = absl::c_partition_copy(initial, back_inserter(odds),
+ back_inserter(evens), IsOdd);
+ *ends.first = 7;
+ *ends.second = 6;
+ EXPECT_THAT(odds, ElementsAre(1, 3, 5, 7));
+ EXPECT_THAT(evens, ElementsAre(2, 4, 6));
+}
+
+TEST(MutatingTest, PartitionPoint) {
+ const std::vector<int> initial = {1, 3, 5, 2, 4};
+ auto middle = absl::c_partition_point(initial, IsOdd);
+ EXPECT_EQ(2, *middle);
+}
+
+TEST(MutatingTest, CopyMiddle) {
+ const std::vector<int> initial = {4, -1, -2, -3, 5};
+ const std::list<int> input = {1, 2, 3};
+ const std::vector<int> expected = {4, 1, 2, 3, 5};
+
+ std::list<int> test_list(initial.begin(), initial.end());
+ absl::c_copy(input, ++test_list.begin());
+ EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
+
+ std::vector<int> test_vector = initial;
+ absl::c_copy(input, test_vector.begin() + 1);
+ EXPECT_EQ(expected, test_vector);
+}
+
+TEST(MutatingTest, CopyFrontInserter) {
+ const std::list<int> initial = {4, 5};
+ const std::list<int> input = {1, 2, 3};
+ const std::list<int> expected = {3, 2, 1, 4, 5};
+
+ std::list<int> test_list = initial;
+ absl::c_copy(input, std::front_inserter(test_list));
+ EXPECT_EQ(expected, test_list);
+}
+
+TEST(MutatingTest, CopyBackInserter) {
+ const std::vector<int> initial = {4, 5};
+ const std::list<int> input = {1, 2, 3};
+ const std::vector<int> expected = {4, 5, 1, 2, 3};
+
+ std::list<int> test_list(initial.begin(), initial.end());
+ absl::c_copy(input, std::back_inserter(test_list));
+ EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
+
+ std::vector<int> test_vector = initial;
+ absl::c_copy(input, std::back_inserter(test_vector));
+ EXPECT_EQ(expected, test_vector);
+}
+
+TEST(MutatingTest, CopyN) {
+ const std::vector<int> initial = {1, 2, 3, 4, 5};
+ const std::vector<int> expected = {1, 2};
+ std::vector<int> actual;
+ absl::c_copy_n(initial, 2, back_inserter(actual));
+ EXPECT_EQ(expected, actual);
+}
+
+TEST(MutatingTest, CopyIf) {
+ const std::list<int> input = {1, 2, 3};
+ std::vector<int> output;
+ absl::c_copy_if(input, std::back_inserter(output),
+ [](int i) { return i != 2; });
+ EXPECT_THAT(output, ElementsAre(1, 3));
+}
+
+TEST(MutatingTest, CopyBackward) {
+ std::vector<int> actual = {1, 2, 3, 4, 5};
+ std::vector<int> expected = {1, 2, 1, 2, 3};
+ absl::c_copy_backward(absl::MakeSpan(actual.data(), 3), actual.end());
+ EXPECT_EQ(expected, actual);
+}
+
+TEST(MutatingTest, Move) {
+ std::vector<std::unique_ptr<int>> src;
+ src.emplace_back(absl::make_unique<int>(1));
+ src.emplace_back(absl::make_unique<int>(2));
+ src.emplace_back(absl::make_unique<int>(3));
+ src.emplace_back(absl::make_unique<int>(4));
+ src.emplace_back(absl::make_unique<int>(5));
+
+ std::vector<std::unique_ptr<int>> dest = {};
+ absl::c_move(src, std::back_inserter(dest));
+ EXPECT_THAT(src, Each(IsNull()));
+ EXPECT_THAT(dest, ElementsAre(Pointee(1), Pointee(2), Pointee(3), Pointee(4),
+ Pointee(5)));
+}
+
+TEST(MutatingTest, MoveBackward) {
+ std::vector<std::unique_ptr<int>> actual;
+ actual.emplace_back(absl::make_unique<int>(1));
+ actual.emplace_back(absl::make_unique<int>(2));
+ actual.emplace_back(absl::make_unique<int>(3));
+ actual.emplace_back(absl::make_unique<int>(4));
+ actual.emplace_back(absl::make_unique<int>(5));
+ auto subrange = absl::MakeSpan(actual.data(), 3);
+ absl::c_move_backward(subrange, actual.end());
+ EXPECT_THAT(actual, ElementsAre(IsNull(), IsNull(), Pointee(1), Pointee(2),
+ Pointee(3)));
+}
+
+TEST(MutatingTest, SwapRanges) {
+ std::vector<int> odds = {2, 4, 6};
+ std::vector<int> evens = {1, 3, 5};
+ absl::c_swap_ranges(odds, evens);
+ EXPECT_THAT(odds, ElementsAre(1, 3, 5));
+ EXPECT_THAT(evens, ElementsAre(2, 4, 6));
+}
+
+TEST_F(NonMutatingTest, Transform) {
+ std::vector<int> x{0, 2, 4}, y, z;
+ auto end = absl::c_transform(x, back_inserter(y), std::negate<int>());
+ EXPECT_EQ(std::vector<int>({0, -2, -4}), y);
+ *end = 7;
+ EXPECT_EQ(std::vector<int>({0, -2, -4, 7}), y);
+
+ y = {1, 3, 0};
+ end = absl::c_transform(x, y, back_inserter(z), std::plus<int>());
+ EXPECT_EQ(std::vector<int>({1, 5, 4}), z);
+ *end = 7;
+ EXPECT_EQ(std::vector<int>({1, 5, 4, 7}), z);
+}
+
+TEST(MutatingTest, Replace) {
+ const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
+ const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
+
+ std::vector<int> test_vector = initial;
+ absl::c_replace(test_vector, 1, 4);
+ EXPECT_EQ(expected, test_vector);
+
+ std::list<int> test_list(initial.begin(), initial.end());
+ absl::c_replace(test_list, 1, 4);
+ EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
+}
+
+TEST(MutatingTest, ReplaceIf) {
+ std::vector<int> actual = {1, 2, 3, 4, 5};
+ const std::vector<int> expected = {0, 2, 0, 4, 0};
+
+ absl::c_replace_if(actual, IsOdd, 0);
+ EXPECT_EQ(expected, actual);
+}
+
+TEST(MutatingTest, ReplaceCopy) {
+ const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
+ const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
+
+ std::vector<int> actual;
+ absl::c_replace_copy(initial, back_inserter(actual), 1, 4);
+ EXPECT_EQ(expected, actual);
+}
+
+TEST(MutatingTest, Sort) {
+ std::vector<int> test_vector = {2, 3, 1, 4};
+ absl::c_sort(test_vector);
+ EXPECT_THAT(test_vector, ElementsAre(1, 2, 3, 4));
+}
+
+TEST(MutatingTest, SortWithPredicate) {
+ std::vector<int> test_vector = {2, 3, 1, 4};
+ absl::c_sort(test_vector, std::greater<int>());
+ EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
+}
+
+// For absl::c_stable_sort tests. Needs an operator< that does not cover all
+// fields so that the test can check the sort preserves order of equal elements.
+struct Element {
+ int key;
+ int value;
+ friend bool operator<(const Element& e1, const Element& e2) {
+ return e1.key < e2.key;
+ }
+ // Make gmock print useful diagnostics.
+ friend std::ostream& operator<<(std::ostream& o, const Element& e) {
+ return o << "{" << e.key << ", " << e.value << "}";
+ }
+};
+
+MATCHER_P2(IsElement, key, value, "") {
+ return arg.key == key && arg.value == value;
+}
+
+TEST(MutatingTest, StableSort) {
+ std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
+ absl::c_stable_sort(test_vector);
+ EXPECT_THAT(
+ test_vector,
+ ElementsAre(IsElement(1, 1), IsElement(1, 0), IsElement(2, 1),
+ IsElement(2, 0), IsElement(2, 2)));
+}
+
+TEST(MutatingTest, StableSortWithPredicate) {
+ std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
+ absl::c_stable_sort(test_vector, [](const Element& e1, const Element& e2) {
+ return e2 < e1;
+ });
+ EXPECT_THAT(
+ test_vector,
+ ElementsAre(IsElement(2, 1), IsElement(2, 0), IsElement(2, 2),
+ IsElement(1, 1), IsElement(1, 0)));
+}
+
+TEST(MutatingTest, ReplaceCopyIf) {
+ const std::vector<int> initial = {1, 2, 3, 4, 5};
+ const std::vector<int> expected = {0, 2, 0, 4, 0};
+
+ std::vector<int> actual;
+ absl::c_replace_copy_if(initial, back_inserter(actual), IsOdd, 0);
+ EXPECT_EQ(expected, actual);
+}
+
+TEST(MutatingTest, Fill) {
+ std::vector<int> actual(5);
+ absl::c_fill(actual, 1);
+ EXPECT_THAT(actual, ElementsAre(1, 1, 1, 1, 1));
+}
+
+TEST(MutatingTest, FillN) {
+ std::vector<int> actual(5, 0);
+ absl::c_fill_n(actual, 2, 1);
+ EXPECT_THAT(actual, ElementsAre(1, 1, 0, 0, 0));
+}
+
+TEST(MutatingTest, Generate) {
+ std::vector<int> actual(5);
+ int x = 0;
+ absl::c_generate(actual, [&x]() { return ++x; });
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(MutatingTest, GenerateN) {
+ std::vector<int> actual(5, 0);
+ int x = 0;
+ absl::c_generate_n(actual, 3, [&x]() { return ++x; });
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 0, 0));
+}
+
+TEST(MutatingTest, RemoveCopy) {
+ std::vector<int> actual;
+ absl::c_remove_copy(std::vector<int>{1, 2, 3}, back_inserter(actual), 2);
+ EXPECT_THAT(actual, ElementsAre(1, 3));
+}
+
+TEST(MutatingTest, RemoveCopyIf) {
+ std::vector<int> actual;
+ absl::c_remove_copy_if(std::vector<int>{1, 2, 3}, back_inserter(actual),
+ IsOdd);
+ EXPECT_THAT(actual, ElementsAre(2));
+}
+
+TEST(MutatingTest, UniqueCopy) {
+ std::vector<int> actual;
+ absl::c_unique_copy(std::vector<int>{1, 2, 2, 2, 3, 3, 2},
+ back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 2));
+}
+
+TEST(MutatingTest, UniqueCopyWithPredicate) {
+ std::vector<int> actual;
+ absl::c_unique_copy(std::vector<int>{1, 2, 3, -1, -2, -3, 1},
+ back_inserter(actual),
+ [](int x, int y) { return (x < 0) == (y < 0); });
+ EXPECT_THAT(actual, ElementsAre(1, -1, 1));
+}
+
+TEST(MutatingTest, Reverse) {
+ std::vector<int> test_vector = {1, 2, 3, 4};
+ absl::c_reverse(test_vector);
+ EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
+
+ std::list<int> test_list = {1, 2, 3, 4};
+ absl::c_reverse(test_list);
+ EXPECT_THAT(test_list, ElementsAre(4, 3, 2, 1));
+}
+
+TEST(MutatingTest, ReverseCopy) {
+ std::vector<int> actual;
+ absl::c_reverse_copy(std::vector<int>{1, 2, 3, 4}, back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(4, 3, 2, 1));
+}
+
+TEST(MutatingTest, Rotate) {
+ std::vector<int> actual = {1, 2, 3, 4};
+ auto it = absl::c_rotate(actual, actual.begin() + 2);
+ EXPECT_THAT(actual, testing::ElementsAreArray({3, 4, 1, 2}));
+ EXPECT_EQ(*it, 1);
+}
+
+TEST(MutatingTest, RotateCopy) {
+ std::vector<int> initial = {1, 2, 3, 4};
+ std::vector<int> actual;
+ auto end =
+ absl::c_rotate_copy(initial, initial.begin() + 2, back_inserter(actual));
+ *end = 5;
+ EXPECT_THAT(actual, ElementsAre(3, 4, 1, 2, 5));
+}
+
+TEST(MutatingTest, Shuffle) {
+ std::vector<int> actual = {1, 2, 3, 4, 5};
+ absl::c_shuffle(actual, std::random_device());
+ EXPECT_THAT(actual, UnorderedElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(MutatingTest, PartialSort) {
+ std::vector<int> sequence{5, 3, 42, 0};
+ absl::c_partial_sort(sequence, sequence.begin() + 2);
+ EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(0, 3));
+ absl::c_partial_sort(sequence, sequence.begin() + 2, std::greater<int>());
+ EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(42, 5));
+}
+
+TEST(MutatingTest, PartialSortCopy) {
+ const std::vector<int> initial = {5, 3, 42, 0};
+ std::vector<int> actual(2);
+ absl::c_partial_sort_copy(initial, actual);
+ EXPECT_THAT(actual, ElementsAre(0, 3));
+ absl::c_partial_sort_copy(initial, actual, std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(42, 5));
+}
+
+TEST(MutatingTest, Merge) {
+ std::vector<int> actual;
+ absl::c_merge(std::vector<int>{1, 3, 5}, std::vector<int>{2, 4},
+ back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(MutatingTest, MergeWithComparator) {
+ std::vector<int> actual;
+ absl::c_merge(std::vector<int>{5, 3, 1}, std::vector<int>{4, 2},
+ back_inserter(actual), std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
+}
+
+TEST(MutatingTest, InplaceMerge) {
+ std::vector<int> actual = {1, 3, 5, 2, 4};
+ absl::c_inplace_merge(actual, actual.begin() + 3);
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(MutatingTest, InplaceMergeWithComparator) {
+ std::vector<int> actual = {5, 3, 1, 4, 2};
+ absl::c_inplace_merge(actual, actual.begin() + 3, std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
+}
+
+class SetOperationsTest : public testing::Test {
+ protected:
+ std::vector<int> a_ = {1, 2, 3};
+ std::vector<int> b_ = {1, 3, 5};
+
+ std::vector<int> a_reversed_ = {3, 2, 1};
+ std::vector<int> b_reversed_ = {5, 3, 1};
+};
+
+TEST_F(SetOperationsTest, SetUnion) {
+ std::vector<int> actual;
+ absl::c_set_union(a_, b_, back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(1, 2, 3, 5));
+}
+
+TEST_F(SetOperationsTest, SetUnionWithComparator) {
+ std::vector<int> actual;
+ absl::c_set_union(a_reversed_, b_reversed_, back_inserter(actual),
+ std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(5, 3, 2, 1));
+}
+
+TEST_F(SetOperationsTest, SetIntersection) {
+ std::vector<int> actual;
+ absl::c_set_intersection(a_, b_, back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(1, 3));
+}
+
+TEST_F(SetOperationsTest, SetIntersectionWithComparator) {
+ std::vector<int> actual;
+ absl::c_set_intersection(a_reversed_, b_reversed_, back_inserter(actual),
+ std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(3, 1));
+}
+
+TEST_F(SetOperationsTest, SetDifference) {
+ std::vector<int> actual;
+ absl::c_set_difference(a_, b_, back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(2));
+}
+
+TEST_F(SetOperationsTest, SetDifferenceWithComparator) {
+ std::vector<int> actual;
+ absl::c_set_difference(a_reversed_, b_reversed_, back_inserter(actual),
+ std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(2));
+}
+
+TEST_F(SetOperationsTest, SetSymmetricDifference) {
+ std::vector<int> actual;
+ absl::c_set_symmetric_difference(a_, b_, back_inserter(actual));
+ EXPECT_THAT(actual, ElementsAre(2, 5));
+}
+
+TEST_F(SetOperationsTest, SetSymmetricDifferenceWithComparator) {
+ std::vector<int> actual;
+ absl::c_set_symmetric_difference(a_reversed_, b_reversed_,
+ back_inserter(actual), std::greater<int>());
+ EXPECT_THAT(actual, ElementsAre(5, 2));
+}
+
+TEST(HeapOperationsTest, WithoutComparator) {
+ std::vector<int> heap = {1, 2, 3};
+ EXPECT_FALSE(absl::c_is_heap(heap));
+ absl::c_make_heap(heap);
+ EXPECT_TRUE(absl::c_is_heap(heap));
+ heap.push_back(4);
+ EXPECT_EQ(3, absl::c_is_heap_until(heap) - heap.begin());
+ absl::c_push_heap(heap);
+ EXPECT_EQ(4, heap[0]);
+ absl::c_pop_heap(heap);
+ EXPECT_EQ(4, heap[3]);
+ absl::c_make_heap(heap);
+ absl::c_sort_heap(heap);
+ EXPECT_THAT(heap, ElementsAre(1, 2, 3, 4));
+ EXPECT_FALSE(absl::c_is_heap(heap));
+}
+
+TEST(HeapOperationsTest, WithComparator) {
+ using greater = std::greater<int>;
+ std::vector<int> heap = {3, 2, 1};
+ EXPECT_FALSE(absl::c_is_heap(heap, greater()));
+ absl::c_make_heap(heap, greater());
+ EXPECT_TRUE(absl::c_is_heap(heap, greater()));
+ heap.push_back(0);
+ EXPECT_EQ(3, absl::c_is_heap_until(heap, greater()) - heap.begin());
+ absl::c_push_heap(heap, greater());
+ EXPECT_EQ(0, heap[0]);
+ absl::c_pop_heap(heap, greater());
+ EXPECT_EQ(0, heap[3]);
+ absl::c_make_heap(heap, greater());
+ absl::c_sort_heap(heap, greater());
+ EXPECT_THAT(heap, ElementsAre(3, 2, 1, 0));
+ EXPECT_FALSE(absl::c_is_heap(heap, greater()));
+}
+
+TEST(MutatingTest, PermutationOperations) {
+ std::vector<int> initial = {1, 2, 3, 4};
+ std::vector<int> permuted = initial;
+
+ absl::c_next_permutation(permuted);
+ EXPECT_TRUE(absl::c_is_permutation(initial, permuted));
+ EXPECT_TRUE(absl::c_is_permutation(initial, permuted, std::equal_to<int>()));
+
+ std::vector<int> permuted2 = initial;
+ absl::c_prev_permutation(permuted2, std::greater<int>());
+ EXPECT_EQ(permuted, permuted2);
+
+ absl::c_prev_permutation(permuted);
+ EXPECT_EQ(initial, permuted);
+}
+
+} // namespace