aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Abseil Team <absl-team@google.com>2018-09-27 12:24:54 -0700
committerGravatar Derek Mauro <dmauro@google.com>2018-09-27 15:28:12 -0400
commit48cd2c3f351ff188bc85684b84a91b6e6d17d896 (patch)
tree6f92b0cbb0f8282b7df1cd567cb66406fbbb6f80
parente291c279e458761e77a69b09b129d3d1e81f1e80 (diff)
Export of internal Abseil changes.
-- 4eacae3ff1b14b1d309e8092185bc10e8a6203cf by Derek Mauro <dmauro@google.com>: Release SwissTable - a fast, efficient, cache-friendly hash table. https://www.youtube.com/watch?v=ncHmEUmJZf4 PiperOrigin-RevId: 214816527 -- df8c3dfab3cfb2f4365909a84d0683b193cfbb11 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214785288 -- 1eabd5266bbcebc33eecc91e5309b751856a75c8 by Abseil Team <absl-team@google.com>: Internal change PiperOrigin-RevId: 214722931 -- 2ebbfac950f83146b46253038e7dd7dcde9f2951 by Derek Mauro <dmauro@google.com>: Internal change PiperOrigin-RevId: 214701684 GitOrigin-RevId: 4eacae3ff1b14b1d309e8092185bc10e8a6203cf Change-Id: I9ba64e395b22ad7863213d157b8019b082adc19d
-rw-r--r--absl/CMakeLists.txt1
-rw-r--r--absl/container/BUILD.bazel456
-rw-r--r--absl/container/CMakeLists.txt22
-rw-r--r--absl/container/flat_hash_map.h528
-rw-r--r--absl/container/flat_hash_map_test.cc241
-rw-r--r--absl/container/flat_hash_set.h439
-rw-r--r--absl/container/flat_hash_set_test.cc126
-rw-r--r--absl/container/internal/container_memory.h405
-rw-r--r--absl/container/internal/container_memory_test.cc188
-rw-r--r--absl/container/internal/hash_function_defaults.h148
-rw-r--r--absl/container/internal/hash_function_defaults_test.cc299
-rw-r--r--absl/container/internal/hash_generator_testing.cc72
-rw-r--r--absl/container/internal/hash_generator_testing.h150
-rw-r--r--absl/container/internal/hash_policy_testing.h178
-rw-r--r--absl/container/internal/hash_policy_testing_test.cc43
-rw-r--r--absl/container/internal/hash_policy_traits.h189
-rw-r--r--absl/container/internal/hash_policy_traits_test.cc142
-rw-r--r--absl/container/internal/hashtable_debug.h108
-rw-r--r--absl/container/internal/hashtable_debug_hooks.h81
-rw-r--r--absl/container/internal/layout.h732
-rw-r--r--absl/container/internal/layout_test.cc1552
-rw-r--r--absl/container/internal/node_hash_policy.h88
-rw-r--r--absl/container/internal/node_hash_policy_test.cc67
-rw-r--r--absl/container/internal/raw_hash_map.h182
-rw-r--r--absl/container/internal/raw_hash_set.cc45
-rw-r--r--absl/container/internal/raw_hash_set.h1906
-rw-r--r--absl/container/internal/raw_hash_set_allocator_test.cc428
-rw-r--r--absl/container/internal/raw_hash_set_test.cc1961
-rw-r--r--absl/container/internal/tracked.h78
-rw-r--r--absl/container/internal/unordered_map_constructor_test.h404
-rw-r--r--absl/container/internal/unordered_map_lookup_test.h114
-rw-r--r--absl/container/internal/unordered_map_modifiers_test.h272
-rw-r--r--absl/container/internal/unordered_map_test.cc38
-rw-r--r--absl/container/internal/unordered_set_constructor_test.h408
-rw-r--r--absl/container/internal/unordered_set_lookup_test.h88
-rw-r--r--absl/container/internal/unordered_set_modifiers_test.h187
-rw-r--r--absl/container/internal/unordered_set_test.cc37
-rw-r--r--absl/container/node_hash_map.h530
-rw-r--r--absl/container/node_hash_map_test.cc218
-rw-r--r--absl/container/node_hash_set.h439
-rw-r--r--absl/container/node_hash_set_test.cc103
-rw-r--r--absl/copts.bzl1
-rw-r--r--absl/hash/BUILD.bazel114
-rw-r--r--absl/hash/CMakeLists.txt80
-rw-r--r--absl/hash/hash.h312
-rw-r--r--absl/hash/hash_test.cc425
-rw-r--r--absl/hash/hash_testing.h372
-rw-r--r--absl/hash/internal/city.cc589
-rw-r--r--absl/hash/internal/city.h108
-rw-r--r--absl/hash/internal/city_crc.h41
-rw-r--r--absl/hash/internal/city_test.cc1812
-rw-r--r--absl/hash/internal/hash.cc23
-rw-r--r--absl/hash/internal/hash.h885
-rw-r--r--absl/hash/internal/print_hash_of.cc23
-rw-r--r--absl/hash/internal/spy_hash_state.h218
55 files changed, 18696 insertions, 0 deletions
diff --git a/absl/CMakeLists.txt b/absl/CMakeLists.txt
index 689f64e..1d09b19 100644
--- a/absl/CMakeLists.txt
+++ b/absl/CMakeLists.txt
@@ -20,6 +20,7 @@ add_subdirectory(base)
add_subdirectory(algorithm)
add_subdirectory(container)
add_subdirectory(debugging)
+add_subdirectory(hash)
add_subdirectory(memory)
add_subdirectory(meta)
add_subdirectory(numeric)
diff --git a/absl/container/BUILD.bazel b/absl/container/BUILD.bazel
index 7b5f52b..265c5ec 100644
--- a/absl/container/BUILD.bazel
+++ b/absl/container/BUILD.bazel
@@ -185,3 +185,459 @@ cc_test(
"@com_google_googletest//:gtest_main",
],
)
+
+NOTEST_TAGS_NONMOBILE = [
+ "no_test_darwin_x86_64",
+ "no_test_loonix",
+]
+
+NOTEST_TAGS_MOBILE = [
+ "no_test_android_arm",
+ "no_test_android_arm64",
+ "no_test_android_x86",
+ "no_test_ios_x86_64",
+]
+
+NOTEST_TAGS = NOTEST_TAGS_MOBILE + NOTEST_TAGS_NONMOBILE
+
+cc_library(
+ name = "flat_hash_map",
+ hdrs = ["flat_hash_map.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":container_memory",
+ ":hash_function_defaults",
+ ":raw_hash_map",
+ "//absl/memory",
+ ],
+)
+
+cc_test(
+ name = "flat_hash_map_test",
+ srcs = ["flat_hash_map_test.cc"],
+ copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":flat_hash_map",
+ ":hash_generator_testing",
+ ":unordered_map_constructor_test",
+ ":unordered_map_lookup_test",
+ ":unordered_map_modifiers_test",
+ "//absl/types:any",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "flat_hash_set",
+ hdrs = ["flat_hash_set.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":container_memory",
+ ":hash_function_defaults",
+ ":raw_hash_set",
+ "//absl/base:core_headers",
+ "//absl/memory",
+ ],
+)
+
+cc_test(
+ name = "flat_hash_set_test",
+ srcs = ["flat_hash_set_test.cc"],
+ copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":flat_hash_set",
+ ":hash_generator_testing",
+ ":unordered_set_constructor_test",
+ ":unordered_set_lookup_test",
+ ":unordered_set_modifiers_test",
+ "//absl/memory",
+ "//absl/strings",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "node_hash_map",
+ hdrs = ["node_hash_map.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":container_memory",
+ ":hash_function_defaults",
+ ":node_hash_policy",
+ ":raw_hash_map",
+ "//absl/memory",
+ ],
+)
+
+cc_test(
+ name = "node_hash_map_test",
+ srcs = ["node_hash_map_test.cc"],
+ copts = ABSL_TEST_COPTS + ["-DUNORDERED_MAP_CXX17"],
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":hash_generator_testing",
+ ":node_hash_map",
+ ":tracked",
+ ":unordered_map_constructor_test",
+ ":unordered_map_lookup_test",
+ ":unordered_map_modifiers_test",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "node_hash_set",
+ hdrs = ["node_hash_set.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":container_memory",
+ ":hash_function_defaults",
+ ":node_hash_policy",
+ ":raw_hash_set",
+ "//absl/memory",
+ ],
+)
+
+cc_test(
+ name = "node_hash_set_test",
+ srcs = ["node_hash_set_test.cc"],
+ copts = ABSL_TEST_COPTS + ["-DUNORDERED_SET_CXX17"],
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":hash_generator_testing",
+ ":node_hash_set",
+ ":unordered_set_constructor_test",
+ ":unordered_set_lookup_test",
+ ":unordered_set_modifiers_test",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "container_memory",
+ hdrs = ["internal/container_memory.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ "//absl/memory",
+ "//absl/utility",
+ ],
+)
+
+cc_test(
+ name = "container_memory_test",
+ srcs = ["internal/container_memory_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":container_memory",
+ "//absl/strings",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "hash_function_defaults",
+ hdrs = ["internal/hash_function_defaults.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ "//absl/base:config",
+ "//absl/hash",
+ "//absl/strings",
+ ],
+)
+
+cc_test(
+ name = "hash_function_defaults_test",
+ srcs = ["internal/hash_function_defaults_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ tags = NOTEST_TAGS,
+ deps = [
+ ":hash_function_defaults",
+ "//absl/hash",
+ "//absl/strings",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "hash_generator_testing",
+ testonly = 1,
+ srcs = ["internal/hash_generator_testing.cc"],
+ hdrs = ["internal/hash_generator_testing.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_policy_testing",
+ "//absl/meta:type_traits",
+ "//absl/strings",
+ ],
+)
+
+cc_library(
+ name = "hash_policy_testing",
+ testonly = 1,
+ hdrs = ["internal/hash_policy_testing.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ "//absl/hash",
+ "//absl/strings",
+ ],
+)
+
+cc_test(
+ name = "hash_policy_testing_test",
+ srcs = ["internal/hash_policy_testing_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "hash_policy_traits",
+ hdrs = ["internal/hash_policy_traits.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = ["//absl/meta:type_traits"],
+)
+
+cc_test(
+ name = "hash_policy_traits_test",
+ srcs = ["internal/hash_policy_traits_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_policy_traits",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "hashtable_debug",
+ hdrs = ["internal/hashtable_debug.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":hashtable_debug_hooks",
+ ],
+)
+
+cc_library(
+ name = "hashtable_debug_hooks",
+ hdrs = ["internal/hashtable_debug_hooks.h"],
+ copts = ABSL_DEFAULT_COPTS,
+)
+
+cc_library(
+ name = "node_hash_policy",
+ hdrs = ["internal/node_hash_policy.h"],
+ copts = ABSL_DEFAULT_COPTS,
+)
+
+cc_test(
+ name = "node_hash_policy_test",
+ srcs = ["internal/node_hash_policy_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_policy_traits",
+ ":node_hash_policy",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "raw_hash_map",
+ hdrs = ["internal/raw_hash_map.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":container_memory",
+ ":raw_hash_set",
+ ],
+)
+
+cc_library(
+ name = "raw_hash_set",
+ srcs = ["internal/raw_hash_set.cc"],
+ hdrs = ["internal/raw_hash_set.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":compressed_tuple",
+ ":container_memory",
+ ":hash_policy_traits",
+ ":hashtable_debug_hooks",
+ ":layout",
+ "//absl/base:bits",
+ "//absl/base:config",
+ "//absl/base:core_headers",
+ "//absl/base:endian",
+ "//absl/memory",
+ "//absl/meta:type_traits",
+ "//absl/types:optional",
+ "//absl/utility",
+ ],
+)
+
+cc_test(
+ name = "raw_hash_set_test",
+ srcs = ["internal/raw_hash_set_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ linkstatic = 1,
+ tags = NOTEST_TAGS,
+ deps = [
+ ":container_memory",
+ ":hash_function_defaults",
+ ":hash_policy_testing",
+ ":hashtable_debug",
+ ":raw_hash_set",
+ "//absl/base",
+ "//absl/base:core_headers",
+ "//absl/strings",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_test(
+ name = "raw_hash_set_allocator_test",
+ size = "small",
+ srcs = ["internal/raw_hash_set_allocator_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":raw_hash_set",
+ ":tracked",
+ "//absl/base:core_headers",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "layout",
+ hdrs = ["internal/layout.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ "//absl/base:core_headers",
+ "//absl/meta:type_traits",
+ "//absl/strings",
+ "//absl/types:span",
+ "//absl/utility",
+ ],
+)
+
+cc_test(
+ name = "layout_test",
+ size = "small",
+ srcs = ["internal/layout_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ tags = NOTEST_TAGS,
+ visibility = ["//visibility:private"],
+ deps = [
+ ":layout",
+ "//absl/base",
+ "//absl/base:core_headers",
+ "//absl/types:span",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "tracked",
+ testonly = 1,
+ hdrs = ["internal/tracked.h"],
+ copts = ABSL_TEST_COPTS,
+)
+
+cc_library(
+ name = "unordered_map_constructor_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_map_constructor_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_library(
+ name = "unordered_map_lookup_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_map_lookup_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_library(
+ name = "unordered_map_modifiers_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_map_modifiers_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_library(
+ name = "unordered_set_constructor_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_set_constructor_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_library(
+ name = "unordered_set_lookup_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_set_lookup_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_library(
+ name = "unordered_set_modifiers_test",
+ testonly = 1,
+ hdrs = ["internal/unordered_set_modifiers_test.h"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash_generator_testing",
+ ":hash_policy_testing",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_test(
+ name = "unordered_set_test",
+ srcs = ["internal/unordered_set_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":unordered_set_constructor_test",
+ ":unordered_set_lookup_test",
+ ":unordered_set_modifiers_test",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_test(
+ name = "unordered_map_test",
+ srcs = ["internal/unordered_map_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ tags = NOTEST_TAGS_NONMOBILE,
+ deps = [
+ ":unordered_map_constructor_test",
+ ":unordered_map_lookup_test",
+ ":unordered_map_modifiers_test",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
diff --git a/absl/container/CMakeLists.txt b/absl/container/CMakeLists.txt
index 123e4c4..710bace 100644
--- a/absl/container/CMakeLists.txt
+++ b/absl/container/CMakeLists.txt
@@ -17,12 +17,34 @@
list(APPEND CONTAINER_PUBLIC_HEADERS
"fixed_array.h"
+ "flat_hash_map.h"
+ "flat_hash_set.h"
"inlined_vector.h"
+ "node_hash_map.h"
+ "node_hash_set.h"
)
list(APPEND CONTAINER_INTERNAL_HEADERS
+ "internal/compressed_tuple.h"
+ "internal/container_memory.h"
+ "internal/hash_function_defaults.h"
+ "internal/hash_generator_testing.h"
+ "internal/hash_policy_testing.h"
+ "internal/hash_policy_traits.h"
+ "internal/hashtable_debug.h"
+ "internal/layout.h"
+ "internal/node_hash_policy.h"
+ "internal/raw_hash_map.h"
+ "internal/raw_hash_set.h"
"internal/test_instance_tracker.h"
+ "internal/tracked.h"
+ "internal/unordered_map_constructor_test.h"
+ "internal/unordered_map_lookup_test.h"
+ "internal/unordered_map_modifiers_test.h"
+ "internal/unordered_set_constructor_test.h"
+ "internal/unordered_set_lookup_test.h"
+ "internal/unordered_set_modifiers_test.h"
)
diff --git a/absl/container/flat_hash_map.h b/absl/container/flat_hash_map.h
new file mode 100644
index 0000000..13fbfba
--- /dev/null
+++ b/absl/container/flat_hash_map.h
@@ -0,0 +1,528 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: flat_hash_map.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_map<K, V>` is an unordered associative container of
+// unique keys and associated values designed to be a more efficient replacement
+// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
+// deletion of map elements can be done as an `O(1)` operation. However,
+// `flat_hash_map` (and other unordered associative containers known as the
+// collection of Abseil "Swiss tables") contain other optimizations that result
+// in both memory and computation advantages.
+//
+// In most cases, your default choice for a hash map should be a map of type
+// `flat_hash_map`.
+
+#ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
+#define ABSL_CONTAINER_FLAT_HASH_MAP_H_
+
+#include <cstddef>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
+#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
+namespace container_internal {
+template <class K, class V>
+struct FlatHashMapPolicy;
+} // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::flat_hash_map
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_map<K, V>` is an unordered associative container which
+// has been optimized for both speed and memory footprint in most common use
+// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
+// the following notable differences:
+//
+// * Requires keys that are CopyConstructible
+// * Requires values that are MoveConstructible
+// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
+// `insert()`, provided that the map is provided a compatible heterogeneous
+// hashing function and equality operator.
+// * Invalidates any references and pointers to elements within the table after
+// `rehash()`.
+// * Contains a `capacity()` member function indicating the number of element
+// slots (open, deleted, and empty) within the hash map.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
+// All fundamental and Abseil types that support the `absl::Hash` framework have
+// a compatible equality operator for comparing insertions into `flat_hash_map`.
+// If your type is not yet supported by the `asbl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// NOTE: A `flat_hash_map` stores its value types directly inside its
+// implementation array to avoid memory indirection. Because a `flat_hash_map`
+// is designed to move data when rehashed, map values will not retain pointer
+// stability. If you require pointer stability, or your values are large,
+// consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
+// If your types are not moveable or you require pointer stability for keys,
+// consider `absl::node_hash_map`.
+//
+// Example:
+//
+// // Create a flat hash map of three strings (that map to strings)
+// absl::flat_hash_map<std::string, std::string> ducks =
+// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
+//
+// // Insert a new element into the flat hash map
+// ducks.insert({"d", "donald"}};
+//
+// // Force a rehash of the flat hash map
+// ducks.rehash(0);
+//
+// // Find the element with the key "b"
+// std::string search_key = "b";
+// auto result = ducks.find(search_key);
+// if (result != ducks.end()) {
+// std::cout << "Result: " << result->second << std::endl;
+// }
+template <class K, class V,
+ class Hash = absl::container_internal::hash_default_hash<K>,
+ class Eq = absl::container_internal::hash_default_eq<K>,
+ class Allocator = std::allocator<std::pair<const K, V>>>
+class flat_hash_map : public absl::container_internal::raw_hash_map<
+ absl::container_internal::FlatHashMapPolicy<K, V>,
+ Hash, Eq, Allocator> {
+ using Base = typename flat_hash_map::raw_hash_map;
+
+ public:
+ flat_hash_map() {}
+ using Base::Base;
+
+ // flat_hash_map::begin()
+ //
+ // Returns an iterator to the beginning of the `flat_hash_map`.
+ using Base::begin;
+
+ // flat_hash_map::cbegin()
+ //
+ // Returns a const iterator to the beginning of the `flat_hash_map`.
+ using Base::cbegin;
+
+ // flat_hash_map::cend()
+ //
+ // Returns a const iterator to the end of the `flat_hash_map`.
+ using Base::cend;
+
+ // flat_hash_map::end()
+ //
+ // Returns an iterator to the end of the `flat_hash_map`.
+ using Base::end;
+
+ // flat_hash_map::capacity()
+ //
+ // Returns the number of element slots (assigned, deleted, and empty)
+ // available within the `flat_hash_map`.
+ //
+ // NOTE: this member function is particular to `absl::flat_hash_map` and is
+ // not provided in the `std::unordered_map` API.
+ using Base::capacity;
+
+ // flat_hash_map::empty()
+ //
+ // Returns whether or not the `flat_hash_map` is empty.
+ using Base::empty;
+
+ // flat_hash_map::max_size()
+ //
+ // Returns the largest theoretical possible number of elements within a
+ // `flat_hash_map` under current memory constraints. This value can be thought
+ // of the largest value of `std::distance(begin(), end())` for a
+ // `flat_hash_map<K, V>`.
+ using Base::max_size;
+
+ // flat_hash_map::size()
+ //
+ // Returns the number of elements currently within the `flat_hash_map`.
+ using Base::size;
+
+ // flat_hash_map::clear()
+ //
+ // Removes all elements from the `flat_hash_map`. Invalidates any references,
+ // pointers, or iterators referring to contained elements.
+ //
+ // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+ // the underlying buffer call `erase(begin(), end())`.
+ using Base::clear;
+
+ // flat_hash_map::erase()
+ //
+ // Erases elements within the `flat_hash_map`. Erasing does not trigger a
+ // rehash. Overloads are listed below.
+ //
+ // void erase(const_iterator pos):
+ //
+ // Erases the element at `position` of the `flat_hash_map`, returning
+ // `void`.
+ //
+ // NOTE: this return behavior is different than that of STL containers in
+ // general and `std::unordered_map` in particular.
+ //
+ // iterator erase(const_iterator first, const_iterator last):
+ //
+ // Erases the elements in the open interval [`first`, `last`), returning an
+ // iterator pointing to `last`.
+ //
+ // size_type erase(const key_type& key):
+ //
+ // Erases the element with the matching key, if it exists.
+ using Base::erase;
+
+ // flat_hash_map::insert()
+ //
+ // Inserts an element of the specified value into the `flat_hash_map`,
+ // returning an iterator pointing to the newly inserted element, provided that
+ // an element with the given key does not already exist. If rehashing occurs
+ // due to the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator,bool> insert(const init_type& value):
+ //
+ // Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
+ // iterator to the inserted element (or to the element that prevented the
+ // insertion) and a bool denoting whether the insertion took place.
+ //
+ // std::pair<iterator,bool> insert(T&& value):
+ // std::pair<iterator,bool> insert(init_type&& value ):
+ //
+ // Inserts a moveable value into the `flat_hash_map`. Returns a pair
+ // consisting of an iterator to the inserted element (or to the element that
+ // prevented the insertion) and a bool denoting whether the insertion took
+ // place.
+ //
+ // iterator insert(const_iterator hint, const init_type& value):
+ // iterator insert(const_iterator hint, T&& value):
+ // iterator insert(const_iterator hint, init_type&& value );
+ //
+ // Inserts a value, using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search. Returns an iterator to the
+ // inserted element, or to the existing element that prevented the
+ // insertion.
+ //
+ // void insert(InputIterator first, InputIterator last ):
+ //
+ // Inserts a range of values [`first`, `last`).
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently, for `flat_hash_map` we guarantee the
+ // first match is inserted.
+ //
+ // void insert(std::initializer_list<init_type> ilist ):
+ //
+ // Inserts the elements within the initializer list `ilist`.
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently within the initializer list, for
+ // `flat_hash_map` we guarantee the first match is inserted.
+ using Base::insert;
+
+ // flat_hash_map::insert_or_assign()
+ //
+ // Inserts an element of the specified value into the `flat_hash_map` provided
+ // that a value with the given key does not already exist, or replaces it with
+ // the element value if a key for that value already exists, returning an
+ // iterator pointing to the newly inserted element. If rehashing occurs due
+ // to the insertion, all existing iterators are invalidated. Overloads are
+ // listed below.
+ //
+ // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
+ // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
+ //
+ // Inserts/Assigns (or moves) the element of the specified key into the
+ // `flat_hash_map`.
+ //
+ // iterator insert_or_assign(const_iterator hint,
+ // const init_type& k, T&& obj):
+ // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
+ //
+ // Inserts/Assigns (or moves) the element of the specified key into the
+ // `flat_hash_map` using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search.
+ using Base::insert_or_assign;
+
+ // flat_hash_map::emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_map`, provided that no element with the given key
+ // already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace;
+
+ // flat_hash_map::emplace_hint()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_map`, using the position of `hint` as a non-binding
+ // suggestion for where to begin the insertion search, and only inserts
+ // provided that no element with the given key already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace_hint;
+
+ // flat_hash_map::try_emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_map`, provided that no element with the given key
+ // already exists. Unlike `emplace()`, if an element with the given key
+ // already exists, we guarantee that no element is constructed.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ // Overloads are listed below.
+ //
+ // pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
+ // pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
+ //
+ // Inserts (via copy or move) the element of the specified key into the
+ // `flat_hash_map`.
+ //
+ // iterator try_emplace(const_iterator hint,
+ // const init_type& k, Args&&... args):
+ // iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
+ //
+ // Inserts (via copy or move) the element of the specified key into the
+ // `flat_hash_map` using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search.
+ using Base::try_emplace;
+
+ // flat_hash_map::extract()
+ //
+ // Extracts the indicated element, erasing it in the process, and returns it
+ // as a C++17-compatible node handle. Overloads are listed below.
+ //
+ // node_type extract(const_iterator position):
+ //
+ // Extracts the key,value pair of the element at the indicated position and
+ // returns a node handle owning that extracted data.
+ //
+ // node_type extract(const key_type& x):
+ //
+ // Extracts the key,value pair of the element with a key matching the passed
+ // key value and returns a node handle owning that extracted data. If the
+ // `flat_hash_map` does not contain an element with a matching key, this
+ // function returns an empty node handle.
+ using Base::extract;
+
+ // flat_hash_map::merge()
+ //
+ // Extracts elements from a given `source` flat hash map into this
+ // `flat_hash_map`. If the destination `flat_hash_map` already contains an
+ // element with an equivalent key, that element is not extracted.
+ using Base::merge;
+
+ // flat_hash_map::swap(flat_hash_map& other)
+ //
+ // Exchanges the contents of this `flat_hash_map` with those of the `other`
+ // flat hash map, avoiding invocation of any move, copy, or swap operations on
+ // individual elements.
+ //
+ // All iterators and references on the `flat_hash_map` remain valid, excepting
+ // for the past-the-end iterator, which is invalidated.
+ //
+ // `swap()` requires that the flat hash map's hashing and key equivalence
+ // functions be Swappable, and are exchaged using unqualified calls to
+ // non-member `swap()`. If the map's allocator has
+ // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+ // set to `true`, the allocators are also exchanged using an unqualified call
+ // to non-member `swap()`; otherwise, the allocators are not swapped.
+ using Base::swap;
+
+ // flat_hash_map::rehash(count)
+ //
+ // Rehashes the `flat_hash_map`, setting the number of slots to be at least
+ // the passed value. If the new number of slots increases the load factor more
+ // than the current maximum load factor
+ // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+ // will be at least `size()` / `max_load_factor()`.
+ //
+ // To force a rehash, pass rehash(0).
+ //
+ // NOTE: unlike behavior in `std::unordered_map`, references are also
+ // invalidated upon a `rehash()`.
+ using Base::rehash;
+
+ // flat_hash_map::reserve(count)
+ //
+ // Sets the number of slots in the `flat_hash_map` to the number needed to
+ // accommodate at least `count` total elements without exceeding the current
+ // maximum load factor, and may rehash the container if needed.
+ using Base::reserve;
+
+ // flat_hash_map::at()
+ //
+ // Returns a reference to the mapped value of the element with key equivalent
+ // to the passed key.
+ using Base::at;
+
+ // flat_hash_map::contains()
+ //
+ // Determines whether an element with a key comparing equal to the given `key`
+ // exists within the `flat_hash_map`, returning `true` if so or `false`
+ // otherwise.
+ using Base::contains;
+
+ // flat_hash_map::count(const Key& key) const
+ //
+ // Returns the number of elements with a key comparing equal to the given
+ // `key` within the `flat_hash_map`. note that this function will return
+ // either `1` or `0` since duplicate keys are not allowed within a
+ // `flat_hash_map`.
+ using Base::count;
+
+ // flat_hash_map::equal_range()
+ //
+ // Returns a closed range [first, last], defined by a `std::pair` of two
+ // iterators, containing all elements with the passed key in the
+ // `flat_hash_map`.
+ using Base::equal_range;
+
+ // flat_hash_map::find()
+ //
+ // Finds an element with the passed `key` within the `flat_hash_map`.
+ using Base::find;
+
+ // flat_hash_map::operator[]()
+ //
+ // Returns a reference to the value mapped to the passed key within the
+ // `flat_hash_map`, performing an `insert()` if the key does not already
+ // exist.
+ //
+ // If an insertion occurs and results in a rehashing of the container, all
+ // iterators are invalidated. Otherwise iterators are not affected and
+ // references are not invalidated. Overloads are listed below.
+ //
+ // T& operator[](const Key& key ):
+ //
+ // Inserts an init_type object constructed in-place if the element with the
+ // given key does not exist.
+ //
+ // T& operator[]( Key&& key ):
+ //
+ // Inserts an init_type object constructed in-place provided that an element
+ // with the given key does not exist.
+ using Base::operator[];
+
+ // flat_hash_map::bucket_count()
+ //
+ // Returns the number of "buckets" within the `flat_hash_map`. Note that
+ // because a flat hash map contains all elements within its internal storage,
+ // this value simply equals the current capacity of the `flat_hash_map`.
+ using Base::bucket_count;
+
+ // flat_hash_map::load_factor()
+ //
+ // Returns the current load factor of the `flat_hash_map` (the average number
+ // of slots occupied with a value within the hash map).
+ using Base::load_factor;
+
+ // flat_hash_map::max_load_factor()
+ //
+ // Manages the maximum load factor of the `flat_hash_map`. Overloads are
+ // listed below.
+ //
+ // float flat_hash_map::max_load_factor()
+ //
+ // Returns the current maximum load factor of the `flat_hash_map`.
+ //
+ // void flat_hash_map::max_load_factor(float ml)
+ //
+ // Sets the maximum load factor of the `flat_hash_map` to the passed value.
+ //
+ // NOTE: This overload is provided only for API compatibility with the STL;
+ // `flat_hash_map` will ignore any set load factor and manage its rehashing
+ // internally as an implementation detail.
+ using Base::max_load_factor;
+
+ // flat_hash_map::get_allocator()
+ //
+ // Returns the allocator function associated with this `flat_hash_map`.
+ using Base::get_allocator;
+
+ // flat_hash_map::hash_function()
+ //
+ // Returns the hashing function used to hash the keys within this
+ // `flat_hash_map`.
+ using Base::hash_function;
+
+ // flat_hash_map::key_eq()
+ //
+ // Returns the function used for comparing keys equality.
+ using Base::key_eq;
+};
+
+namespace container_internal {
+
+template <class K, class V>
+struct FlatHashMapPolicy {
+ using slot_type = container_internal::slot_type<K, V>;
+ using key_type = K;
+ using mapped_type = V;
+ using init_type = std::pair</*non const*/ key_type, mapped_type>;
+
+ template <class Allocator, class... Args>
+ static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+ slot_type::construct(alloc, slot, std::forward<Args>(args)...);
+ }
+
+ template <class Allocator>
+ static void destroy(Allocator* alloc, slot_type* slot) {
+ slot_type::destroy(alloc, slot);
+ }
+
+ template <class Allocator>
+ static void transfer(Allocator* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ slot_type::transfer(alloc, new_slot, old_slot);
+ }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposePair(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposePair(std::forward<F>(f),
+ std::forward<Args>(args)...);
+ }
+
+ static size_t space_used(const slot_type*) { return 0; }
+
+ static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
+
+ static V& value(std::pair<const K, V>* kv) { return kv->second; }
+ static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
+};
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
diff --git a/absl/container/flat_hash_map_test.cc b/absl/container/flat_hash_map_test.cc
new file mode 100644
index 0000000..10a781f
--- /dev/null
+++ b/absl/container/flat_hash_map_test.cc
@@ -0,0 +1,241 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/flat_hash_map.h"
+
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/unordered_map_constructor_test.h"
+#include "absl/container/internal/unordered_map_lookup_test.h"
+#include "absl/container/internal/unordered_map_modifiers_test.h"
+#include "absl/types/any.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+using ::absl::container_internal::hash_internal::Enum;
+using ::absl::container_internal::hash_internal::EnumClass;
+using ::testing::_;
+using ::testing::Pair;
+using ::testing::UnorderedElementsAre;
+
+template <class K, class V>
+using Map =
+ flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual, Alloc<>>;
+
+static_assert(!std::is_standard_layout<NonStandardLayout>(), "");
+
+using MapTypes =
+ ::testing::Types<Map<int, int>, Map<std::string, int>, Map<Enum, std::string>,
+ Map<EnumClass, int>, Map<int, NonStandardLayout>,
+ Map<NonStandardLayout, int>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ConstructorTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, LookupTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashMap, ModifiersTest, MapTypes);
+
+TEST(FlatHashMap, StandardLayout) {
+ struct Int {
+ explicit Int(size_t value) : value(value) {}
+ Int() : value(0) { ADD_FAILURE(); }
+ Int(const Int& other) : value(other.value) { ADD_FAILURE(); }
+ Int(Int&&) = default;
+ bool operator==(const Int& other) const { return value == other.value; }
+ size_t value;
+ };
+ static_assert(std::is_standard_layout<Int>(), "");
+
+ struct Hash {
+ size_t operator()(const Int& obj) const { return obj.value; }
+ };
+
+ // Verify that neither the key nor the value get default-constructed or
+ // copy-constructed.
+ {
+ flat_hash_map<Int, Int, Hash> m;
+ m.try_emplace(Int(1), Int(2));
+ m.try_emplace(Int(3), Int(4));
+ m.erase(Int(1));
+ m.rehash(2 * m.bucket_count());
+ }
+ {
+ flat_hash_map<Int, Int, Hash> m;
+ m.try_emplace(Int(1), Int(2));
+ m.try_emplace(Int(3), Int(4));
+ m.erase(Int(1));
+ m.clear();
+ }
+}
+
+// gcc becomes unhappy if this is inside the method, so pull it out here.
+struct balast {};
+
+TEST(FlatHashMap, IteratesMsan) {
+ // Because SwissTable randomizes on pointer addresses, we keep old tables
+ // around to ensure we don't reuse old memory.
+ std::vector<absl::flat_hash_map<int, balast>> garbage;
+ for (int i = 0; i < 100; ++i) {
+ absl::flat_hash_map<int, balast> t;
+ for (int j = 0; j < 100; ++j) {
+ t[j];
+ for (const auto& p : t) EXPECT_THAT(p, Pair(_, _));
+ }
+ garbage.push_back(std::move(t));
+ }
+}
+
+// Demonstration of the "Lazy Key" pattern. This uses heterogenous insert to
+// avoid creating expensive key elements when the item is already present in the
+// map.
+struct LazyInt {
+ explicit LazyInt(size_t value, int* tracker)
+ : value(value), tracker(tracker) {}
+
+ explicit operator size_t() const {
+ ++*tracker;
+ return value;
+ }
+
+ size_t value;
+ int* tracker;
+};
+
+struct Hash {
+ using is_transparent = void;
+ int* tracker;
+ size_t operator()(size_t obj) const {
+ ++*tracker;
+ return obj;
+ }
+ size_t operator()(const LazyInt& obj) const {
+ ++*tracker;
+ return obj.value;
+ }
+};
+
+struct Eq {
+ using is_transparent = void;
+ bool operator()(size_t lhs, size_t rhs) const {
+ return lhs == rhs;
+ }
+ bool operator()(size_t lhs, const LazyInt& rhs) const {
+ return lhs == rhs.value;
+ }
+};
+
+TEST(FlatHashMap, LazyKeyPattern) {
+ // hashes are only guaranteed in opt mode, we use assertions to track internal
+ // state that can cause extra calls to hash.
+ int conversions = 0;
+ int hashes = 0;
+ flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes});
+
+ m[LazyInt(1, &conversions)] = 1;
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1)));
+ EXPECT_EQ(conversions, 1);
+#ifdef NDEBUG
+ EXPECT_EQ(hashes, 1);
+#endif
+
+ m[LazyInt(1, &conversions)] = 2;
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2)));
+ EXPECT_EQ(conversions, 1);
+#ifdef NDEBUG
+ EXPECT_EQ(hashes, 2);
+#endif
+
+ m.try_emplace(LazyInt(2, &conversions), 3);
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
+ EXPECT_EQ(conversions, 2);
+#ifdef NDEBUG
+ EXPECT_EQ(hashes, 3);
+#endif
+
+ m.try_emplace(LazyInt(2, &conversions), 4);
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
+ EXPECT_EQ(conversions, 2);
+#ifdef NDEBUG
+ EXPECT_EQ(hashes, 4);
+#endif
+}
+
+TEST(FlatHashMap, BitfieldArgument) {
+ union {
+ int n : 1;
+ };
+ n = 0;
+ flat_hash_map<int, int> m;
+ m.erase(n);
+ m.count(n);
+ m.prefetch(n);
+ m.find(n);
+ m.contains(n);
+ m.equal_range(n);
+ m.insert_or_assign(n, n);
+ m.insert_or_assign(m.end(), n, n);
+ m.try_emplace(n);
+ m.try_emplace(m.end(), n);
+ m.at(n);
+ m[n];
+}
+
+TEST(FlatHashMap, MergeExtractInsert) {
+ // We can't test mutable keys, or non-copyable keys with flat_hash_map.
+ // Test that the nodes have the proper API.
+ absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}};
+ auto node = m.extract(1);
+ EXPECT_TRUE(node);
+ EXPECT_EQ(node.key(), 1);
+ EXPECT_EQ(node.mapped(), 7);
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9)));
+
+ node.mapped() = 17;
+ m.insert(std::move(node));
+ EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9)));
+}
+#if !defined(__ANDROID__) && !defined(__APPLE__) && !defined(__EMSCRIPTEN__)
+TEST(FlatHashMap, Any) {
+ absl::flat_hash_map<int, absl::any> m;
+ m.emplace(1, 7);
+ auto it = m.find(1);
+ ASSERT_NE(it, m.end());
+ EXPECT_EQ(7, absl::any_cast<int>(it->second));
+
+ m.emplace(std::piecewise_construct, std::make_tuple(2), std::make_tuple(8));
+ it = m.find(2);
+ ASSERT_NE(it, m.end());
+ EXPECT_EQ(8, absl::any_cast<int>(it->second));
+
+ m.emplace(std::piecewise_construct, std::make_tuple(3),
+ std::make_tuple(absl::any(9)));
+ it = m.find(3);
+ ASSERT_NE(it, m.end());
+ EXPECT_EQ(9, absl::any_cast<int>(it->second));
+
+ struct H {
+ size_t operator()(const absl::any&) const { return 0; }
+ };
+ struct E {
+ bool operator()(const absl::any&, const absl::any&) const { return true; }
+ };
+ absl::flat_hash_map<absl::any, int, H, E> m2;
+ m2.emplace(1, 7);
+ auto it2 = m2.find(1);
+ ASSERT_NE(it2, m2.end());
+ EXPECT_EQ(7, it2->second);
+}
+#endif // __ANDROID__
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/flat_hash_set.h b/absl/container/flat_hash_set.h
new file mode 100644
index 0000000..ccd03a4
--- /dev/null
+++ b/absl/container/flat_hash_set.h
@@ -0,0 +1,439 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: flat_hash_set.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container designed to
+// be a more efficient replacement for `std::unordered_set`. Like
+// `unordered_set`, search, insertion, and deletion of set elements can be done
+// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
+// associative containers known as the collection of Abseil "Swiss tables")
+// contain other optimizations that result in both memory and computation
+// advantages.
+//
+// In most cases, your default choice for a hash set should be a set of type
+// `flat_hash_set`.
+#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
+#define ABSL_CONTAINER_FLAT_HASH_SET_H_
+
+#include <type_traits>
+#include <utility>
+
+#include "absl/base/macros.h"
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
+#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
+namespace container_internal {
+template <typename T>
+struct FlatHashSetPolicy;
+} // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::flat_hash_set
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container which has
+// been optimized for both speed and memory footprint in most common use cases.
+// Its interface is similar to that of `std::unordered_set<T>` with the
+// following notable differences:
+//
+// * Requires keys that are CopyConstructible
+// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
+// `insert()`, provided that the set is provided a compatible heterogeneous
+// hashing function and equality operator.
+// * Invalidates any references and pointers to elements within the table after
+// `rehash()`.
+// * Contains a `capacity()` member function indicating the number of element
+// slots (open, deleted, and empty) within the hash set.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
+// fundamental and Abseil types that support the `absl::Hash` framework have a
+// compatible equality operator for comparing insertions into `flat_hash_map`.
+// If your type is not yet supported by the `asbl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
+// array to avoid memory indirection. Because a `flat_hash_set` is designed to
+// move data when rehashed, set keys will not retain pointer stability. If you
+// require pointer stability, consider using
+// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
+// you require pointer stability, consider `absl::node_hash_set` instead.
+//
+// Example:
+//
+// // Create a flat hash set of three strings
+// absl::flat_hash_set<std::string> ducks =
+// {"huey", "dewey", "louie"};
+//
+// // Insert a new element into the flat hash set
+// ducks.insert("donald"};
+//
+// // Force a rehash of the flat hash set
+// ducks.rehash(0);
+//
+// // See if "dewey" is present
+// if (ducks.contains("dewey")) {
+// std::cout << "We found dewey!" << std::endl;
+// }
+template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
+ class Eq = absl::container_internal::hash_default_eq<T>,
+ class Allocator = std::allocator<T>>
+class flat_hash_set
+ : public absl::container_internal::raw_hash_set<
+ absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
+ using Base = typename flat_hash_set::raw_hash_set;
+
+ public:
+ flat_hash_set() {}
+ using Base::Base;
+
+ // flat_hash_set::begin()
+ //
+ // Returns an iterator to the beginning of the `flat_hash_set`.
+ using Base::begin;
+
+ // flat_hash_set::cbegin()
+ //
+ // Returns a const iterator to the beginning of the `flat_hash_set`.
+ using Base::cbegin;
+
+ // flat_hash_set::cend()
+ //
+ // Returns a const iterator to the end of the `flat_hash_set`.
+ using Base::cend;
+
+ // flat_hash_set::end()
+ //
+ // Returns an iterator to the end of the `flat_hash_set`.
+ using Base::end;
+
+ // flat_hash_set::capacity()
+ //
+ // Returns the number of element slots (assigned, deleted, and empty)
+ // available within the `flat_hash_set`.
+ //
+ // NOTE: this member function is particular to `absl::flat_hash_set` and is
+ // not provided in the `std::unordered_map` API.
+ using Base::capacity;
+
+ // flat_hash_set::empty()
+ //
+ // Returns whether or not the `flat_hash_set` is empty.
+ using Base::empty;
+
+ // flat_hash_set::max_size()
+ //
+ // Returns the largest theoretical possible number of elements within a
+ // `flat_hash_set` under current memory constraints. This value can be thought
+ // of the largest value of `std::distance(begin(), end())` for a
+ // `flat_hash_set<T>`.
+ using Base::max_size;
+
+ // flat_hash_set::size()
+ //
+ // Returns the number of elements currently within the `flat_hash_set`.
+ using Base::size;
+
+ // flat_hash_set::clear()
+ //
+ // Removes all elements from the `flat_hash_set`. Invalidates any references,
+ // pointers, or iterators referring to contained elements.
+ //
+ // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+ // the underlying buffer call `erase(begin(), end())`.
+ using Base::clear;
+
+ // flat_hash_set::erase()
+ //
+ // Erases elements within the `flat_hash_set`. Erasing does not trigger a
+ // rehash. Overloads are listed below.
+ //
+ // void erase(const_iterator pos):
+ //
+ // Erases the element at `position` of the `flat_hash_set`, returning
+ // `void`.
+ //
+ // NOTE: this return behavior is different than that of STL containers in
+ // general and `std::unordered_map` in particular.
+ //
+ // iterator erase(const_iterator first, const_iterator last):
+ //
+ // Erases the elements in the open interval [`first`, `last`), returning an
+ // iterator pointing to `last`.
+ //
+ // size_type erase(const key_type& key):
+ //
+ // Erases the element with the matching key, if it exists.
+ using Base::erase;
+
+ // flat_hash_set::insert()
+ //
+ // Inserts an element of the specified value into the `flat_hash_set`,
+ // returning an iterator pointing to the newly inserted element, provided that
+ // an element with the given key does not already exist. If rehashing occurs
+ // due to the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator,bool> insert(const T& value):
+ //
+ // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
+ // iterator to the inserted element (or to the element that prevented the
+ // insertion) and a bool denoting whether the insertion took place.
+ //
+ // std::pair<iterator,bool> insert(T&& value):
+ //
+ // Inserts a moveable value into the `flat_hash_set`. Returns a pair
+ // consisting of an iterator to the inserted element (or to the element that
+ // prevented the insertion) and a bool denoting whether the insertion took
+ // place.
+ //
+ // iterator insert(const_iterator hint, const T& value):
+ // iterator insert(const_iterator hint, T&& value):
+ //
+ // Inserts a value, using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search. Returns an iterator to the
+ // inserted element, or to the existing element that prevented the
+ // insertion.
+ //
+ // void insert(InputIterator first, InputIterator last ):
+ //
+ // Inserts a range of values [`first`, `last`).
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently, for `flat_hash_set` we guarantee the
+ // first match is inserted.
+ //
+ // void insert(std::initializer_list<T> ilist ):
+ //
+ // Inserts the elements within the initializer list `ilist`.
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently within the initializer list, for
+ // `flat_hash_set` we guarantee the first match is inserted.
+ using Base::insert;
+
+ // flat_hash_set::emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_set`, provided that no element with the given key
+ // already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace;
+
+ // flat_hash_set::emplace_hint()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_set`, using the position of `hint` as a non-binding
+ // suggestion for where to begin the insertion search, and only inserts
+ // provided that no element with the given key already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace_hint;
+
+ // flat_hash_set::extract()
+ //
+ // Extracts the indicated element, erasing it in the process, and returns it
+ // as a C++17-compatible node handle. Overloads are listed below.
+ //
+ // node_type extract(const_iterator position):
+ //
+ // Extracts the element at the indicated position and returns a node handle
+ // owning that extracted data.
+ //
+ // node_type extract(const key_type& x):
+ //
+ // Extracts the element with the key matching the passed key value and
+ // returns a node handle owning that extracted data. If the `flat_hash_set`
+ // does not contain an element with a matching key, this function returns an
+ // empty node handle.
+ using Base::extract;
+
+ // flat_hash_set::merge()
+ //
+ // Extracts elements from a given `source` flat hash map into this
+ // `flat_hash_set`. If the destination `flat_hash_set` already contains an
+ // element with an equivalent key, that element is not extracted.
+ using Base::merge;
+
+ // flat_hash_set::swap(flat_hash_set& other)
+ //
+ // Exchanges the contents of this `flat_hash_set` with those of the `other`
+ // flat hash map, avoiding invocation of any move, copy, or swap operations on
+ // individual elements.
+ //
+ // All iterators and references on the `flat_hash_set` remain valid, excepting
+ // for the past-the-end iterator, which is invalidated.
+ //
+ // `swap()` requires that the flat hash set's hashing and key equivalence
+ // functions be Swappable, and are exchaged using unqualified calls to
+ // non-member `swap()`. If the map's allocator has
+ // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+ // set to `true`, the allocators are also exchanged using an unqualified call
+ // to non-member `swap()`; otherwise, the allocators are not swapped.
+ using Base::swap;
+
+ // flat_hash_set::rehash(count)
+ //
+ // Rehashes the `flat_hash_set`, setting the number of slots to be at least
+ // the passed value. If the new number of slots increases the load factor more
+ // than the current maximum load factor
+ // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+ // will be at least `size()` / `max_load_factor()`.
+ //
+ // To force a rehash, pass rehash(0).
+ //
+ // NOTE: unlike behavior in `std::unordered_set`, references are also
+ // invalidated upon a `rehash()`.
+ using Base::rehash;
+
+ // flat_hash_set::reserve(count)
+ //
+ // Sets the number of slots in the `flat_hash_set` to the number needed to
+ // accommodate at least `count` total elements without exceeding the current
+ // maximum load factor, and may rehash the container if needed.
+ using Base::reserve;
+
+ // flat_hash_set::contains()
+ //
+ // Determines whether an element comparing equal to the given `key` exists
+ // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
+ using Base::contains;
+
+ // flat_hash_set::count(const Key& key) const
+ //
+ // Returns the number of elements comparing equal to the given `key` within
+ // the `flat_hash_set`. note that this function will return either `1` or `0`
+ // since duplicate elements are not allowed within a `flat_hash_set`.
+ using Base::count;
+
+ // flat_hash_set::equal_range()
+ //
+ // Returns a closed range [first, last], defined by a `std::pair` of two
+ // iterators, containing all elements with the passed key in the
+ // `flat_hash_set`.
+ using Base::equal_range;
+
+ // flat_hash_set::find()
+ //
+ // Finds an element with the passed `key` within the `flat_hash_set`.
+ using Base::find;
+
+ // flat_hash_set::bucket_count()
+ //
+ // Returns the number of "buckets" within the `flat_hash_set`. Note that
+ // because a flat hash map contains all elements within its internal storage,
+ // this value simply equals the current capacity of the `flat_hash_set`.
+ using Base::bucket_count;
+
+ // flat_hash_set::load_factor()
+ //
+ // Returns the current load factor of the `flat_hash_set` (the average number
+ // of slots occupied with a value within the hash map).
+ using Base::load_factor;
+
+ // flat_hash_set::max_load_factor()
+ //
+ // Manages the maximum load factor of the `flat_hash_set`. Overloads are
+ // listed below.
+ //
+ // float flat_hash_set::max_load_factor()
+ //
+ // Returns the current maximum load factor of the `flat_hash_set`.
+ //
+ // void flat_hash_set::max_load_factor(float ml)
+ //
+ // Sets the maximum load factor of the `flat_hash_set` to the passed value.
+ //
+ // NOTE: This overload is provided only for API compatibility with the STL;
+ // `flat_hash_set` will ignore any set load factor and manage its rehashing
+ // internally as an implementation detail.
+ using Base::max_load_factor;
+
+ // flat_hash_set::get_allocator()
+ //
+ // Returns the allocator function associated with this `flat_hash_set`.
+ using Base::get_allocator;
+
+ // flat_hash_set::hash_function()
+ //
+ // Returns the hashing function used to hash the keys within this
+ // `flat_hash_set`.
+ using Base::hash_function;
+
+ // flat_hash_set::key_eq()
+ //
+ // Returns the function used for comparing keys equality.
+ using Base::key_eq;
+};
+
+namespace container_internal {
+
+template <class T>
+struct FlatHashSetPolicy {
+ using slot_type = T;
+ using key_type = T;
+ using init_type = T;
+ using constant_iterators = std::true_type;
+
+ template <class Allocator, class... Args>
+ static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+ absl::allocator_traits<Allocator>::construct(*alloc, slot,
+ std::forward<Args>(args)...);
+ }
+
+ template <class Allocator>
+ static void destroy(Allocator* alloc, slot_type* slot) {
+ absl::allocator_traits<Allocator>::destroy(*alloc, slot);
+ }
+
+ template <class Allocator>
+ static void transfer(Allocator* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ construct(alloc, new_slot, std::move(*old_slot));
+ destroy(alloc, old_slot);
+ }
+
+ static T& element(slot_type* slot) { return *slot; }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposeValue(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposeValue(
+ std::forward<F>(f), std::forward<Args>(args)...);
+ }
+
+ static size_t space_used(const T*) { return 0; }
+};
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
diff --git a/absl/container/flat_hash_set_test.cc b/absl/container/flat_hash_set_test.cc
new file mode 100644
index 0000000..e52fd53
--- /dev/null
+++ b/absl/container/flat_hash_set_test.cc
@@ -0,0 +1,126 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/flat_hash_set.h"
+
+#include <vector>
+
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/unordered_set_constructor_test.h"
+#include "absl/container/internal/unordered_set_lookup_test.h"
+#include "absl/container/internal/unordered_set_modifiers_test.h"
+#include "absl/memory/memory.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::absl::container_internal::hash_internal::Enum;
+using ::absl::container_internal::hash_internal::EnumClass;
+using ::testing::Pointee;
+using ::testing::UnorderedElementsAre;
+using ::testing::UnorderedElementsAreArray;
+
+template <class T>
+using Set =
+ absl::flat_hash_set<T, StatefulTestingHash, StatefulTestingEqual, Alloc<T>>;
+
+using SetTypes =
+ ::testing::Types<Set<int>, Set<std::string>, Set<Enum>, Set<EnumClass>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ConstructorTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, LookupTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(FlatHashSet, ModifiersTest, SetTypes);
+
+TEST(FlatHashSet, EmplaceString) {
+ std::vector<std::string> v = {"a", "b"};
+ absl::flat_hash_set<absl::string_view> hs(v.begin(), v.end());
+ EXPECT_THAT(hs, UnorderedElementsAreArray(v));
+}
+
+TEST(FlatHashSet, BitfieldArgument) {
+ union {
+ int n : 1;
+ };
+ n = 0;
+ absl::flat_hash_set<int> s = {n};
+ s.insert(n);
+ s.insert(s.end(), n);
+ s.insert({n});
+ s.erase(n);
+ s.count(n);
+ s.prefetch(n);
+ s.find(n);
+ s.contains(n);
+ s.equal_range(n);
+}
+
+TEST(FlatHashSet, MergeExtractInsert) {
+ struct Hash {
+ size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
+ };
+ struct Eq {
+ bool operator()(const std::unique_ptr<int>& a,
+ const std::unique_ptr<int>& b) const {
+ return *a == *b;
+ }
+ };
+ absl::flat_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
+ set1.insert(absl::make_unique<int>(7));
+ set1.insert(absl::make_unique<int>(17));
+
+ set2.insert(absl::make_unique<int>(7));
+ set2.insert(absl::make_unique<int>(19));
+
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
+
+ set1.merge(set2);
+
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
+
+ auto node = set1.extract(absl::make_unique<int>(7));
+ EXPECT_TRUE(node);
+ EXPECT_THAT(node.value(), Pointee(7));
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
+
+ auto insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_FALSE(insert_result.inserted);
+ EXPECT_TRUE(insert_result.node);
+ EXPECT_THAT(insert_result.node.value(), Pointee(7));
+ EXPECT_EQ(**insert_result.position, 7);
+ EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
+
+ node = set1.extract(absl::make_unique<int>(17));
+ EXPECT_TRUE(node);
+ EXPECT_THAT(node.value(), Pointee(17));
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
+
+ node.value() = absl::make_unique<int>(23);
+
+ insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_TRUE(insert_result.inserted);
+ EXPECT_FALSE(insert_result.node);
+ EXPECT_EQ(**insert_result.position, 23);
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/container_memory.h b/absl/container/internal/container_memory.h
new file mode 100644
index 0000000..56c5d2d
--- /dev/null
+++ b/absl/container/internal/container_memory.h
@@ -0,0 +1,405 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
+#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
+
+#ifdef ADDRESS_SANITIZER
+#include <sanitizer/asan_interface.h>
+#endif
+
+#ifdef MEMORY_SANITIZER
+#include <sanitizer/msan_interface.h>
+#endif
+
+#include <cassert>
+#include <cstddef>
+#include <memory>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/memory/memory.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+namespace container_internal {
+
+// Allocates at least n bytes aligned to the specified alignment.
+// Alignment must be a power of 2. It must be positive.
+//
+// Note that many allocators don't honor alignment requirements above certain
+// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
+// Allocate() doesn't apply alignment corrections. If the underlying allocator
+// returns insufficiently alignment pointer, that's what you are going to get.
+template <size_t Alignment, class Alloc>
+void* Allocate(Alloc* alloc, size_t n) {
+ static_assert(Alignment > 0, "");
+ assert(n && "n must be positive");
+ struct alignas(Alignment) M {};
+ using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
+ using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
+ A mem_alloc(*alloc);
+ void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
+ assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
+ "allocator does not respect alignment");
+ return p;
+}
+
+// The pointer must have been previously obtained by calling
+// Allocate<Alignment>(alloc, n).
+template <size_t Alignment, class Alloc>
+void Deallocate(Alloc* alloc, void* p, size_t n) {
+ static_assert(Alignment > 0, "");
+ assert(n && "n must be positive");
+ struct alignas(Alignment) M {};
+ using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
+ using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
+ A mem_alloc(*alloc);
+ AT::deallocate(mem_alloc, static_cast<M*>(p),
+ (n + sizeof(M) - 1) / sizeof(M));
+}
+
+namespace memory_internal {
+
+// Constructs T into uninitialized storage pointed by `ptr` using the args
+// specified in the tuple.
+template <class Alloc, class T, class Tuple, size_t... I>
+void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
+ absl::index_sequence<I...>) {
+ absl::allocator_traits<Alloc>::construct(
+ *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
+}
+
+template <class T, class F>
+struct WithConstructedImplF {
+ template <class... Args>
+ decltype(std::declval<F>()(std::declval<T>())) operator()(
+ Args&&... args) const {
+ return std::forward<F>(f)(T(std::forward<Args>(args)...));
+ }
+ F&& f;
+};
+
+template <class T, class Tuple, size_t... Is, class F>
+decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
+ Tuple&& t, absl::index_sequence<Is...>, F&& f) {
+ return WithConstructedImplF<T, F>{std::forward<F>(f)}(
+ std::get<Is>(std::forward<Tuple>(t))...);
+}
+
+template <class T, size_t... Is>
+auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
+ -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
+ return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
+}
+
+// Returns a tuple of references to the elements of the input tuple. T must be a
+// tuple.
+template <class T>
+auto TupleRef(T&& t) -> decltype(
+ TupleRefImpl(std::forward<T>(t),
+ absl::make_index_sequence<
+ std::tuple_size<typename std::decay<T>::type>::value>())) {
+ return TupleRefImpl(
+ std::forward<T>(t),
+ absl::make_index_sequence<
+ std::tuple_size<typename std::decay<T>::type>::value>());
+}
+
+template <class F, class K, class V>
+decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
+ std::declval<std::tuple<K>>(), std::declval<V>()))
+DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
+ const auto& key = std::get<0>(p.first);
+ return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
+ std::move(p.second));
+}
+
+} // namespace memory_internal
+
+// Constructs T into uninitialized storage pointed by `ptr` using the args
+// specified in the tuple.
+template <class Alloc, class T, class Tuple>
+void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
+ memory_internal::ConstructFromTupleImpl(
+ alloc, ptr, std::forward<Tuple>(t),
+ absl::make_index_sequence<
+ std::tuple_size<typename std::decay<Tuple>::type>::value>());
+}
+
+// Constructs T using the args specified in the tuple and calls F with the
+// constructed value.
+template <class T, class Tuple, class F>
+decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
+ Tuple&& t, F&& f) {
+ return memory_internal::WithConstructedImpl<T>(
+ std::forward<Tuple>(t),
+ absl::make_index_sequence<
+ std::tuple_size<typename std::decay<Tuple>::type>::value>(),
+ std::forward<F>(f));
+}
+
+// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
+// tuples with references to the passed arguments. The tuples contain
+// constructor arguments for the first and the second elements of the pair.
+//
+// The following two snippets are equivalent.
+//
+// 1. std::pair<F, S> p(args...);
+//
+// 2. auto a = PairArgs(args...);
+// std::pair<F, S> p(std::piecewise_construct,
+// std::move(p.first), std::move(p.second));
+inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
+template <class F, class S>
+std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
+ return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
+ std::forward_as_tuple(std::forward<S>(s))};
+}
+template <class F, class S>
+std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
+ const std::pair<F, S>& p) {
+ return PairArgs(p.first, p.second);
+}
+template <class F, class S>
+std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
+ return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
+}
+template <class F, class S>
+auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
+ -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
+ memory_internal::TupleRef(std::forward<S>(s)))) {
+ return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
+ memory_internal::TupleRef(std::forward<S>(s)));
+}
+
+// A helper function for implementing apply() in map policies.
+template <class F, class... Args>
+auto DecomposePair(F&& f, Args&&... args)
+ -> decltype(memory_internal::DecomposePairImpl(
+ std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
+ return memory_internal::DecomposePairImpl(
+ std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
+}
+
+// A helper function for implementing apply() in set policies.
+template <class F, class Arg>
+decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
+DecomposeValue(F&& f, Arg&& arg) {
+ const auto& key = arg;
+ return std::forward<F>(f)(key, std::forward<Arg>(arg));
+}
+
+// Helper functions for asan and msan.
+inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
+#ifdef ADDRESS_SANITIZER
+ ASAN_POISON_MEMORY_REGION(m, s);
+#endif
+#ifdef MEMORY_SANITIZER
+ __msan_poison(m, s);
+#endif
+ (void)m;
+ (void)s;
+}
+
+inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
+#ifdef ADDRESS_SANITIZER
+ ASAN_UNPOISON_MEMORY_REGION(m, s);
+#endif
+#ifdef MEMORY_SANITIZER
+ __msan_unpoison(m, s);
+#endif
+ (void)m;
+ (void)s;
+}
+
+template <typename T>
+inline void SanitizerPoisonObject(const T* object) {
+ SanitizerPoisonMemoryRegion(object, sizeof(T));
+}
+
+template <typename T>
+inline void SanitizerUnpoisonObject(const T* object) {
+ SanitizerUnpoisonMemoryRegion(object, sizeof(T));
+}
+
+namespace memory_internal {
+
+// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
+// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
+// offsetof(Pair, second) respectively. Otherwise they are -1.
+//
+// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
+// type, which is non-portable.
+template <class Pair, class = std::true_type>
+struct OffsetOf {
+ static constexpr size_t kFirst = -1;
+ static constexpr size_t kSecond = -1;
+};
+
+template <class Pair>
+struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
+ static constexpr size_t kFirst = offsetof(Pair, first);
+ static constexpr size_t kSecond = offsetof(Pair, second);
+};
+
+template <class K, class V>
+struct IsLayoutCompatible {
+ private:
+ struct Pair {
+ K first;
+ V second;
+ };
+
+ // Is P layout-compatible with Pair?
+ template <class P>
+ static constexpr bool LayoutCompatible() {
+ return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
+ alignof(P) == alignof(Pair) &&
+ memory_internal::OffsetOf<P>::kFirst ==
+ memory_internal::OffsetOf<Pair>::kFirst &&
+ memory_internal::OffsetOf<P>::kSecond ==
+ memory_internal::OffsetOf<Pair>::kSecond;
+ }
+
+ public:
+ // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
+ // then it is safe to store them in a union and read from either.
+ static constexpr bool value = std::is_standard_layout<K>() &&
+ std::is_standard_layout<Pair>() &&
+ memory_internal::OffsetOf<Pair>::kFirst == 0 &&
+ LayoutCompatible<std::pair<K, V>>() &&
+ LayoutCompatible<std::pair<const K, V>>();
+};
+
+} // namespace memory_internal
+
+// If kMutableKeys is false, only the value member is accessed.
+//
+// If kMutableKeys is true, key is accessed through all slots while value and
+// mutable_value are accessed only via INITIALIZED slots. Slots are created and
+// destroyed via mutable_value so that the key can be moved later.
+template <class K, class V>
+union slot_type {
+ private:
+ static void emplace(slot_type* slot) {
+ // The construction of union doesn't do anything at runtime but it allows us
+ // to access its members without violating aliasing rules.
+ new (slot) slot_type;
+ }
+ // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
+ // or the other via slot_type. We are also free to access the key via
+ // slot_type::key in this case.
+ using kMutableKeys =
+ std::integral_constant<bool,
+ memory_internal::IsLayoutCompatible<K, V>::value>;
+
+ public:
+ slot_type() {}
+ ~slot_type() = delete;
+ using value_type = std::pair<const K, V>;
+ using mutable_value_type = std::pair<K, V>;
+
+ value_type value;
+ mutable_value_type mutable_value;
+ K key;
+
+ template <class Allocator, class... Args>
+ static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+ emplace(slot);
+ if (kMutableKeys::value) {
+ absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
+ std::forward<Args>(args)...);
+ } else {
+ absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
+ std::forward<Args>(args)...);
+ }
+ }
+
+ // Construct this slot by moving from another slot.
+ template <class Allocator>
+ static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
+ emplace(slot);
+ if (kMutableKeys::value) {
+ absl::allocator_traits<Allocator>::construct(
+ *alloc, &slot->mutable_value, std::move(other->mutable_value));
+ } else {
+ absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
+ std::move(other->value));
+ }
+ }
+
+ template <class Allocator>
+ static void destroy(Allocator* alloc, slot_type* slot) {
+ if (kMutableKeys::value) {
+ absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
+ } else {
+ absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
+ }
+ }
+
+ template <class Allocator>
+ static void transfer(Allocator* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ emplace(new_slot);
+ if (kMutableKeys::value) {
+ absl::allocator_traits<Allocator>::construct(
+ *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
+ } else {
+ absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
+ std::move(old_slot->value));
+ }
+ destroy(alloc, old_slot);
+ }
+
+ template <class Allocator>
+ static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
+ if (kMutableKeys::value) {
+ using std::swap;
+ swap(a->mutable_value, b->mutable_value);
+ } else {
+ value_type tmp = std::move(a->value);
+ absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
+ absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
+ std::move(b->value));
+ absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
+ absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
+ std::move(tmp));
+ }
+ }
+
+ template <class Allocator>
+ static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
+ if (kMutableKeys::value) {
+ dest->mutable_value = std::move(src->mutable_value);
+ } else {
+ absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
+ absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
+ std::move(src->value));
+ }
+ }
+
+ template <class Allocator>
+ static void move(Allocator* alloc, slot_type* first, slot_type* last,
+ slot_type* result) {
+ for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
+ move(alloc, src, dest);
+ }
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
diff --git a/absl/container/internal/container_memory_test.cc b/absl/container/internal/container_memory_test.cc
new file mode 100644
index 0000000..f1c4058
--- /dev/null
+++ b/absl/container/internal/container_memory_test.cc
@@ -0,0 +1,188 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/container_memory.h"
+
+#include <cstdint>
+#include <tuple>
+#include <utility>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::testing::Pair;
+
+TEST(Memory, AlignmentLargerThanBase) {
+ std::allocator<int8_t> alloc;
+ void* mem = Allocate<2>(&alloc, 3);
+ EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
+ memcpy(mem, "abc", 3);
+ Deallocate<2>(&alloc, mem, 3);
+}
+
+TEST(Memory, AlignmentSmallerThanBase) {
+ std::allocator<int64_t> alloc;
+ void* mem = Allocate<2>(&alloc, 3);
+ EXPECT_EQ(0, reinterpret_cast<uintptr_t>(mem) % 2);
+ memcpy(mem, "abc", 3);
+ Deallocate<2>(&alloc, mem, 3);
+}
+
+class Fixture : public ::testing::Test {
+ using Alloc = std::allocator<std::string>;
+
+ public:
+ Fixture() { ptr_ = std::allocator_traits<Alloc>::allocate(*alloc(), 1); }
+ ~Fixture() override {
+ std::allocator_traits<Alloc>::destroy(*alloc(), ptr_);
+ std::allocator_traits<Alloc>::deallocate(*alloc(), ptr_, 1);
+ }
+ std::string* ptr() { return ptr_; }
+ Alloc* alloc() { return &alloc_; }
+
+ private:
+ Alloc alloc_;
+ std::string* ptr_;
+};
+
+TEST_F(Fixture, ConstructNoArgs) {
+ ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple());
+ EXPECT_EQ(*ptr(), "");
+}
+
+TEST_F(Fixture, ConstructOneArg) {
+ ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple("abcde"));
+ EXPECT_EQ(*ptr(), "abcde");
+}
+
+TEST_F(Fixture, ConstructTwoArg) {
+ ConstructFromTuple(alloc(), ptr(), std::forward_as_tuple(5, 'a'));
+ EXPECT_EQ(*ptr(), "aaaaa");
+}
+
+TEST(PairArgs, NoArgs) {
+ EXPECT_THAT(PairArgs(),
+ Pair(std::forward_as_tuple(), std::forward_as_tuple()));
+}
+
+TEST(PairArgs, TwoArgs) {
+ EXPECT_EQ(
+ std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
+ PairArgs(1, 'A'));
+}
+
+TEST(PairArgs, Pair) {
+ EXPECT_EQ(
+ std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
+ PairArgs(std::make_pair(1, 'A')));
+}
+
+TEST(PairArgs, Piecewise) {
+ EXPECT_EQ(
+ std::make_pair(std::forward_as_tuple(1), std::forward_as_tuple('A')),
+ PairArgs(std::piecewise_construct, std::forward_as_tuple(1),
+ std::forward_as_tuple('A')));
+}
+
+TEST(WithConstructed, Simple) {
+ EXPECT_EQ(1, WithConstructed<absl::string_view>(
+ std::make_tuple(std::string("a")),
+ [](absl::string_view str) { return str.size(); }));
+}
+
+template <class F, class Arg>
+decltype(DecomposeValue(std::declval<F>(), std::declval<Arg>()))
+DecomposeValueImpl(int, F&& f, Arg&& arg) {
+ return DecomposeValue(std::forward<F>(f), std::forward<Arg>(arg));
+}
+
+template <class F, class Arg>
+const char* DecomposeValueImpl(char, F&& f, Arg&& arg) {
+ return "not decomposable";
+}
+
+template <class F, class Arg>
+decltype(DecomposeValueImpl(0, std::declval<F>(), std::declval<Arg>()))
+TryDecomposeValue(F&& f, Arg&& arg) {
+ return DecomposeValueImpl(0, std::forward<F>(f), std::forward<Arg>(arg));
+}
+
+TEST(DecomposeValue, Decomposable) {
+ auto f = [](const int& x, int&& y) {
+ EXPECT_EQ(&x, &y);
+ EXPECT_EQ(42, x);
+ return 'A';
+ };
+ EXPECT_EQ('A', TryDecomposeValue(f, 42));
+}
+
+TEST(DecomposeValue, NotDecomposable) {
+ auto f = [](void*) {
+ ADD_FAILURE() << "Must not be called";
+ return 'A';
+ };
+ EXPECT_STREQ("not decomposable", TryDecomposeValue(f, 42));
+}
+
+template <class F, class... Args>
+decltype(DecomposePair(std::declval<F>(), std::declval<Args>()...))
+DecomposePairImpl(int, F&& f, Args&&... args) {
+ return DecomposePair(std::forward<F>(f), std::forward<Args>(args)...);
+}
+
+template <class F, class... Args>
+const char* DecomposePairImpl(char, F&& f, Args&&... args) {
+ return "not decomposable";
+}
+
+template <class F, class... Args>
+decltype(DecomposePairImpl(0, std::declval<F>(), std::declval<Args>()...))
+TryDecomposePair(F&& f, Args&&... args) {
+ return DecomposePairImpl(0, std::forward<F>(f), std::forward<Args>(args)...);
+}
+
+TEST(DecomposePair, Decomposable) {
+ auto f = [](const int& x, std::piecewise_construct_t, std::tuple<int&&> k,
+ std::tuple<double>&& v) {
+ EXPECT_EQ(&x, &std::get<0>(k));
+ EXPECT_EQ(42, x);
+ EXPECT_EQ(0.5, std::get<0>(v));
+ return 'A';
+ };
+ EXPECT_EQ('A', TryDecomposePair(f, 42, 0.5));
+ EXPECT_EQ('A', TryDecomposePair(f, std::make_pair(42, 0.5)));
+ EXPECT_EQ('A', TryDecomposePair(f, std::piecewise_construct,
+ std::make_tuple(42), std::make_tuple(0.5)));
+}
+
+TEST(DecomposePair, NotDecomposable) {
+ auto f = [](...) {
+ ADD_FAILURE() << "Must not be called";
+ return 'A';
+ };
+ EXPECT_STREQ("not decomposable",
+ TryDecomposePair(f));
+ EXPECT_STREQ("not decomposable",
+ TryDecomposePair(f, std::piecewise_construct, std::make_tuple(),
+ std::make_tuple(0.5)));
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/hash_function_defaults.h b/absl/container/internal/hash_function_defaults.h
new file mode 100644
index 0000000..dd6cd8f
--- /dev/null
+++ b/absl/container/internal/hash_function_defaults.h
@@ -0,0 +1,148 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Define the default Hash and Eq functions for SwissTable containers.
+//
+// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
+// functions for SwissTable containers. There are two reasons for this.
+//
+// SwissTable containers are power of 2 sized containers:
+//
+// This means they use the lower bits of the hash value to find the slot for
+// each entry. The typical hash function for integral types is the identity.
+// This is a very weak hash function for SwissTable and any power of 2 sized
+// hashtable implementation which will lead to excessive collisions. For
+// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
+//
+// SwissTable containers support heterogeneous lookup:
+//
+// In order to make heterogeneous lookup work, hash and equal functions must be
+// polymorphic. At the same time they have to satisfy the same requirements the
+// C++ standard imposes on hash functions and equality operators. That is:
+//
+// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
+// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
+//
+// For SwissTable containers this requirement is relaxed to allow a and b of
+// any and possibly different types. Note that like the standard the hash and
+// equal functions are still bound to T. This is important because some type U
+// can be hashed by/tested for equality differently depending on T. A notable
+// example is `const char*`. `const char*` is treated as a c-style string when
+// the hash function is hash<string> but as a pointer when the hash function is
+// hash<void*>.
+//
+#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
+#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
+
+#include <stdint.h>
+#include <cstddef>
+#include <memory>
+#include <string>
+#include <type_traits>
+
+#include "absl/base/config.h"
+#include "absl/hash/hash.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+
+// The hash of an object of type T is computed by using absl::Hash.
+template <class T, class E = void>
+struct HashEq {
+ using Hash = absl::Hash<T>;
+ using Eq = std::equal_to<T>;
+};
+
+struct StringHash {
+ using is_transparent = void;
+
+ size_t operator()(absl::string_view v) const {
+ return absl::Hash<absl::string_view>{}(v);
+ }
+};
+
+// Supports heterogeneous lookup for string-like elements.
+struct StringHashEq {
+ using Hash = StringHash;
+ struct Eq {
+ using is_transparent = void;
+ bool operator()(absl::string_view lhs, absl::string_view rhs) const {
+ return lhs == rhs;
+ }
+ };
+};
+
+#if defined(HAS_GLOBAL_STRING)
+template <>
+struct HashEq<std::string> : StringHashEq {};
+#endif
+template <>
+struct HashEq<std::string> : StringHashEq {};
+template <>
+struct HashEq<absl::string_view> : StringHashEq {};
+
+// Supports heterogeneous lookup for pointers and smart pointers.
+template <class T>
+struct HashEq<T*> {
+ struct Hash {
+ using is_transparent = void;
+ template <class U>
+ size_t operator()(const U& ptr) const {
+ return absl::Hash<const T*>{}(HashEq::ToPtr(ptr));
+ }
+ };
+ struct Eq {
+ using is_transparent = void;
+ template <class A, class B>
+ bool operator()(const A& a, const B& b) const {
+ return HashEq::ToPtr(a) == HashEq::ToPtr(b);
+ }
+ };
+
+ private:
+ static const T* ToPtr(const T* ptr) { return ptr; }
+ template <class U, class D>
+ static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
+ return ptr.get();
+ }
+ template <class U>
+ static const T* ToPtr(const std::shared_ptr<U>& ptr) {
+ return ptr.get();
+ }
+};
+
+template <class T, class D>
+struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
+template <class T>
+struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
+
+// This header's visibility is restricted. If you need to access the default
+// hasher please use the container's ::hasher alias instead.
+//
+// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher
+template <class T>
+using hash_default_hash = typename container_internal::HashEq<T>::Hash;
+
+// This header's visibility is restricted. If you need to access the default
+// key equal please use the container's ::key_equal alias instead.
+//
+// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal
+template <class T>
+using hash_default_eq = typename container_internal::HashEq<T>::Eq;
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
diff --git a/absl/container/internal/hash_function_defaults_test.cc b/absl/container/internal/hash_function_defaults_test.cc
new file mode 100644
index 0000000..464baae
--- /dev/null
+++ b/absl/container/internal/hash_function_defaults_test.cc
@@ -0,0 +1,299 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/hash_function_defaults.h"
+
+#include <functional>
+#include <type_traits>
+#include <utility>
+
+#include "gtest/gtest.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::testing::Types;
+
+TEST(Eq, Int32) {
+ hash_default_eq<int32_t> eq;
+ EXPECT_TRUE(eq(1, 1u));
+ EXPECT_TRUE(eq(1, char{1}));
+ EXPECT_TRUE(eq(1, true));
+ EXPECT_TRUE(eq(1, double{1.1}));
+ EXPECT_FALSE(eq(1, char{2}));
+ EXPECT_FALSE(eq(1, 2u));
+ EXPECT_FALSE(eq(1, false));
+ EXPECT_FALSE(eq(1, 2.));
+}
+
+TEST(Hash, Int32) {
+ hash_default_hash<int32_t> hash;
+ auto h = hash(1);
+ EXPECT_EQ(h, hash(1u));
+ EXPECT_EQ(h, hash(char{1}));
+ EXPECT_EQ(h, hash(true));
+ EXPECT_EQ(h, hash(double{1.1}));
+ EXPECT_NE(h, hash(2u));
+ EXPECT_NE(h, hash(char{2}));
+ EXPECT_NE(h, hash(false));
+ EXPECT_NE(h, hash(2.));
+}
+
+enum class MyEnum { A, B, C, D };
+
+TEST(Eq, Enum) {
+ hash_default_eq<MyEnum> eq;
+ EXPECT_TRUE(eq(MyEnum::A, MyEnum::A));
+ EXPECT_FALSE(eq(MyEnum::A, MyEnum::B));
+}
+
+TEST(Hash, Enum) {
+ hash_default_hash<MyEnum> hash;
+
+ for (MyEnum e : {MyEnum::A, MyEnum::B, MyEnum::C}) {
+ auto h = hash(e);
+ EXPECT_EQ(h, hash_default_hash<int>{}(static_cast<int>(e)));
+ EXPECT_NE(h, hash(MyEnum::D));
+ }
+}
+
+using StringTypes = ::testing::Types<std::string, absl::string_view>;
+
+template <class T>
+struct EqString : ::testing::Test {
+ hash_default_eq<T> key_eq;
+};
+
+TYPED_TEST_CASE(EqString, StringTypes);
+
+template <class T>
+struct HashString : ::testing::Test {
+ hash_default_hash<T> hasher;
+};
+
+TYPED_TEST_CASE(HashString, StringTypes);
+
+TYPED_TEST(EqString, Works) {
+ auto eq = this->key_eq;
+ EXPECT_TRUE(eq("a", "a"));
+ EXPECT_TRUE(eq("a", absl::string_view("a")));
+ EXPECT_TRUE(eq("a", std::string("a")));
+ EXPECT_FALSE(eq("a", "b"));
+ EXPECT_FALSE(eq("a", absl::string_view("b")));
+ EXPECT_FALSE(eq("a", std::string("b")));
+}
+
+TYPED_TEST(HashString, Works) {
+ auto hash = this->hasher;
+ auto h = hash("a");
+ EXPECT_EQ(h, hash(absl::string_view("a")));
+ EXPECT_EQ(h, hash(std::string("a")));
+ EXPECT_NE(h, hash(absl::string_view("b")));
+ EXPECT_NE(h, hash(std::string("b")));
+}
+
+struct NoDeleter {
+ template <class T>
+ void operator()(const T* ptr) const {}
+};
+
+using PointerTypes =
+ ::testing::Types<const int*, int*, std::unique_ptr<const int>,
+ std::unique_ptr<const int, NoDeleter>,
+ std::unique_ptr<int>, std::unique_ptr<int, NoDeleter>,
+ std::shared_ptr<const int>, std::shared_ptr<int>>;
+
+template <class T>
+struct EqPointer : ::testing::Test {
+ hash_default_eq<T> key_eq;
+};
+
+TYPED_TEST_CASE(EqPointer, PointerTypes);
+
+template <class T>
+struct HashPointer : ::testing::Test {
+ hash_default_hash<T> hasher;
+};
+
+TYPED_TEST_CASE(HashPointer, PointerTypes);
+
+TYPED_TEST(EqPointer, Works) {
+ int dummy;
+ auto eq = this->key_eq;
+ auto sptr = std::make_shared<int>();
+ std::shared_ptr<const int> csptr = sptr;
+ int* ptr = sptr.get();
+ const int* cptr = ptr;
+ std::unique_ptr<int, NoDeleter> uptr(ptr);
+ std::unique_ptr<const int, NoDeleter> cuptr(ptr);
+
+ EXPECT_TRUE(eq(ptr, cptr));
+ EXPECT_TRUE(eq(ptr, sptr));
+ EXPECT_TRUE(eq(ptr, uptr));
+ EXPECT_TRUE(eq(ptr, csptr));
+ EXPECT_TRUE(eq(ptr, cuptr));
+ EXPECT_FALSE(eq(&dummy, cptr));
+ EXPECT_FALSE(eq(&dummy, sptr));
+ EXPECT_FALSE(eq(&dummy, uptr));
+ EXPECT_FALSE(eq(&dummy, csptr));
+ EXPECT_FALSE(eq(&dummy, cuptr));
+}
+
+TEST(Hash, DerivedAndBase) {
+ struct Base {};
+ struct Derived : Base {};
+
+ hash_default_hash<Base*> hasher;
+
+ Base base;
+ Derived derived;
+ EXPECT_NE(hasher(&base), hasher(&derived));
+ EXPECT_EQ(hasher(static_cast<Base*>(&derived)), hasher(&derived));
+
+ auto dp = std::make_shared<Derived>();
+ EXPECT_EQ(hasher(static_cast<Base*>(dp.get())), hasher(dp));
+}
+
+TEST(Hash, FunctionPointer) {
+ using Func = int (*)();
+ hash_default_hash<Func> hasher;
+ hash_default_eq<Func> eq;
+
+ Func p1 = [] { return 1; }, p2 = [] { return 2; };
+ EXPECT_EQ(hasher(p1), hasher(p1));
+ EXPECT_TRUE(eq(p1, p1));
+
+ EXPECT_NE(hasher(p1), hasher(p2));
+ EXPECT_FALSE(eq(p1, p2));
+}
+
+TYPED_TEST(HashPointer, Works) {
+ int dummy;
+ auto hash = this->hasher;
+ auto sptr = std::make_shared<int>();
+ std::shared_ptr<const int> csptr = sptr;
+ int* ptr = sptr.get();
+ const int* cptr = ptr;
+ std::unique_ptr<int, NoDeleter> uptr(ptr);
+ std::unique_ptr<const int, NoDeleter> cuptr(ptr);
+
+ EXPECT_EQ(hash(ptr), hash(cptr));
+ EXPECT_EQ(hash(ptr), hash(sptr));
+ EXPECT_EQ(hash(ptr), hash(uptr));
+ EXPECT_EQ(hash(ptr), hash(csptr));
+ EXPECT_EQ(hash(ptr), hash(cuptr));
+ EXPECT_NE(hash(&dummy), hash(cptr));
+ EXPECT_NE(hash(&dummy), hash(sptr));
+ EXPECT_NE(hash(&dummy), hash(uptr));
+ EXPECT_NE(hash(&dummy), hash(csptr));
+ EXPECT_NE(hash(&dummy), hash(cuptr));
+}
+
+// Cartesian product of (string, std::string, absl::string_view)
+// with (string, std::string, absl::string_view, const char*).
+using StringTypesCartesianProduct = Types<
+ // clang-format off
+
+ std::pair<std::string, std::string>,
+ std::pair<std::string, absl::string_view>,
+ std::pair<std::string, const char*>,
+
+ std::pair<absl::string_view, std::string>,
+ std::pair<absl::string_view, absl::string_view>,
+ std::pair<absl::string_view, const char*>>;
+// clang-format on
+
+constexpr char kFirstString[] = "abc123";
+constexpr char kSecondString[] = "ijk456";
+
+template <typename T>
+struct StringLikeTest : public ::testing::Test {
+ typename T::first_type a1{kFirstString};
+ typename T::second_type b1{kFirstString};
+ typename T::first_type a2{kSecondString};
+ typename T::second_type b2{kSecondString};
+ hash_default_eq<typename T::first_type> eq;
+ hash_default_hash<typename T::first_type> hash;
+};
+
+TYPED_TEST_CASE_P(StringLikeTest);
+
+TYPED_TEST_P(StringLikeTest, Eq) {
+ EXPECT_TRUE(this->eq(this->a1, this->b1));
+ EXPECT_TRUE(this->eq(this->b1, this->a1));
+}
+
+TYPED_TEST_P(StringLikeTest, NotEq) {
+ EXPECT_FALSE(this->eq(this->a1, this->b2));
+ EXPECT_FALSE(this->eq(this->b2, this->a1));
+}
+
+TYPED_TEST_P(StringLikeTest, HashEq) {
+ EXPECT_EQ(this->hash(this->a1), this->hash(this->b1));
+ EXPECT_EQ(this->hash(this->a2), this->hash(this->b2));
+ // It would be a poor hash function which collides on these strings.
+ EXPECT_NE(this->hash(this->a1), this->hash(this->b2));
+}
+
+TYPED_TEST_CASE(StringLikeTest, StringTypesCartesianProduct);
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
+
+enum Hash : size_t {
+ kStd = 0x2, // std::hash
+#ifdef _MSC_VER
+ kExtension = kStd, // In MSVC, std::hash == ::hash
+#else // _MSC_VER
+ kExtension = 0x4, // ::hash (GCC extension)
+#endif // _MSC_VER
+};
+
+// H is a bitmask of Hash enumerations.
+// Hashable<H> is hashable via all means specified in H.
+template <int H>
+struct Hashable {
+ static constexpr bool HashableBy(Hash h) { return h & H; }
+};
+
+namespace std {
+template <int H>
+struct hash<Hashable<H>> {
+ template <class E = Hashable<H>,
+ class = typename std::enable_if<E::HashableBy(kStd)>::type>
+ size_t operator()(E) const {
+ return kStd;
+ }
+};
+} // namespace std
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+template <class T>
+size_t Hash(const T& v) {
+ return hash_default_hash<T>()(v);
+}
+
+TEST(Delegate, HashDispatch) {
+ EXPECT_EQ(Hash(kStd), Hash(Hashable<kStd>()));
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/hash_generator_testing.cc b/absl/container/internal/hash_generator_testing.cc
new file mode 100644
index 0000000..0d6a9df
--- /dev/null
+++ b/absl/container/internal/hash_generator_testing.cc
@@ -0,0 +1,72 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/hash_generator_testing.h"
+
+#include <deque>
+
+namespace absl {
+namespace container_internal {
+namespace hash_internal {
+namespace {
+
+class RandomDeviceSeedSeq {
+ public:
+ using result_type = typename std::random_device::result_type;
+
+ template <class Iterator>
+ void generate(Iterator start, Iterator end) {
+ while (start != end) {
+ *start = gen_();
+ ++start;
+ }
+ }
+
+ private:
+ std::random_device gen_;
+};
+
+} // namespace
+
+std::mt19937_64* GetThreadLocalRng() {
+ RandomDeviceSeedSeq seed_seq;
+ thread_local auto* rng = new std::mt19937_64(seed_seq);
+ return rng;
+}
+
+std::string Generator<std::string>::operator()() const {
+ // NOLINTNEXTLINE(runtime/int)
+ std::uniform_int_distribution<short> chars(0x20, 0x7E);
+ std::string res;
+ res.resize(32);
+ std::generate(res.begin(), res.end(),
+ [&]() { return chars(*GetThreadLocalRng()); });
+ return res;
+}
+
+absl::string_view Generator<absl::string_view>::operator()() const {
+ static auto* arena = new std::deque<std::string>();
+ // NOLINTNEXTLINE(runtime/int)
+ std::uniform_int_distribution<short> chars(0x20, 0x7E);
+ arena->emplace_back();
+ auto& res = arena->back();
+ res.resize(32);
+ std::generate(res.begin(), res.end(),
+ [&]() { return chars(*GetThreadLocalRng()); });
+ return res;
+}
+
+} // namespace hash_internal
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/hash_generator_testing.h b/absl/container/internal/hash_generator_testing.h
new file mode 100644
index 0000000..50d7710
--- /dev/null
+++ b/absl/container/internal/hash_generator_testing.h
@@ -0,0 +1,150 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Generates random values for testing. Specialized only for the few types we
+// care about.
+
+#ifndef ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
+#define ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
+
+#include <stdint.h>
+#include <algorithm>
+#include <iosfwd>
+#include <random>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/container/internal/hash_policy_testing.h"
+#include "absl/meta/type_traits.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+namespace hash_internal {
+namespace generator_internal {
+
+template <class Container, class = void>
+struct IsMap : std::false_type {};
+
+template <class Map>
+struct IsMap<Map, absl::void_t<typename Map::mapped_type>> : std::true_type {};
+
+} // namespace generator_internal
+
+std::mt19937_64* GetThreadLocalRng();
+
+enum Enum {
+ kEnumEmpty,
+ kEnumDeleted,
+};
+
+enum class EnumClass : uint64_t {
+ kEmpty,
+ kDeleted,
+};
+
+inline std::ostream& operator<<(std::ostream& o, const EnumClass& ec) {
+ return o << static_cast<uint64_t>(ec);
+}
+
+template <class T, class E = void>
+struct Generator;
+
+template <class T>
+struct Generator<T, typename std::enable_if<std::is_integral<T>::value>::type> {
+ T operator()() const {
+ std::uniform_int_distribution<T> dist;
+ return dist(*GetThreadLocalRng());
+ }
+};
+
+template <>
+struct Generator<Enum> {
+ Enum operator()() const {
+ std::uniform_int_distribution<typename std::underlying_type<Enum>::type>
+ dist;
+ while (true) {
+ auto variate = dist(*GetThreadLocalRng());
+ if (variate != kEnumEmpty && variate != kEnumDeleted)
+ return static_cast<Enum>(variate);
+ }
+ }
+};
+
+template <>
+struct Generator<EnumClass> {
+ EnumClass operator()() const {
+ std::uniform_int_distribution<
+ typename std::underlying_type<EnumClass>::type>
+ dist;
+ while (true) {
+ EnumClass variate = static_cast<EnumClass>(dist(*GetThreadLocalRng()));
+ if (variate != EnumClass::kEmpty && variate != EnumClass::kDeleted)
+ return static_cast<EnumClass>(variate);
+ }
+ }
+};
+
+template <>
+struct Generator<std::string> {
+ std::string operator()() const;
+};
+
+template <>
+struct Generator<absl::string_view> {
+ absl::string_view operator()() const;
+};
+
+template <>
+struct Generator<NonStandardLayout> {
+ NonStandardLayout operator()() const {
+ return NonStandardLayout(Generator<std::string>()());
+ }
+};
+
+template <class K, class V>
+struct Generator<std::pair<K, V>> {
+ std::pair<K, V> operator()() const {
+ return std::pair<K, V>(Generator<typename std::decay<K>::type>()(),
+ Generator<typename std::decay<V>::type>()());
+ }
+};
+
+template <class... Ts>
+struct Generator<std::tuple<Ts...>> {
+ std::tuple<Ts...> operator()() const {
+ return std::tuple<Ts...>(Generator<typename std::decay<Ts>::type>()()...);
+ }
+};
+
+template <class U>
+struct Generator<U, absl::void_t<decltype(std::declval<U&>().key()),
+ decltype(std::declval<U&>().value())>>
+ : Generator<std::pair<
+ typename std::decay<decltype(std::declval<U&>().key())>::type,
+ typename std::decay<decltype(std::declval<U&>().value())>::type>> {};
+
+template <class Container>
+using GeneratedType = decltype(
+ std::declval<const Generator<
+ typename std::conditional<generator_internal::IsMap<Container>::value,
+ typename Container::value_type,
+ typename Container::key_type>::type>&>()());
+
+} // namespace hash_internal
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_HASH_GENERATOR_TESTING_H_
diff --git a/absl/container/internal/hash_policy_testing.h b/absl/container/internal/hash_policy_testing.h
new file mode 100644
index 0000000..ffc76ea
--- /dev/null
+++ b/absl/container/internal/hash_policy_testing.h
@@ -0,0 +1,178 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Utilities to help tests verify that hash tables properly handle stateful
+// allocators and hash functions.
+
+#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
+#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
+
+#include <cstdlib>
+#include <limits>
+#include <memory>
+#include <ostream>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/hash/hash.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+namespace hash_testing_internal {
+
+template <class Derived>
+struct WithId {
+ WithId() : id_(next_id<Derived>()) {}
+ WithId(const WithId& that) : id_(that.id_) {}
+ WithId(WithId&& that) : id_(that.id_) { that.id_ = 0; }
+ WithId& operator=(const WithId& that) {
+ id_ = that.id_;
+ return *this;
+ }
+ WithId& operator=(WithId&& that) {
+ id_ = that.id_;
+ that.id_ = 0;
+ return *this;
+ }
+
+ size_t id() const { return id_; }
+
+ friend bool operator==(const WithId& a, const WithId& b) {
+ return a.id_ == b.id_;
+ }
+ friend bool operator!=(const WithId& a, const WithId& b) { return !(a == b); }
+
+ protected:
+ explicit WithId(size_t id) : id_(id) {}
+
+ private:
+ size_t id_;
+
+ template <class T>
+ static size_t next_id() {
+ // 0 is reserved for moved from state.
+ static size_t gId = 1;
+ return gId++;
+ }
+};
+
+} // namespace hash_testing_internal
+
+struct NonStandardLayout {
+ NonStandardLayout() {}
+ explicit NonStandardLayout(std::string s) : value(std::move(s)) {}
+ virtual ~NonStandardLayout() {}
+
+ friend bool operator==(const NonStandardLayout& a,
+ const NonStandardLayout& b) {
+ return a.value == b.value;
+ }
+ friend bool operator!=(const NonStandardLayout& a,
+ const NonStandardLayout& b) {
+ return a.value != b.value;
+ }
+
+ template <typename H>
+ friend H AbslHashValue(H h, const NonStandardLayout& v) {
+ return H::combine(std::move(h), v.value);
+ }
+
+ std::string value;
+};
+
+struct StatefulTestingHash
+ : absl::container_internal::hash_testing_internal::WithId<
+ StatefulTestingHash> {
+ template <class T>
+ size_t operator()(const T& t) const {
+ return absl::Hash<T>{}(t);
+ }
+};
+
+struct StatefulTestingEqual
+ : absl::container_internal::hash_testing_internal::WithId<
+ StatefulTestingEqual> {
+ template <class T, class U>
+ bool operator()(const T& t, const U& u) const {
+ return t == u;
+ }
+};
+
+// It is expected that Alloc() == Alloc() for all allocators so we cannot use
+// WithId base. We need to explicitly assign ids.
+template <class T = int>
+struct Alloc : std::allocator<T> {
+ using propagate_on_container_swap = std::true_type;
+
+ // Using old paradigm for this to ensure compatibility.
+ explicit Alloc(size_t id = 0) : id_(id) {}
+
+ Alloc(const Alloc&) = default;
+ Alloc& operator=(const Alloc&) = default;
+
+ template <class U>
+ Alloc(const Alloc<U>& that) : std::allocator<T>(that), id_(that.id()) {}
+
+ template <class U>
+ struct rebind {
+ using other = Alloc<U>;
+ };
+
+ size_t id() const { return id_; }
+
+ friend bool operator==(const Alloc& a, const Alloc& b) {
+ return a.id_ == b.id_;
+ }
+ friend bool operator!=(const Alloc& a, const Alloc& b) { return !(a == b); }
+
+ private:
+ size_t id_ = std::numeric_limits<size_t>::max();
+};
+
+template <class Map>
+auto items(const Map& m) -> std::vector<
+ std::pair<typename Map::key_type, typename Map::mapped_type>> {
+ using std::get;
+ std::vector<std::pair<typename Map::key_type, typename Map::mapped_type>> res;
+ res.reserve(m.size());
+ for (const auto& v : m) res.emplace_back(get<0>(v), get<1>(v));
+ return res;
+}
+
+template <class Set>
+auto keys(const Set& s)
+ -> std::vector<typename std::decay<typename Set::key_type>::type> {
+ std::vector<typename std::decay<typename Set::key_type>::type> res;
+ res.reserve(s.size());
+ for (const auto& v : s) res.emplace_back(v);
+ return res;
+}
+
+} // namespace container_internal
+} // namespace absl
+
+// ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS is false for glibcxx versions
+// where the unordered containers are missing certain constructors that
+// take allocator arguments. This test is defined ad-hoc for the platforms
+// we care about (notably Crosstool 17) because libstdcxx's useless
+// versioning scheme precludes a more principled solution.
+#if defined(__GLIBCXX__) && __GLIBCXX__ <= 20140425
+#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 0
+#else
+#define ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS 1
+#endif
+
+#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TESTING_H_
diff --git a/absl/container/internal/hash_policy_testing_test.cc b/absl/container/internal/hash_policy_testing_test.cc
new file mode 100644
index 0000000..c215c42
--- /dev/null
+++ b/absl/container/internal/hash_policy_testing_test.cc
@@ -0,0 +1,43 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/hash_policy_testing.h"
+
+#include "gtest/gtest.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+TEST(_, Hash) {
+ StatefulTestingHash h1;
+ EXPECT_EQ(1, h1.id());
+ StatefulTestingHash h2;
+ EXPECT_EQ(2, h2.id());
+ StatefulTestingHash h1c(h1);
+ EXPECT_EQ(1, h1c.id());
+ StatefulTestingHash h2m(std::move(h2));
+ EXPECT_EQ(2, h2m.id());
+ EXPECT_EQ(0, h2.id());
+ StatefulTestingHash h3;
+ EXPECT_EQ(3, h3.id());
+ h3 = StatefulTestingHash();
+ EXPECT_EQ(4, h3.id());
+ h3 = std::move(h1);
+ EXPECT_EQ(1, h3.id());
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/hash_policy_traits.h b/absl/container/internal/hash_policy_traits.h
new file mode 100644
index 0000000..029e47e
--- /dev/null
+++ b/absl/container/internal/hash_policy_traits.h
@@ -0,0 +1,189 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
+#define ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
+
+#include <cstddef>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+#include "absl/meta/type_traits.h"
+
+namespace absl {
+namespace container_internal {
+
+// Defines how slots are initialized/destroyed/moved.
+template <class Policy, class = void>
+struct hash_policy_traits {
+ private:
+ struct ReturnKey {
+ // We return `Key` here.
+ // When Key=T&, we forward the lvalue reference.
+ // When Key=T, we return by value to avoid a dangling reference.
+ // eg, for string_hash_map.
+ template <class Key, class... Args>
+ Key operator()(Key&& k, const Args&...) const {
+ return std::forward<Key>(k);
+ }
+ };
+
+ template <class P = Policy, class = void>
+ struct ConstantIteratorsImpl : std::false_type {};
+
+ template <class P>
+ struct ConstantIteratorsImpl<P, absl::void_t<typename P::constant_iterators>>
+ : P::constant_iterators {};
+
+ public:
+ // The actual object stored in the hash table.
+ using slot_type = typename Policy::slot_type;
+
+ // The type of the keys stored in the hashtable.
+ using key_type = typename Policy::key_type;
+
+ // The argument type for insertions into the hashtable. This is different
+ // from value_type for increased performance. See initializer_list constructor
+ // and insert() member functions for more details.
+ using init_type = typename Policy::init_type;
+
+ using reference = decltype(Policy::element(std::declval<slot_type*>()));
+ using pointer = typename std::remove_reference<reference>::type*;
+ using value_type = typename std::remove_reference<reference>::type;
+
+ // Policies can set this variable to tell raw_hash_set that all iterators
+ // should be constant, even `iterator`. This is useful for set-like
+ // containers.
+ // Defaults to false if not provided by the policy.
+ using constant_iterators = ConstantIteratorsImpl<>;
+
+ // PRECONDITION: `slot` is UNINITIALIZED
+ // POSTCONDITION: `slot` is INITIALIZED
+ template <class Alloc, class... Args>
+ static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
+ Policy::construct(alloc, slot, std::forward<Args>(args)...);
+ }
+
+ // PRECONDITION: `slot` is INITIALIZED
+ // POSTCONDITION: `slot` is UNINITIALIZED
+ template <class Alloc>
+ static void destroy(Alloc* alloc, slot_type* slot) {
+ Policy::destroy(alloc, slot);
+ }
+
+ // Transfers the `old_slot` to `new_slot`. Any memory allocated by the
+ // allocator inside `old_slot` to `new_slot` can be transfered.
+ //
+ // OPTIONAL: defaults to:
+ //
+ // clone(new_slot, std::move(*old_slot));
+ // destroy(old_slot);
+ //
+ // PRECONDITION: `new_slot` is UNINITIALIZED and `old_slot` is INITIALIZED
+ // POSTCONDITION: `new_slot` is INITIALIZED and `old_slot` is
+ // UNINITIALIZED
+ template <class Alloc>
+ static void transfer(Alloc* alloc, slot_type* new_slot, slot_type* old_slot) {
+ transfer_impl(alloc, new_slot, old_slot, 0);
+ }
+
+ // PRECONDITION: `slot` is INITIALIZED
+ // POSTCONDITION: `slot` is INITIALIZED
+ template <class P = Policy>
+ static auto element(slot_type* slot) -> decltype(P::element(slot)) {
+ return P::element(slot);
+ }
+
+ // Returns the amount of memory owned by `slot`, exclusive of `sizeof(*slot)`.
+ //
+ // If `slot` is nullptr, returns the constant amount of memory owned by any
+ // full slot or -1 if slots own variable amounts of memory.
+ //
+ // PRECONDITION: `slot` is INITIALIZED or nullptr
+ template <class P = Policy>
+ static size_t space_used(const slot_type* slot) {
+ return P::space_used(slot);
+ }
+
+ // Provides generalized access to the key for elements, both for elements in
+ // the table and for elements that have not yet been inserted (or even
+ // constructed). We would like an API that allows us to say: `key(args...)`
+ // but we cannot do that for all cases, so we use this more general API that
+ // can be used for many things, including the following:
+ //
+ // - Given an element in a table, get its key.
+ // - Given an element initializer, get its key.
+ // - Given `emplace()` arguments, get the element key.
+ //
+ // Implementations of this must adhere to a very strict technical
+ // specification around aliasing and consuming arguments:
+ //
+ // Let `value_type` be the result type of `element()` without ref- and
+ // cv-qualifiers. The first argument is a functor, the rest are constructor
+ // arguments for `value_type`. Returns `std::forward<F>(f)(k, xs...)`, where
+ // `k` is the element key, and `xs...` are the new constructor arguments for
+ // `value_type`. It's allowed for `k` to alias `xs...`, and for both to alias
+ // `ts...`. The key won't be touched once `xs...` are used to construct an
+ // element; `ts...` won't be touched at all, which allows `apply()` to consume
+ // any rvalues among them.
+ //
+ // If `value_type` is constructible from `Ts&&...`, `Policy::apply()` must not
+ // trigger a hard compile error unless it originates from `f`. In other words,
+ // `Policy::apply()` must be SFINAE-friendly. If `value_type` is not
+ // constructible from `Ts&&...`, either SFINAE or a hard compile error is OK.
+ //
+ // If `Ts...` is `[cv] value_type[&]` or `[cv] init_type[&]`,
+ // `Policy::apply()` must work. A compile error is not allowed, SFINAE or not.
+ template <class F, class... Ts, class P = Policy>
+ static auto apply(F&& f, Ts&&... ts)
+ -> decltype(P::apply(std::forward<F>(f), std::forward<Ts>(ts)...)) {
+ return P::apply(std::forward<F>(f), std::forward<Ts>(ts)...);
+ }
+
+ // Returns the "key" portion of the slot.
+ // Used for node handle manipulation.
+ template <class P = Policy>
+ static auto key(slot_type* slot)
+ -> decltype(P::apply(ReturnKey(), element(slot))) {
+ return P::apply(ReturnKey(), element(slot));
+ }
+
+ // Returns the "value" (as opposed to the "key") portion of the element. Used
+ // by maps to implement `operator[]`, `at()` and `insert_or_assign()`.
+ template <class T, class P = Policy>
+ static auto value(T* elem) -> decltype(P::value(elem)) {
+ return P::value(elem);
+ }
+
+ private:
+ // Use auto -> decltype as an enabler.
+ template <class Alloc, class P = Policy>
+ static auto transfer_impl(Alloc* alloc, slot_type* new_slot,
+ slot_type* old_slot, int)
+ -> decltype((void)P::transfer(alloc, new_slot, old_slot)) {
+ P::transfer(alloc, new_slot, old_slot);
+ }
+ template <class Alloc>
+ static void transfer_impl(Alloc* alloc, slot_type* new_slot,
+ slot_type* old_slot, char) {
+ construct(alloc, new_slot, std::move(element(old_slot)));
+ destroy(alloc, old_slot);
+ }
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_HASH_POLICY_TRAITS_H_
diff --git a/absl/container/internal/hash_policy_traits_test.cc b/absl/container/internal/hash_policy_traits_test.cc
new file mode 100644
index 0000000..423f154
--- /dev/null
+++ b/absl/container/internal/hash_policy_traits_test.cc
@@ -0,0 +1,142 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/hash_policy_traits.h"
+
+#include <functional>
+#include <memory>
+#include <new>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::testing::MockFunction;
+using ::testing::Return;
+using ::testing::ReturnRef;
+
+using Alloc = std::allocator<int>;
+using Slot = int;
+
+struct PolicyWithoutOptionalOps {
+ using slot_type = Slot;
+ using key_type = Slot;
+ using init_type = Slot;
+
+ static std::function<void(void*, Slot*, Slot)> construct;
+ static std::function<void(void*, Slot*)> destroy;
+
+ static std::function<Slot&(Slot*)> element;
+ static int apply(int v) { return apply_impl(v); }
+ static std::function<int(int)> apply_impl;
+ static std::function<Slot&(Slot*)> value;
+};
+
+std::function<void(void*, Slot*, Slot)> PolicyWithoutOptionalOps::construct;
+std::function<void(void*, Slot*)> PolicyWithoutOptionalOps::destroy;
+
+std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::element;
+std::function<int(int)> PolicyWithoutOptionalOps::apply_impl;
+std::function<Slot&(Slot*)> PolicyWithoutOptionalOps::value;
+
+struct PolicyWithOptionalOps : PolicyWithoutOptionalOps {
+ static std::function<void(void*, Slot*, Slot*)> transfer;
+};
+
+std::function<void(void*, Slot*, Slot*)> PolicyWithOptionalOps::transfer;
+
+struct Test : ::testing::Test {
+ Test() {
+ PolicyWithoutOptionalOps::construct = [&](void* a1, Slot* a2, Slot a3) {
+ construct.Call(a1, a2, std::move(a3));
+ };
+ PolicyWithoutOptionalOps::destroy = [&](void* a1, Slot* a2) {
+ destroy.Call(a1, a2);
+ };
+
+ PolicyWithoutOptionalOps::element = [&](Slot* a1) -> Slot& {
+ return element.Call(a1);
+ };
+ PolicyWithoutOptionalOps::apply_impl = [&](int a1) -> int {
+ return apply.Call(a1);
+ };
+ PolicyWithoutOptionalOps::value = [&](Slot* a1) -> Slot& {
+ return value.Call(a1);
+ };
+
+ PolicyWithOptionalOps::transfer = [&](void* a1, Slot* a2, Slot* a3) {
+ return transfer.Call(a1, a2, a3);
+ };
+ }
+
+ std::allocator<int> alloc;
+ int a = 53;
+
+ MockFunction<void(void*, Slot*, Slot)> construct;
+ MockFunction<void(void*, Slot*)> destroy;
+
+ MockFunction<Slot&(Slot*)> element;
+ MockFunction<int(int)> apply;
+ MockFunction<Slot&(Slot*)> value;
+
+ MockFunction<void(void*, Slot*, Slot*)> transfer;
+};
+
+TEST_F(Test, construct) {
+ EXPECT_CALL(construct, Call(&alloc, &a, 53));
+ hash_policy_traits<PolicyWithoutOptionalOps>::construct(&alloc, &a, 53);
+}
+
+TEST_F(Test, destroy) {
+ EXPECT_CALL(destroy, Call(&alloc, &a));
+ hash_policy_traits<PolicyWithoutOptionalOps>::destroy(&alloc, &a);
+}
+
+TEST_F(Test, element) {
+ int b = 0;
+ EXPECT_CALL(element, Call(&a)).WillOnce(ReturnRef(b));
+ EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::element(&a));
+}
+
+TEST_F(Test, apply) {
+ EXPECT_CALL(apply, Call(42)).WillOnce(Return(1337));
+ EXPECT_EQ(1337, (hash_policy_traits<PolicyWithoutOptionalOps>::apply(42)));
+}
+
+TEST_F(Test, value) {
+ int b = 0;
+ EXPECT_CALL(value, Call(&a)).WillOnce(ReturnRef(b));
+ EXPECT_EQ(&b, &hash_policy_traits<PolicyWithoutOptionalOps>::value(&a));
+}
+
+TEST_F(Test, without_transfer) {
+ int b = 42;
+ EXPECT_CALL(element, Call(&b)).WillOnce(::testing::ReturnRef(b));
+ EXPECT_CALL(construct, Call(&alloc, &a, b));
+ EXPECT_CALL(destroy, Call(&alloc, &b));
+ hash_policy_traits<PolicyWithoutOptionalOps>::transfer(&alloc, &a, &b);
+}
+
+TEST_F(Test, with_transfer) {
+ int b = 42;
+ EXPECT_CALL(transfer, Call(&alloc, &a, &b));
+ hash_policy_traits<PolicyWithOptionalOps>::transfer(&alloc, &a, &b);
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/hashtable_debug.h b/absl/container/internal/hashtable_debug.h
new file mode 100644
index 0000000..c3bd65c
--- /dev/null
+++ b/absl/container/internal/hashtable_debug.h
@@ -0,0 +1,108 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// This library provides APIs to debug the probing behavior of hash tables.
+//
+// In general, the probing behavior is a black box for users and only the
+// side effects can be measured in the form of performance differences.
+// These APIs give a glimpse on the actual behavior of the probing algorithms in
+// these hashtables given a specified hash function and a set of elements.
+//
+// The probe count distribution can be used to assess the quality of the hash
+// function for that particular hash table. Note that a hash function that
+// performs well in one hash table implementation does not necessarily performs
+// well in a different one.
+//
+// This library supports std::unordered_{set,map}, dense_hash_{set,map} and
+// absl::{flat,node,string}_hash_{set,map}.
+
+#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
+#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
+
+#include <cstddef>
+#include <algorithm>
+#include <type_traits>
+#include <vector>
+
+#include "absl/container/internal/hashtable_debug_hooks.h"
+
+namespace absl {
+namespace container_internal {
+
+// Returns the number of probes required to lookup `key`. Returns 0 for a
+// search with no collisions. Higher values mean more hash collisions occurred;
+// however, the exact meaning of this number varies according to the container
+// type.
+template <typename C>
+size_t GetHashtableDebugNumProbes(
+ const C& c, const typename C::key_type& key) {
+ return absl::container_internal::hashtable_debug_internal::
+ HashtableDebugAccess<C>::GetNumProbes(c, key);
+}
+
+// Gets a histogram of the number of probes for each elements in the container.
+// The sum of all the values in the vector is equal to container.size().
+template <typename C>
+std::vector<size_t> GetHashtableDebugNumProbesHistogram(const C& container) {
+ std::vector<size_t> v;
+ for (auto it = container.begin(); it != container.end(); ++it) {
+ size_t num_probes = GetHashtableDebugNumProbes(
+ container,
+ absl::container_internal::hashtable_debug_internal::GetKey<C>(*it, 0));
+ v.resize(std::max(v.size(), num_probes + 1));
+ v[num_probes]++;
+ }
+ return v;
+}
+
+struct HashtableDebugProbeSummary {
+ size_t total_elements;
+ size_t total_num_probes;
+ double mean;
+};
+
+// Gets a summary of the probe count distribution for the elements in the
+// container.
+template <typename C>
+HashtableDebugProbeSummary GetHashtableDebugProbeSummary(const C& container) {
+ auto probes = GetHashtableDebugNumProbesHistogram(container);
+ HashtableDebugProbeSummary summary = {};
+ for (size_t i = 0; i < probes.size(); ++i) {
+ summary.total_elements += probes[i];
+ summary.total_num_probes += probes[i] * i;
+ }
+ summary.mean = 1.0 * summary.total_num_probes / summary.total_elements;
+ return summary;
+}
+
+// Returns the number of bytes requested from the allocator by the container
+// and not freed.
+template <typename C>
+size_t AllocatedByteSize(const C& c) {
+ return absl::container_internal::hashtable_debug_internal::
+ HashtableDebugAccess<C>::AllocatedByteSize(c);
+}
+
+// Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type `C`
+// and `c.size()` is equal to `num_elements`.
+template <typename C>
+size_t LowerBoundAllocatedByteSize(size_t num_elements) {
+ return absl::container_internal::hashtable_debug_internal::
+ HashtableDebugAccess<C>::LowerBoundAllocatedByteSize(num_elements);
+}
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_H_
diff --git a/absl/container/internal/hashtable_debug_hooks.h b/absl/container/internal/hashtable_debug_hooks.h
new file mode 100644
index 0000000..8f21972
--- /dev/null
+++ b/absl/container/internal/hashtable_debug_hooks.h
@@ -0,0 +1,81 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Provides the internal API for hashtable_debug.h.
+
+#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
+#define ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
+
+#include <cstddef>
+
+#include <algorithm>
+#include <type_traits>
+#include <vector>
+
+namespace absl {
+namespace container_internal {
+namespace hashtable_debug_internal {
+
+// If it is a map, call get<0>().
+using std::get;
+template <typename T, typename = typename T::mapped_type>
+auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) {
+ return get<0>(pair);
+}
+
+// If it is not a map, return the value directly.
+template <typename T>
+const typename T::key_type& GetKey(const typename T::key_type& key, char) {
+ return key;
+}
+
+// Containers should specialize this to provide debug information for that
+// container.
+template <class Container, typename Enabler = void>
+struct HashtableDebugAccess {
+ // Returns the number of probes required to find `key` in `c`. The "number of
+ // probes" is a concept that can vary by container. Implementations should
+ // return 0 when `key` was found in the minimum number of operations and
+ // should increment the result for each non-trivial operation required to find
+ // `key`.
+ //
+ // The default implementation uses the bucket api from the standard and thus
+ // works for `std::unordered_*` containers.
+ static size_t GetNumProbes(const Container& c,
+ const typename Container::key_type& key) {
+ if (!c.bucket_count()) return {};
+ size_t num_probes = 0;
+ size_t bucket = c.bucket(key);
+ for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) {
+ if (it == e) return num_probes;
+ if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes;
+ }
+ }
+
+ // Returns the number of bytes requested from the allocator by the container
+ // and not freed.
+ //
+ // static size_t AllocatedByteSize(const Container& c);
+
+ // Returns a tight lower bound for AllocatedByteSize(c) where `c` is of type
+ // `Container` and `c.size()` is equal to `num_elements`.
+ //
+ // static size_t LowerBoundAllocatedByteSize(size_t num_elements);
+};
+
+} // namespace hashtable_debug_internal
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_HASHTABLE_DEBUG_HOOKS_H_
diff --git a/absl/container/internal/layout.h b/absl/container/internal/layout.h
new file mode 100644
index 0000000..0c239fe
--- /dev/null
+++ b/absl/container/internal/layout.h
@@ -0,0 +1,732 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// MOTIVATION AND TUTORIAL
+//
+// If you want to put in a single heap allocation N doubles followed by M ints,
+// it's easy if N and M are known at compile time.
+//
+// struct S {
+// double a[N];
+// int b[M];
+// };
+//
+// S* p = new S;
+//
+// But what if N and M are known only in run time? Class template Layout to the
+// rescue! It's a portable generalization of the technique known as struct hack.
+//
+// // This object will tell us everything we need to know about the memory
+// // layout of double[N] followed by int[M]. It's structurally identical to
+// // size_t[2] that stores N and M. It's very cheap to create.
+// const Layout<double, int> layout(N, M);
+//
+// // Allocate enough memory for both arrays. `AllocSize()` tells us how much
+// // memory is needed. We are free to use any allocation function we want as
+// // long as it returns aligned memory.
+// std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
+//
+// // Obtain the pointer to the array of doubles.
+// // Equivalent to `reinterpret_cast<double*>(p.get())`.
+// //
+// // We could have written layout.Pointer<0>(p) instead. If all the types are
+// // unique you can use either form, but if some types are repeated you must
+// // use the index form.
+// double* a = layout.Pointer<double>(p.get());
+//
+// // Obtain the pointer to the array of ints.
+// // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
+// int* b = layout.Pointer<int>(p);
+//
+// If we are unable to specify sizes of all fields, we can pass as many sizes as
+// we can to `Partial()`. In return, it'll allow us to access the fields whose
+// locations and sizes can be computed from the provided information.
+// `Partial()` comes in handy when the array sizes are embedded into the
+// allocation.
+//
+// // size_t[1] containing N, size_t[1] containing M, double[N], int[M].
+// using L = Layout<size_t, size_t, double, int>;
+//
+// unsigned char* Allocate(size_t n, size_t m) {
+// const L layout(1, 1, n, m);
+// unsigned char* p = new unsigned char[layout.AllocSize()];
+// *layout.Pointer<0>(p) = n;
+// *layout.Pointer<1>(p) = m;
+// return p;
+// }
+//
+// void Use(unsigned char* p) {
+// // First, extract N and M.
+// // Specify that the first array has only one element. Using `prefix` we
+// // can access the first two arrays but not more.
+// constexpr auto prefix = L::Partial(1);
+// size_t n = *prefix.Pointer<0>(p);
+// size_t m = *prefix.Pointer<1>(p);
+//
+// // Now we can get pointers to the payload.
+// const L layout(1, 1, n, m);
+// double* a = layout.Pointer<double>(p);
+// int* b = layout.Pointer<int>(p);
+// }
+//
+// The layout we used above combines fixed-size with dynamically-sized fields.
+// This is quite common. Layout is optimized for this use case and generates
+// optimal code. All computations that can be performed at compile time are
+// indeed performed at compile time.
+//
+// Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
+// ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
+// padding in between arrays.
+//
+// You can manually override the alignment of an array by wrapping the type in
+// `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
+// and behavior as `Layout<..., T, ...>` except that the first element of the
+// array of `T` is aligned to `N` (the rest of the elements follow without
+// padding). `N` cannot be less than `alignof(T)`.
+//
+// `AllocSize()` and `Pointer()` are the most basic methods for dealing with
+// memory layouts. Check out the reference or code below to discover more.
+//
+// EXAMPLE
+//
+// // Immutable move-only string with sizeof equal to sizeof(void*). The
+// // string size and the characters are kept in the same heap allocation.
+// class CompactString {
+// public:
+// CompactString(const char* s = "") {
+// const size_t size = strlen(s);
+// // size_t[1] followed by char[size + 1].
+// const L layout(1, size + 1);
+// p_.reset(new unsigned char[layout.AllocSize()]);
+// // If running under ASAN, mark the padding bytes, if any, to catch
+// // memory errors.
+// layout.PoisonPadding(p_.get());
+// // Store the size in the allocation.
+// *layout.Pointer<size_t>(p_.get()) = size;
+// // Store the characters in the allocation.
+// memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
+// }
+//
+// size_t size() const {
+// // Equivalent to reinterpret_cast<size_t&>(*p).
+// return *L::Partial().Pointer<size_t>(p_.get());
+// }
+//
+// const char* c_str() const {
+// // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
+// // The argument in Partial(1) specifies that we have size_t[1] in front
+// // of the characters.
+// return L::Partial(1).Pointer<char>(p_.get());
+// }
+//
+// private:
+// // Our heap allocation contains a size_t followed by an array of chars.
+// using L = Layout<size_t, char>;
+// std::unique_ptr<unsigned char[]> p_;
+// };
+//
+// int main() {
+// CompactString s = "hello";
+// assert(s.size() == 5);
+// assert(strcmp(s.c_str(), "hello") == 0);
+// }
+//
+// DOCUMENTATION
+//
+// The interface exported by this file consists of:
+// - class `Layout<>` and its public members.
+// - The public members of class `internal_layout::LayoutImpl<>`. That class
+// isn't intended to be used directly, and its name and template parameter
+// list are internal implementation details, but the class itself provides
+// most of the functionality in this file. See comments on its members for
+// detailed documentation.
+//
+// `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
+// `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
+// creates a `Layout` object, which exposes the same functionality by inheriting
+// from `LayoutImpl<>`.
+
+#ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
+#define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <ostream>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <typeinfo>
+#include <utility>
+
+#ifdef ADDRESS_SANITIZER
+#include <sanitizer/asan_interface.h>
+#endif
+
+#include "absl/meta/type_traits.h"
+#include "absl/strings/str_cat.h"
+#include "absl/types/span.h"
+#include "absl/utility/utility.h"
+
+#if defined(__GXX_RTTI)
+#define ABSL_INTERNAL_HAS_CXA_DEMANGLE
+#endif
+
+#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
+#include <cxxabi.h>
+#endif
+
+namespace absl {
+namespace container_internal {
+
+// A type wrapper that instructs `Layout` to use the specific alignment for the
+// array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
+// and behavior as `Layout<..., T, ...>` except that the first element of the
+// array of `T` is aligned to `N` (the rest of the elements follow without
+// padding).
+//
+// Requires: `N >= alignof(T)` and `N` is a power of 2.
+template <class T, size_t N>
+struct Aligned;
+
+namespace internal_layout {
+
+template <class T>
+struct NotAligned {};
+
+template <class T, size_t N>
+struct NotAligned<const Aligned<T, N>> {
+ static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
+};
+
+template <size_t>
+using IntToSize = size_t;
+
+template <class>
+using TypeToSize = size_t;
+
+template <class T>
+struct Type : NotAligned<T> {
+ using type = T;
+};
+
+template <class T, size_t N>
+struct Type<Aligned<T, N>> {
+ using type = T;
+};
+
+template <class T>
+struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
+
+template <class T, size_t N>
+struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
+
+template <class T>
+struct AlignOf : NotAligned<T>, std::integral_constant<size_t, alignof(T)> {};
+
+template <class T, size_t N>
+struct AlignOf<Aligned<T, N>> : std::integral_constant<size_t, N> {
+ static_assert(N % alignof(T) == 0,
+ "Custom alignment can't be lower than the type's alignment");
+};
+
+// Does `Ts...` contain `T`?
+template <class T, class... Ts>
+using Contains = absl::disjunction<std::is_same<T, Ts>...>;
+
+template <class From, class To>
+using CopyConst =
+ typename std::conditional<std::is_const<From>::value, const To, To>::type;
+
+template <class T>
+using SliceType = absl::Span<T>;
+
+// This namespace contains no types. It prevents functions defined in it from
+// being found by ADL.
+namespace adl_barrier {
+
+template <class Needle, class... Ts>
+constexpr size_t Find(Needle, Needle, Ts...) {
+ static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
+ return 0;
+}
+
+template <class Needle, class T, class... Ts>
+constexpr size_t Find(Needle, T, Ts...) {
+ return adl_barrier::Find(Needle(), Ts()...) + 1;
+}
+
+constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
+
+// Returns `q * m` for the smallest `q` such that `q * m >= n`.
+// Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
+constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
+
+constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
+
+constexpr size_t Max(size_t a) { return a; }
+
+template <class... Ts>
+constexpr size_t Max(size_t a, size_t b, Ts... rest) {
+ return adl_barrier::Max(b < a ? a : b, rest...);
+}
+
+template <class T>
+std::string TypeName() {
+ std::string out;
+ int status = 0;
+ char* demangled = nullptr;
+#ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE
+ demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status);
+#endif
+ if (status == 0 && demangled != nullptr) { // Demangling succeeeded.
+ absl::StrAppend(&out, "<", demangled, ">");
+ free(demangled);
+ } else {
+#if defined(__GXX_RTTI) || defined(_CPPRTTI)
+ absl::StrAppend(&out, "<", typeid(T).name(), ">");
+#endif
+ }
+ return out;
+}
+
+} // namespace adl_barrier
+
+template <bool C>
+using EnableIf = typename std::enable_if<C, int>::type;
+
+// Can `T` be a template argument of `Layout`?
+template <class T>
+using IsLegalElementType = std::integral_constant<
+ bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
+ !std::is_reference<typename Type<T>::type>::value &&
+ !std::is_volatile<typename Type<T>::type>::value &&
+ adl_barrier::IsPow2(AlignOf<T>::value)>;
+
+template <class Elements, class SizeSeq, class OffsetSeq>
+class LayoutImpl;
+
+// Public base class of `Layout` and the result type of `Layout::Partial()`.
+//
+// `Elements...` contains all template arguments of `Layout` that created this
+// instance.
+//
+// `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments
+// passed to `Layout::Partial()` or `Layout::Layout()`.
+//
+// `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
+// `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
+// can compute offsets).
+template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq>
+class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>,
+ absl::index_sequence<OffsetSeq...>> {
+ private:
+ static_assert(sizeof...(Elements) > 0, "At least one field is required");
+ static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
+ "Invalid element type (see IsLegalElementType)");
+
+ enum {
+ NumTypes = sizeof...(Elements),
+ NumSizes = sizeof...(SizeSeq),
+ NumOffsets = sizeof...(OffsetSeq),
+ };
+
+ // These are guaranteed by `Layout`.
+ static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
+ "Internal error");
+ static_assert(NumTypes > 0, "Internal error");
+
+ // Returns the index of `T` in `Elements...`. Results in a compilation error
+ // if `Elements...` doesn't contain exactly one instance of `T`.
+ template <class T>
+ static constexpr size_t ElementIndex() {
+ static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
+ "Type not found");
+ return adl_barrier::Find(Type<T>(),
+ Type<typename Type<Elements>::type>()...);
+ }
+
+ template <size_t N>
+ using ElementAlignment =
+ AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
+
+ public:
+ // Element types of all arrays packed in a tuple.
+ using ElementTypes = std::tuple<typename Type<Elements>::type...>;
+
+ // Element type of the Nth array.
+ template <size_t N>
+ using ElementType = typename std::tuple_element<N, ElementTypes>::type;
+
+ constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes)
+ : size_{sizes...} {}
+
+ // Alignment of the layout, equal to the strictest alignment of all elements.
+ // All pointers passed to the methods of layout must be aligned to this value.
+ static constexpr size_t Alignment() {
+ return adl_barrier::Max(AlignOf<Elements>::value...);
+ }
+
+ // Offset in bytes of the Nth array.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // assert(x.Offset<0>() == 0); // The ints starts from 0.
+ // assert(x.Offset<1>() == 16); // The doubles starts from 16.
+ //
+ // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
+ template <size_t N, EnableIf<N == 0> = 0>
+ constexpr size_t Offset() const {
+ return 0;
+ }
+
+ template <size_t N, EnableIf<N != 0> = 0>
+ constexpr size_t Offset() const {
+ static_assert(N < NumOffsets, "Index out of bounds");
+ return adl_barrier::Align(
+ Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1],
+ ElementAlignment<N>());
+ }
+
+ // Offset in bytes of the array with the specified element type. There must
+ // be exactly one such array and its zero-based index must be at most
+ // `NumSizes`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // assert(x.Offset<int>() == 0); // The ints starts from 0.
+ // assert(x.Offset<double>() == 16); // The doubles starts from 16.
+ template <class T>
+ constexpr size_t Offset() const {
+ return Offset<ElementIndex<T>()>();
+ }
+
+ // Offsets in bytes of all arrays for which the offsets are known.
+ constexpr std::array<size_t, NumOffsets> Offsets() const {
+ return {{Offset<OffsetSeq>()...}};
+ }
+
+ // The number of elements in the Nth array. This is the Nth argument of
+ // `Layout::Partial()` or `Layout::Layout()` (zero-based).
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // assert(x.Size<0>() == 3);
+ // assert(x.Size<1>() == 4);
+ //
+ // Requires: `N < NumSizes`.
+ template <size_t N>
+ constexpr size_t Size() const {
+ static_assert(N < NumSizes, "Index out of bounds");
+ return size_[N];
+ }
+
+ // The number of elements in the array with the specified element type.
+ // There must be exactly one such array and its zero-based index must be
+ // at most `NumSizes`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // assert(x.Size<int>() == 3);
+ // assert(x.Size<double>() == 4);
+ template <class T>
+ constexpr size_t Size() const {
+ return Size<ElementIndex<T>()>();
+ }
+
+ // The number of elements of all arrays for which they are known.
+ constexpr std::array<size_t, NumSizes> Sizes() const {
+ return {{Size<SizeSeq>()...}};
+ }
+
+ // Pointer to the beginning of the Nth array.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = unsigned char[x.AllocSize()];
+ // int* ints = x.Pointer<0>(p);
+ // double* doubles = x.Pointer<1>(p);
+ //
+ // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
+ // Requires: `p` is aligned to `Alignment()`.
+ template <size_t N, class Char>
+ CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
+ using C = typename std::remove_const<Char>::type;
+ static_assert(
+ std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
+ std::is_same<C, signed char>(),
+ "The argument must be a pointer to [const] [signed|unsigned] char");
+ constexpr size_t alignment = Alignment();
+ (void)alignment;
+ assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
+ return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
+ }
+
+ // Pointer to the beginning of the array with the specified element type.
+ // There must be exactly one such array and its zero-based index must be at
+ // most `NumSizes`.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()];
+ // int* ints = x.Pointer<int>(p);
+ // double* doubles = x.Pointer<double>(p);
+ //
+ // Requires: `p` is aligned to `Alignment()`.
+ template <class T, class Char>
+ CopyConst<Char, T>* Pointer(Char* p) const {
+ return Pointer<ElementIndex<T>()>(p);
+ }
+
+ // Pointers to all arrays for which pointers are known.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()];
+ //
+ // int* ints;
+ // double* doubles;
+ // std::tie(ints, doubles) = x.Pointers(p);
+ //
+ // Requires: `p` is aligned to `Alignment()`.
+ //
+ // Note: We're not using ElementType alias here because it does not compile
+ // under MSVC.
+ template <class Char>
+ std::tuple<CopyConst<
+ Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...>
+ Pointers(Char* p) const {
+ return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
+ Pointer<OffsetSeq>(p)...);
+ }
+
+ // The Nth array.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()];
+ // Span<int> ints = x.Slice<0>(p);
+ // Span<double> doubles = x.Slice<1>(p);
+ //
+ // Requires: `N < NumSizes`.
+ // Requires: `p` is aligned to `Alignment()`.
+ template <size_t N, class Char>
+ SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
+ return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
+ }
+
+ // The array with the specified element type. There must be exactly one
+ // such array and its zero-based index must be less than `NumSizes`.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()];
+ // Span<int> ints = x.Slice<int>(p);
+ // Span<double> doubles = x.Slice<double>(p);
+ //
+ // Requires: `p` is aligned to `Alignment()`.
+ template <class T, class Char>
+ SliceType<CopyConst<Char, T>> Slice(Char* p) const {
+ return Slice<ElementIndex<T>()>(p);
+ }
+
+ // All arrays with known sizes.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()];
+ //
+ // Span<int> ints;
+ // Span<double> doubles;
+ // std::tie(ints, doubles) = x.Slices(p);
+ //
+ // Requires: `p` is aligned to `Alignment()`.
+ //
+ // Note: We're not using ElementType alias here because it does not compile
+ // under MSVC.
+ template <class Char>
+ std::tuple<SliceType<CopyConst<
+ Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...>
+ Slices(Char* p) const {
+ // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed
+ // in 6.1).
+ (void)p;
+ return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
+ Slice<SizeSeq>(p)...);
+ }
+
+ // The size of the allocation that fits all arrays.
+ //
+ // // int[3], 4 bytes of padding, double[4].
+ // Layout<int, double> x(3, 4);
+ // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes
+ //
+ // Requires: `NumSizes == sizeof...(Ts)`.
+ constexpr size_t AllocSize() const {
+ static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
+ return Offset<NumTypes - 1>() +
+ SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1];
+ }
+
+ // If built with --config=asan, poisons padding bytes (if any) in the
+ // allocation. The pointer must point to a memory block at least
+ // `AllocSize()` bytes in length.
+ //
+ // `Char` must be `[const] [signed|unsigned] char`.
+ //
+ // Requires: `p` is aligned to `Alignment()`.
+ template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0>
+ void PoisonPadding(const Char* p) const {
+ Pointer<0>(p); // verify the requirements on `Char` and `p`
+ }
+
+ template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0>
+ void PoisonPadding(const Char* p) const {
+ static_assert(N < NumOffsets, "Index out of bounds");
+ (void)p;
+#ifdef ADDRESS_SANITIZER
+ PoisonPadding<Char, N - 1>(p);
+ // The `if` is an optimization. It doesn't affect the observable behaviour.
+ if (ElementAlignment<N - 1>() % ElementAlignment<N>()) {
+ size_t start =
+ Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1];
+ ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
+ }
+#endif
+ }
+
+ // Human-readable description of the memory layout. Useful for debugging.
+ // Slow.
+ //
+ // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
+ // // by an unknown number of doubles.
+ // auto x = Layout<char, int, double>::Partial(5, 3);
+ // assert(x.DebugString() ==
+ // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
+ //
+ // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
+ // may be missing depending on the target platform). For example,
+ // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
+ // int is 4 bytes, and we have 3 of those ints. The size of the last field may
+ // be missing (as in the example above). Only fields with known offsets are
+ // described. Type names may differ across platforms: one compiler might
+ // produce "unsigned*" where another produces "unsigned int *".
+ std::string DebugString() const {
+ const auto offsets = Offsets();
+ const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...};
+ const std::string types[] = {adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
+ std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
+ for (size_t i = 0; i != NumOffsets - 1; ++i) {
+ absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1],
+ "(", sizes[i + 1], ")");
+ }
+ // NumSizes is a constant that may be zero. Some compilers cannot see that
+ // inside the if statement "size_[NumSizes - 1]" must be valid.
+ int last = static_cast<int>(NumSizes) - 1;
+ if (NumTypes == NumSizes && last >= 0) {
+ absl::StrAppend(&res, "[", size_[last], "]");
+ }
+ return res;
+ }
+
+ private:
+ // Arguments of `Layout::Partial()` or `Layout::Layout()`.
+ size_t size_[NumSizes > 0 ? NumSizes : 1];
+};
+
+template <size_t NumSizes, class... Ts>
+using LayoutType = LayoutImpl<
+ std::tuple<Ts...>, absl::make_index_sequence<NumSizes>,
+ absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>;
+
+} // namespace internal_layout
+
+// Descriptor of arrays of various types and sizes laid out in memory one after
+// another. See the top of the file for documentation.
+//
+// Check out the public API of internal_layout::LayoutImpl above. The type is
+// internal to the library but its methods are public, and they are inherited
+// by `Layout`.
+template <class... Ts>
+class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> {
+ public:
+ static_assert(sizeof...(Ts) > 0, "At least one field is required");
+ static_assert(
+ absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value,
+ "Invalid element type (see IsLegalElementType)");
+
+ // The result type of `Partial()` with `NumSizes` arguments.
+ template <size_t NumSizes>
+ using PartialType = internal_layout::LayoutType<NumSizes, Ts...>;
+
+ // `Layout` knows the element types of the arrays we want to lay out in
+ // memory but not the number of elements in each array.
+ // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
+ // resulting immutable object can be used to obtain pointers to the
+ // individual arrays.
+ //
+ // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
+ // if all you need is to the offset of the second array, you only need to
+ // pass one argument -- the number of elements in the first arrays.
+ //
+ // // int[3] followed by 4 bytes of padding and an unknown number of
+ // // doubles.
+ // auto x = Layout<int, double>::Partial(3);
+ // // doubles start at byte 16.
+ // assert(x.Offset<1>() == 16);
+ //
+ // If you know the number of elements in all arrays, you can still call
+ // `Partial()` but it's more convenient to use the constructor of `Layout`.
+ //
+ // Layout<int, double> x(3, 5);
+ //
+ // Note: The sizes of the arrays must be specified in number of elements,
+ // not in bytes.
+ //
+ // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`.
+ // Requires: all arguments are convertible to `size_t`.
+ template <class... Sizes>
+ static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
+ static_assert(sizeof...(Sizes) <= sizeof...(Ts), "");
+ return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...);
+ }
+
+ // Creates a layout with the sizes of all arrays specified. If you know
+ // only the sizes of the first N arrays (where N can be zero), you can use
+ // `Partial()` defined above. The constructor is essentially equivalent to
+ // calling `Partial()` and passing in all array sizes; the constructor is
+ // provided as a convenient abbreviation.
+ //
+ // Note: The sizes of the arrays must be specified in number of elements,
+ // not in bytes.
+ constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes)
+ : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {}
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
diff --git a/absl/container/internal/layout_test.cc b/absl/container/internal/layout_test.cc
new file mode 100644
index 0000000..f35157a
--- /dev/null
+++ b/absl/container/internal/layout_test.cc
@@ -0,0 +1,1552 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/layout.h"
+
+// We need ::max_align_t because some libstdc++ versions don't provide
+// std::max_align_t
+#include <stddef.h>
+#include <cstdint>
+#include <memory>
+#include <sstream>
+#include <type_traits>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/types/span.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::absl::Span;
+using ::testing::ElementsAre;
+
+size_t Distance(const void* from, const void* to) {
+ ABSL_RAW_CHECK(from <= to, "Distance must be non-negative");
+ return static_cast<const char*>(to) - static_cast<const char*>(from);
+}
+
+template <class Expected, class Actual>
+Expected Type(Actual val) {
+ static_assert(std::is_same<Expected, Actual>(), "");
+ return val;
+}
+
+using Int128 = int64_t[2];
+
+// Properties of types that this test relies on.
+static_assert(sizeof(int8_t) == 1, "");
+static_assert(alignof(int8_t) == 1, "");
+static_assert(sizeof(int16_t) == 2, "");
+static_assert(alignof(int16_t) == 2, "");
+static_assert(sizeof(int32_t) == 4, "");
+static_assert(alignof(int32_t) == 4, "");
+static_assert(sizeof(Int128) == 16, "");
+static_assert(alignof(Int128) == 8, "");
+
+template <class Expected, class Actual>
+void SameType() {
+ static_assert(std::is_same<Expected, Actual>(), "");
+}
+
+TEST(Layout, ElementType) {
+ {
+ using L = Layout<int32_t>;
+ SameType<int32_t, L::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial())::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial(0))::ElementType<0>>();
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ SameType<int32_t, L::ElementType<0>>();
+ SameType<int32_t, L::ElementType<1>>();
+ SameType<int32_t, decltype(L::Partial())::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial())::ElementType<1>>();
+ SameType<int32_t, decltype(L::Partial(0))::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial(0))::ElementType<1>>();
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ SameType<int8_t, L::ElementType<0>>();
+ SameType<int32_t, L::ElementType<1>>();
+ SameType<Int128, L::ElementType<2>>();
+ SameType<int8_t, decltype(L::Partial())::ElementType<0>>();
+ SameType<int8_t, decltype(L::Partial(0))::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial(0))::ElementType<1>>();
+ SameType<int8_t, decltype(L::Partial(0, 0))::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial(0, 0))::ElementType<1>>();
+ SameType<Int128, decltype(L::Partial(0, 0))::ElementType<2>>();
+ SameType<int8_t, decltype(L::Partial(0, 0, 0))::ElementType<0>>();
+ SameType<int32_t, decltype(L::Partial(0, 0, 0))::ElementType<1>>();
+ SameType<Int128, decltype(L::Partial(0, 0, 0))::ElementType<2>>();
+ }
+}
+
+TEST(Layout, ElementTypes) {
+ {
+ using L = Layout<int32_t>;
+ SameType<std::tuple<int32_t>, L::ElementTypes>();
+ SameType<std::tuple<int32_t>, decltype(L::Partial())::ElementTypes>();
+ SameType<std::tuple<int32_t>, decltype(L::Partial(0))::ElementTypes>();
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ SameType<std::tuple<int32_t, int32_t>, L::ElementTypes>();
+ SameType<std::tuple<int32_t, int32_t>, decltype(L::Partial())::ElementTypes>();
+ SameType<std::tuple<int32_t, int32_t>, decltype(L::Partial(0))::ElementTypes>();
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ SameType<std::tuple<int8_t, int32_t, Int128>, L::ElementTypes>();
+ SameType<std::tuple<int8_t, int32_t, Int128>,
+ decltype(L::Partial())::ElementTypes>();
+ SameType<std::tuple<int8_t, int32_t, Int128>,
+ decltype(L::Partial(0))::ElementTypes>();
+ SameType<std::tuple<int8_t, int32_t, Int128>,
+ decltype(L::Partial(0, 0))::ElementTypes>();
+ SameType<std::tuple<int8_t, int32_t, Int128>,
+ decltype(L::Partial(0, 0, 0))::ElementTypes>();
+ }
+}
+
+TEST(Layout, OffsetByIndex) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial().Offset<0>());
+ EXPECT_EQ(0, L::Partial(3).Offset<0>());
+ EXPECT_EQ(0, L(3).Offset<0>());
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(0, L::Partial().Offset<0>());
+ EXPECT_EQ(0, L::Partial(3).Offset<0>());
+ EXPECT_EQ(12, L::Partial(3).Offset<1>());
+ EXPECT_EQ(0, L::Partial(3, 5).Offset<0>());
+ EXPECT_EQ(12, L::Partial(3, 5).Offset<1>());
+ EXPECT_EQ(0, L(3, 5).Offset<0>());
+ EXPECT_EQ(12, L(3, 5).Offset<1>());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, L::Partial().Offset<0>());
+ EXPECT_EQ(0, L::Partial(0).Offset<0>());
+ EXPECT_EQ(0, L::Partial(0).Offset<1>());
+ EXPECT_EQ(0, L::Partial(1).Offset<0>());
+ EXPECT_EQ(4, L::Partial(1).Offset<1>());
+ EXPECT_EQ(0, L::Partial(5).Offset<0>());
+ EXPECT_EQ(8, L::Partial(5).Offset<1>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<0>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<1>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<2>());
+ EXPECT_EQ(0, L::Partial(1, 0).Offset<0>());
+ EXPECT_EQ(4, L::Partial(1, 0).Offset<1>());
+ EXPECT_EQ(8, L::Partial(1, 0).Offset<2>());
+ EXPECT_EQ(0, L::Partial(5, 3).Offset<0>());
+ EXPECT_EQ(8, L::Partial(5, 3).Offset<1>());
+ EXPECT_EQ(24, L::Partial(5, 3).Offset<2>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<0>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<1>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<2>());
+ EXPECT_EQ(0, L::Partial(1, 0, 0).Offset<0>());
+ EXPECT_EQ(4, L::Partial(1, 0, 0).Offset<1>());
+ EXPECT_EQ(8, L::Partial(1, 0, 0).Offset<2>());
+ EXPECT_EQ(0, L::Partial(5, 3, 1).Offset<0>());
+ EXPECT_EQ(24, L::Partial(5, 3, 1).Offset<2>());
+ EXPECT_EQ(8, L::Partial(5, 3, 1).Offset<1>());
+ EXPECT_EQ(0, L(5, 3, 1).Offset<0>());
+ EXPECT_EQ(24, L(5, 3, 1).Offset<2>());
+ EXPECT_EQ(8, L(5, 3, 1).Offset<1>());
+ }
+}
+
+TEST(Layout, OffsetByType) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial().Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(3).Offset<int32_t>());
+ EXPECT_EQ(0, L(3).Offset<int32_t>());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, L::Partial().Offset<int8_t>());
+ EXPECT_EQ(0, L::Partial(0).Offset<int8_t>());
+ EXPECT_EQ(0, L::Partial(0).Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(1).Offset<int8_t>());
+ EXPECT_EQ(4, L::Partial(1).Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(5).Offset<int8_t>());
+ EXPECT_EQ(8, L::Partial(5).Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<int8_t>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(0, 0).Offset<Int128>());
+ EXPECT_EQ(0, L::Partial(1, 0).Offset<int8_t>());
+ EXPECT_EQ(4, L::Partial(1, 0).Offset<int32_t>());
+ EXPECT_EQ(8, L::Partial(1, 0).Offset<Int128>());
+ EXPECT_EQ(0, L::Partial(5, 3).Offset<int8_t>());
+ EXPECT_EQ(8, L::Partial(5, 3).Offset<int32_t>());
+ EXPECT_EQ(24, L::Partial(5, 3).Offset<Int128>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<int8_t>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<int32_t>());
+ EXPECT_EQ(0, L::Partial(0, 0, 0).Offset<Int128>());
+ EXPECT_EQ(0, L::Partial(1, 0, 0).Offset<int8_t>());
+ EXPECT_EQ(4, L::Partial(1, 0, 0).Offset<int32_t>());
+ EXPECT_EQ(8, L::Partial(1, 0, 0).Offset<Int128>());
+ EXPECT_EQ(0, L::Partial(5, 3, 1).Offset<int8_t>());
+ EXPECT_EQ(24, L::Partial(5, 3, 1).Offset<Int128>());
+ EXPECT_EQ(8, L::Partial(5, 3, 1).Offset<int32_t>());
+ EXPECT_EQ(0, L(5, 3, 1).Offset<int8_t>());
+ EXPECT_EQ(24, L(5, 3, 1).Offset<Int128>());
+ EXPECT_EQ(8, L(5, 3, 1).Offset<int32_t>());
+ }
+}
+
+TEST(Layout, Offsets) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0));
+ EXPECT_THAT(L::Partial(3).Offsets(), ElementsAre(0));
+ EXPECT_THAT(L(3).Offsets(), ElementsAre(0));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0));
+ EXPECT_THAT(L::Partial(3).Offsets(), ElementsAre(0, 12));
+ EXPECT_THAT(L::Partial(3, 5).Offsets(), ElementsAre(0, 12));
+ EXPECT_THAT(L(3, 5).Offsets(), ElementsAre(0, 12));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_THAT(L::Partial().Offsets(), ElementsAre(0));
+ EXPECT_THAT(L::Partial(1).Offsets(), ElementsAre(0, 4));
+ EXPECT_THAT(L::Partial(5).Offsets(), ElementsAre(0, 8));
+ EXPECT_THAT(L::Partial(0, 0).Offsets(), ElementsAre(0, 0, 0));
+ EXPECT_THAT(L::Partial(1, 0).Offsets(), ElementsAre(0, 4, 8));
+ EXPECT_THAT(L::Partial(5, 3).Offsets(), ElementsAre(0, 8, 24));
+ EXPECT_THAT(L::Partial(0, 0, 0).Offsets(), ElementsAre(0, 0, 0));
+ EXPECT_THAT(L::Partial(1, 0, 0).Offsets(), ElementsAre(0, 4, 8));
+ EXPECT_THAT(L::Partial(5, 3, 1).Offsets(), ElementsAre(0, 8, 24));
+ EXPECT_THAT(L(5, 3, 1).Offsets(), ElementsAre(0, 8, 24));
+ }
+}
+
+TEST(Layout, AllocSize) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).AllocSize());
+ EXPECT_EQ(12, L::Partial(3).AllocSize());
+ EXPECT_EQ(12, L(3).AllocSize());
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(32, L::Partial(3, 5).AllocSize());
+ EXPECT_EQ(32, L(3, 5).AllocSize());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, L::Partial(0, 0, 0).AllocSize());
+ EXPECT_EQ(8, L::Partial(1, 0, 0).AllocSize());
+ EXPECT_EQ(8, L::Partial(0, 1, 0).AllocSize());
+ EXPECT_EQ(16, L::Partial(0, 0, 1).AllocSize());
+ EXPECT_EQ(24, L::Partial(1, 1, 1).AllocSize());
+ EXPECT_EQ(136, L::Partial(3, 5, 7).AllocSize());
+ EXPECT_EQ(136, L(3, 5, 7).AllocSize());
+ }
+}
+
+TEST(Layout, SizeByIndex) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Size<0>());
+ EXPECT_EQ(3, L::Partial(3).Size<0>());
+ EXPECT_EQ(3, L(3).Size<0>());
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Size<0>());
+ EXPECT_EQ(3, L::Partial(3).Size<0>());
+ EXPECT_EQ(3, L::Partial(3, 5).Size<0>());
+ EXPECT_EQ(5, L::Partial(3, 5).Size<1>());
+ EXPECT_EQ(3, L(3, 5).Size<0>());
+ EXPECT_EQ(5, L(3, 5).Size<1>());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Size<0>());
+ EXPECT_EQ(3, L::Partial(3, 5).Size<0>());
+ EXPECT_EQ(5, L::Partial(3, 5).Size<1>());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Size<0>());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Size<1>());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Size<2>());
+ EXPECT_EQ(3, L(3, 5, 7).Size<0>());
+ EXPECT_EQ(5, L(3, 5, 7).Size<1>());
+ EXPECT_EQ(7, L(3, 5, 7).Size<2>());
+ }
+}
+
+TEST(Layout, SizeByType) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Size<int32_t>());
+ EXPECT_EQ(3, L::Partial(3).Size<int32_t>());
+ EXPECT_EQ(3, L(3).Size<int32_t>());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Size<int8_t>());
+ EXPECT_EQ(3, L::Partial(3, 5).Size<int8_t>());
+ EXPECT_EQ(5, L::Partial(3, 5).Size<int32_t>());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Size<int8_t>());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Size<int32_t>());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Size<Int128>());
+ EXPECT_EQ(3, L(3, 5, 7).Size<int8_t>());
+ EXPECT_EQ(5, L(3, 5, 7).Size<int32_t>());
+ EXPECT_EQ(7, L(3, 5, 7).Size<Int128>());
+ }
+}
+
+TEST(Layout, Sizes) {
+ {
+ using L = Layout<int32_t>;
+ EXPECT_THAT(L::Partial().Sizes(), ElementsAre());
+ EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3));
+ EXPECT_THAT(L(3).Sizes(), ElementsAre(3));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_THAT(L::Partial().Sizes(), ElementsAre());
+ EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3));
+ EXPECT_THAT(L::Partial(3, 5).Sizes(), ElementsAre(3, 5));
+ EXPECT_THAT(L(3, 5).Sizes(), ElementsAre(3, 5));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_THAT(L::Partial().Sizes(), ElementsAre());
+ EXPECT_THAT(L::Partial(3).Sizes(), ElementsAre(3));
+ EXPECT_THAT(L::Partial(3, 5).Sizes(), ElementsAre(3, 5));
+ EXPECT_THAT(L::Partial(3, 5, 7).Sizes(), ElementsAre(3, 5, 7));
+ EXPECT_THAT(L(3, 5, 7).Sizes(), ElementsAre(3, 5, 7));
+ }
+}
+
+TEST(Layout, PointerByIndex) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3).Pointer<0>(p))));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<0>(p))));
+ EXPECT_EQ(12, Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<1>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int32_t*>(L::Partial(3, 5).Pointer<0>(p))));
+ EXPECT_EQ(12,
+ Distance(p, Type<const int32_t*>(L::Partial(3, 5).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3, 5).Pointer<0>(p))));
+ EXPECT_EQ(12, Distance(p, Type<const int32_t*>(L(3, 5).Pointer<1>(p))));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(0).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L::Partial(0).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(1).Pointer<0>(p))));
+ EXPECT_EQ(4, Distance(p, Type<const int32_t*>(L::Partial(1).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial(5).Pointer<0>(p))));
+ EXPECT_EQ(8, Distance(p, Type<const int32_t*>(L::Partial(5).Pointer<1>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(0, 0).Pointer<0>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int32_t*>(L::Partial(0, 0).Pointer<1>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const Int128*>(L::Partial(0, 0).Pointer<2>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(1, 0).Pointer<0>(p))));
+ EXPECT_EQ(4,
+ Distance(p, Type<const int32_t*>(L::Partial(1, 0).Pointer<1>(p))));
+ EXPECT_EQ(8,
+ Distance(p, Type<const Int128*>(L::Partial(1, 0).Pointer<2>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(5, 3).Pointer<0>(p))));
+ EXPECT_EQ(8,
+ Distance(p, Type<const int32_t*>(L::Partial(5, 3).Pointer<1>(p))));
+ EXPECT_EQ(24,
+ Distance(p, Type<const Int128*>(L::Partial(5, 3).Pointer<2>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(0, 0, 0).Pointer<0>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int32_t*>(L::Partial(0, 0, 0).Pointer<1>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const Int128*>(L::Partial(0, 0, 0).Pointer<2>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(1, 0, 0).Pointer<0>(p))));
+ EXPECT_EQ(
+ 4, Distance(p, Type<const int32_t*>(L::Partial(1, 0, 0).Pointer<1>(p))));
+ EXPECT_EQ(
+ 8, Distance(p, Type<const Int128*>(L::Partial(1, 0, 0).Pointer<2>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(5, 3, 1).Pointer<0>(p))));
+ EXPECT_EQ(
+ 24,
+ Distance(p, Type<const Int128*>(L::Partial(5, 3, 1).Pointer<2>(p))));
+ EXPECT_EQ(
+ 8, Distance(p, Type<const int32_t*>(L::Partial(5, 3, 1).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L(5, 3, 1).Pointer<0>(p))));
+ EXPECT_EQ(24, Distance(p, Type<const Int128*>(L(5, 3, 1).Pointer<2>(p))));
+ EXPECT_EQ(8, Distance(p, Type<const int32_t*>(L(5, 3, 1).Pointer<1>(p))));
+ }
+}
+
+TEST(Layout, PointerByType) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0,
+ Distance(p, Type<const int32_t*>(L::Partial().Pointer<int32_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int32_t*>(L::Partial(3).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const int32_t*>(L(3).Pointer<int32_t>(p))));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, Distance(p, Type<const int8_t*>(L::Partial().Pointer<int8_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(0).Pointer<int8_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int32_t*>(L::Partial(0).Pointer<int32_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(1).Pointer<int8_t>(p))));
+ EXPECT_EQ(4,
+ Distance(p, Type<const int32_t*>(L::Partial(1).Pointer<int32_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<const int8_t*>(L::Partial(5).Pointer<int8_t>(p))));
+ EXPECT_EQ(8,
+ Distance(p, Type<const int32_t*>(L::Partial(5).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int32_t*>(L::Partial(0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<const Int128*>(L::Partial(0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(1, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 4, Distance(p, Type<const int32_t*>(L::Partial(1, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 8,
+ Distance(p, Type<const Int128*>(L::Partial(1, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<const int8_t*>(L::Partial(5, 3).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 8, Distance(p, Type<const int32_t*>(L::Partial(5, 3).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 24,
+ Distance(p, Type<const Int128*>(L::Partial(5, 3).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<const int8_t*>(L::Partial(0, 0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<const int32_t*>(L::Partial(0, 0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<const Int128*>(
+ L::Partial(0, 0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<const int8_t*>(L::Partial(1, 0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 4,
+ Distance(p, Type<const int32_t*>(L::Partial(1, 0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(8, Distance(p, Type<const Int128*>(
+ L::Partial(1, 0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<const int8_t*>(L::Partial(5, 3, 1).Pointer<int8_t>(p))));
+ EXPECT_EQ(24, Distance(p, Type<const Int128*>(
+ L::Partial(5, 3, 1).Pointer<Int128>(p))));
+ EXPECT_EQ(
+ 8,
+ Distance(p, Type<const int32_t*>(L::Partial(5, 3, 1).Pointer<int32_t>(p))));
+ EXPECT_EQ(24,
+ Distance(p, Type<const Int128*>(L(5, 3, 1).Pointer<Int128>(p))));
+ EXPECT_EQ(8, Distance(p, Type<const int32_t*>(L(5, 3, 1).Pointer<int32_t>(p))));
+ }
+}
+
+TEST(Layout, MutablePointerByIndex) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3).Pointer<0>(p))));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<0>(p))));
+ EXPECT_EQ(12, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3, 5).Pointer<0>(p))));
+ EXPECT_EQ(12, Distance(p, Type<int32_t*>(L::Partial(3, 5).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3, 5).Pointer<0>(p))));
+ EXPECT_EQ(12, Distance(p, Type<int32_t*>(L(3, 5).Pointer<1>(p))));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial().Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1).Pointer<0>(p))));
+ EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5).Pointer<0>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0, 0).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0, 0).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<Int128*>(L::Partial(0, 0).Pointer<2>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1, 0).Pointer<0>(p))));
+ EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1, 0).Pointer<1>(p))));
+ EXPECT_EQ(8, Distance(p, Type<Int128*>(L::Partial(1, 0).Pointer<2>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5, 3).Pointer<0>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5, 3).Pointer<1>(p))));
+ EXPECT_EQ(24, Distance(p, Type<Int128*>(L::Partial(5, 3).Pointer<2>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0, 0, 0).Pointer<0>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0, 0, 0).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<Int128*>(L::Partial(0, 0, 0).Pointer<2>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1, 0, 0).Pointer<0>(p))));
+ EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1, 0, 0).Pointer<1>(p))));
+ EXPECT_EQ(8, Distance(p, Type<Int128*>(L::Partial(1, 0, 0).Pointer<2>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5, 3, 1).Pointer<0>(p))));
+ EXPECT_EQ(24,
+ Distance(p, Type<Int128*>(L::Partial(5, 3, 1).Pointer<2>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5, 3, 1).Pointer<1>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L(5, 3, 1).Pointer<0>(p))));
+ EXPECT_EQ(24, Distance(p, Type<Int128*>(L(5, 3, 1).Pointer<2>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L(5, 3, 1).Pointer<1>(p))));
+ }
+}
+
+TEST(Layout, MutablePointerByType) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial().Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(3).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L(3).Pointer<int32_t>(p))));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial().Pointer<int8_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0).Pointer<int8_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1).Pointer<int8_t>(p))));
+ EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5).Pointer<int8_t>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int32_t*>(L::Partial(0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<Int128*>(L::Partial(0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(1, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(4, Distance(p, Type<int32_t*>(L::Partial(1, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(8,
+ Distance(p, Type<Int128*>(L::Partial(1, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L::Partial(5, 3).Pointer<int8_t>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L::Partial(5, 3).Pointer<int32_t>(p))));
+ EXPECT_EQ(24,
+ Distance(p, Type<Int128*>(L::Partial(5, 3).Pointer<Int128>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<int8_t*>(L::Partial(0, 0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<int32_t*>(L::Partial(0, 0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Int128*>(L::Partial(0, 0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<int8_t*>(L::Partial(1, 0, 0).Pointer<int8_t>(p))));
+ EXPECT_EQ(4,
+ Distance(p, Type<int32_t*>(L::Partial(1, 0, 0).Pointer<int32_t>(p))));
+ EXPECT_EQ(
+ 8, Distance(p, Type<Int128*>(L::Partial(1, 0, 0).Pointer<Int128>(p))));
+ EXPECT_EQ(0,
+ Distance(p, Type<int8_t*>(L::Partial(5, 3, 1).Pointer<int8_t>(p))));
+ EXPECT_EQ(
+ 24, Distance(p, Type<Int128*>(L::Partial(5, 3, 1).Pointer<Int128>(p))));
+ EXPECT_EQ(8,
+ Distance(p, Type<int32_t*>(L::Partial(5, 3, 1).Pointer<int32_t>(p))));
+ EXPECT_EQ(0, Distance(p, Type<int8_t*>(L(5, 3, 1).Pointer<int8_t>(p))));
+ EXPECT_EQ(24, Distance(p, Type<Int128*>(L(5, 3, 1).Pointer<Int128>(p))));
+ EXPECT_EQ(8, Distance(p, Type<int32_t*>(L(5, 3, 1).Pointer<int32_t>(p))));
+ }
+}
+
+TEST(Layout, Pointers) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ using L = Layout<int8_t, int8_t, Int128>;
+ {
+ const auto x = L::Partial();
+ EXPECT_EQ(std::make_tuple(x.Pointer<0>(p)),
+ Type<std::tuple<const int8_t*>>(x.Pointers(p)));
+ }
+ {
+ const auto x = L::Partial(1);
+ EXPECT_EQ(std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p)),
+ (Type<std::tuple<const int8_t*, const int8_t*>>(x.Pointers(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>(
+ x.Pointers(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2, 3);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>(
+ x.Pointers(p))));
+ }
+ {
+ const L x(1, 2, 3);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<const int8_t*, const int8_t*, const Int128*>>(
+ x.Pointers(p))));
+ }
+}
+
+TEST(Layout, MutablePointers) {
+ alignas(max_align_t) unsigned char p[100];
+ using L = Layout<int8_t, int8_t, Int128>;
+ {
+ const auto x = L::Partial();
+ EXPECT_EQ(std::make_tuple(x.Pointer<0>(p)),
+ Type<std::tuple<int8_t*>>(x.Pointers(p)));
+ }
+ {
+ const auto x = L::Partial(1);
+ EXPECT_EQ(std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p)),
+ (Type<std::tuple<int8_t*, int8_t*>>(x.Pointers(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2, 3);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p))));
+ }
+ {
+ const L x(1, 2, 3);
+ EXPECT_EQ(
+ std::make_tuple(x.Pointer<0>(p), x.Pointer<1>(p), x.Pointer<2>(p)),
+ (Type<std::tuple<int8_t*, int8_t*, Int128*>>(x.Pointers(p))));
+ }
+}
+
+TEST(Layout, SliceByIndexSize) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Slice<0>(p).size());
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(3, L(3).Slice<0>(p).size());
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size());
+ EXPECT_EQ(5, L(3, 5).Slice<1>(p).size());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<1>(p).size());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<2>(p).size());
+ EXPECT_EQ(3, L(3, 5, 7).Slice<0>(p).size());
+ EXPECT_EQ(5, L(3, 5, 7).Slice<1>(p).size());
+ EXPECT_EQ(7, L(3, 5, 7).Slice<2>(p).size());
+ }
+}
+
+TEST(Layout, SliceByTypeSize) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L(3).Slice<int32_t>(p).size());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Slice<int8_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<int32_t>(p).size());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<Int128>(p).size());
+ EXPECT_EQ(3, L(3, 5, 7).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L(3, 5, 7).Slice<int32_t>(p).size());
+ EXPECT_EQ(7, L(3, 5, 7).Slice<Int128>(p).size());
+ }
+}
+
+TEST(Layout, MutableSliceByIndexSize) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Slice<0>(p).size());
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(3, L(3).Slice<0>(p).size());
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size());
+ EXPECT_EQ(5, L(3, 5).Slice<1>(p).size());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Slice<0>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<1>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<0>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<1>(p).size());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<2>(p).size());
+ EXPECT_EQ(3, L(3, 5, 7).Slice<0>(p).size());
+ EXPECT_EQ(5, L(3, 5, 7).Slice<1>(p).size());
+ EXPECT_EQ(7, L(3, 5, 7).Slice<2>(p).size());
+ }
+}
+
+TEST(Layout, MutableSliceByTypeSize) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0, L::Partial(0).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L(3).Slice<int32_t>(p).size());
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(3, L::Partial(3).Slice<int8_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5).Slice<int32_t>(p).size());
+ EXPECT_EQ(3, L::Partial(3, 5, 7).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L::Partial(3, 5, 7).Slice<int32_t>(p).size());
+ EXPECT_EQ(7, L::Partial(3, 5, 7).Slice<Int128>(p).size());
+ EXPECT_EQ(3, L(3, 5, 7).Slice<int8_t>(p).size());
+ EXPECT_EQ(5, L(3, 5, 7).Slice<int32_t>(p).size());
+ EXPECT_EQ(7, L(3, 5, 7).Slice<Int128>(p).size());
+ }
+}
+
+TEST(Layout, SliceByIndexData) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(3).Slice<0>(p)).data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<const int32_t>>(L(3).Slice<0>(p)).data()));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(3).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p,
+ Type<Span<const int32_t>>(L::Partial(3, 5).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 12,
+ Distance(p,
+ Type<Span<const int32_t>>(L::Partial(3, 5).Slice<1>(p)).data()));
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<const int32_t>>(L(3, 5).Slice<0>(p)).data()));
+ EXPECT_EQ(12,
+ Distance(p, Type<Span<const int32_t>>(L(3, 5).Slice<1>(p)).data()));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int8_t>>(L::Partial(0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int8_t>>(L::Partial(1).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int8_t>>(L::Partial(5).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p,
+ Type<Span<const int32_t>>(L::Partial(0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(1, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(p,
+ Type<Span<const int32_t>>(L::Partial(1, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(5, 3).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(p,
+ Type<Span<const int32_t>>(L::Partial(5, 3).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(0, 0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(0, 0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const Int128>>(L::Partial(0, 0, 0).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(1, 0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(1, 0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(
+ p,
+ Type<Span<const Int128>>(L::Partial(1, 0, 0).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(5, 3, 1).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 24,
+ Distance(
+ p,
+ Type<Span<const Int128>>(L::Partial(5, 3, 1).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(5, 3, 1).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<const int8_t>>(L(5, 3, 1).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 24,
+ Distance(p, Type<Span<const Int128>>(L(5, 3, 1).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(p, Type<Span<const int32_t>>(L(5, 3, 1).Slice<1>(p)).data()));
+ }
+}
+
+TEST(Layout, SliceByTypeData) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int32_t>>(L::Partial(0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int32_t>>(L::Partial(3).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<const int32_t>>(L(3).Slice<int32_t>(p)).data()));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<const int8_t>>(L::Partial(5).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(0, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(1, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(1, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<const int8_t>>(L::Partial(5, 3).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(
+ p,
+ Type<Span<const int32_t>>(L::Partial(5, 3).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const int8_t>>(L::Partial(0, 0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(0, 0, 0).Slice<int32_t>(p))
+ .data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<const Int128>>(
+ L::Partial(0, 0, 0).Slice<Int128>(p))
+ .data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const int8_t>>(L::Partial(1, 0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(1, 0, 0).Slice<int32_t>(p))
+ .data()));
+ EXPECT_EQ(8, Distance(p, Type<Span<const Int128>>(
+ L::Partial(1, 0, 0).Slice<Int128>(p))
+ .data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<const int8_t>>(L::Partial(5, 3, 1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(24, Distance(p, Type<Span<const Int128>>(
+ L::Partial(5, 3, 1).Slice<Int128>(p))
+ .data()));
+ EXPECT_EQ(
+ 8,
+ Distance(p, Type<Span<const int32_t>>(L::Partial(5, 3, 1).Slice<int32_t>(p))
+ .data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<const int8_t>>(L(5, 3, 1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 24,
+ Distance(p,
+ Type<Span<const Int128>>(L(5, 3, 1).Slice<Int128>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(
+ p, Type<Span<const int32_t>>(L(5, 3, 1).Slice<int32_t>(p)).data()));
+ }
+}
+
+TEST(Layout, MutableSliceByIndexData) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(0).Slice<0>(p)).data()));
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(3).Slice<0>(p)).data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<int32_t>>(L(3).Slice<0>(p)).data()));
+ }
+ {
+ using L = Layout<int32_t, int32_t>;
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(3).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int32_t>>(L::Partial(3, 5).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 12,
+ Distance(p, Type<Span<int32_t>>(L::Partial(3, 5).Slice<1>(p)).data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<int32_t>>(L(3, 5).Slice<0>(p)).data()));
+ EXPECT_EQ(12, Distance(p, Type<Span<int32_t>>(L(3, 5).Slice<1>(p)).data()));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(0).Slice<0>(p)).data()));
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(1).Slice<0>(p)).data()));
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(5).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int32_t>>(L::Partial(0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(1, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 4, Distance(p, Type<Span<int32_t>>(L::Partial(1, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(5, 3).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(p, Type<Span<int32_t>>(L::Partial(5, 3).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(0, 0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(0, 0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<Int128>>(L::Partial(0, 0, 0).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(1, 0, 0).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(p, Type<Span<int32_t>>(L::Partial(1, 0, 0).Slice<1>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(
+ p, Type<Span<Int128>>(L::Partial(1, 0, 0).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(5, 3, 1).Slice<0>(p)).data()));
+ EXPECT_EQ(
+ 24, Distance(
+ p, Type<Span<Int128>>(L::Partial(5, 3, 1).Slice<2>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(p, Type<Span<int32_t>>(L::Partial(5, 3, 1).Slice<1>(p)).data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<int8_t>>(L(5, 3, 1).Slice<0>(p)).data()));
+ EXPECT_EQ(24,
+ Distance(p, Type<Span<Int128>>(L(5, 3, 1).Slice<2>(p)).data()));
+ EXPECT_EQ(8, Distance(p, Type<Span<int32_t>>(L(5, 3, 1).Slice<1>(p)).data()));
+ }
+}
+
+TEST(Layout, MutableSliceByTypeData) {
+ alignas(max_align_t) unsigned char p[100];
+ {
+ using L = Layout<int32_t>;
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int32_t>>(L::Partial(3).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(0, Distance(p, Type<Span<int32_t>>(L(3).Slice<int32_t>(p)).data()));
+ }
+ {
+ using L = Layout<int8_t, int32_t, Int128>;
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(p, Type<Span<int8_t>>(L::Partial(5).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<int32_t>>(L::Partial(0, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(1, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 4, Distance(
+ p, Type<Span<int32_t>>(L::Partial(1, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(p, Type<Span<int8_t>>(L::Partial(5, 3).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(
+ p, Type<Span<int32_t>>(L::Partial(5, 3).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<int8_t>>(L::Partial(0, 0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p, Type<Span<int32_t>>(L::Partial(0, 0, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 0,
+ Distance(
+ p,
+ Type<Span<Int128>>(L::Partial(0, 0, 0).Slice<Int128>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<int8_t>>(L::Partial(1, 0, 0).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 4,
+ Distance(
+ p, Type<Span<int32_t>>(L::Partial(1, 0, 0).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(
+ p,
+ Type<Span<Int128>>(L::Partial(1, 0, 0).Slice<Int128>(p)).data()));
+ EXPECT_EQ(
+ 0, Distance(
+ p, Type<Span<int8_t>>(L::Partial(5, 3, 1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 24,
+ Distance(
+ p,
+ Type<Span<Int128>>(L::Partial(5, 3, 1).Slice<Int128>(p)).data()));
+ EXPECT_EQ(
+ 8,
+ Distance(
+ p, Type<Span<int32_t>>(L::Partial(5, 3, 1).Slice<int32_t>(p)).data()));
+ EXPECT_EQ(0,
+ Distance(p, Type<Span<int8_t>>(L(5, 3, 1).Slice<int8_t>(p)).data()));
+ EXPECT_EQ(
+ 24,
+ Distance(p, Type<Span<Int128>>(L(5, 3, 1).Slice<Int128>(p)).data()));
+ EXPECT_EQ(
+ 8, Distance(p, Type<Span<int32_t>>(L(5, 3, 1).Slice<int32_t>(p)).data()));
+ }
+}
+
+MATCHER_P(IsSameSlice, slice, "") {
+ return arg.size() == slice.size() && arg.data() == slice.data();
+}
+
+template <typename... M>
+class TupleMatcher {
+ public:
+ explicit TupleMatcher(M... matchers) : matchers_(std::move(matchers)...) {}
+
+ template <typename Tuple>
+ bool MatchAndExplain(const Tuple& p,
+ testing::MatchResultListener* /* listener */) const {
+ static_assert(std::tuple_size<Tuple>::value == sizeof...(M), "");
+ return MatchAndExplainImpl(
+ p, absl::make_index_sequence<std::tuple_size<Tuple>::value>{});
+ }
+
+ // For the matcher concept. Left empty as we don't really need the diagnostics
+ // right now.
+ void DescribeTo(::std::ostream* os) const {}
+ void DescribeNegationTo(::std::ostream* os) const {}
+
+ private:
+ template <typename Tuple, size_t... Is>
+ bool MatchAndExplainImpl(const Tuple& p, absl::index_sequence<Is...>) const {
+ // Using std::min as a simple variadic "and".
+ return std::min(
+ {true, testing::SafeMatcherCast<
+ const typename std::tuple_element<Is, Tuple>::type&>(
+ std::get<Is>(matchers_))
+ .Matches(std::get<Is>(p))...});
+ }
+
+ std::tuple<M...> matchers_;
+};
+
+template <typename... M>
+testing::PolymorphicMatcher<TupleMatcher<M...>> Tuple(M... matchers) {
+ return testing::MakePolymorphicMatcher(
+ TupleMatcher<M...>(std::move(matchers)...));
+}
+
+TEST(Layout, Slices) {
+ alignas(max_align_t) const unsigned char p[100] = {};
+ using L = Layout<int8_t, int8_t, Int128>;
+ {
+ const auto x = L::Partial();
+ EXPECT_THAT(Type<std::tuple<>>(x.Slices(p)), Tuple());
+ }
+ {
+ const auto x = L::Partial(1);
+ EXPECT_THAT(Type<std::tuple<Span<const int8_t>>>(x.Slices(p)),
+ Tuple(IsSameSlice(x.Slice<0>(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2);
+ EXPECT_THAT(
+ (Type<std::tuple<Span<const int8_t>, Span<const int8_t>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2, 3);
+ EXPECT_THAT((Type<std::tuple<Span<const int8_t>, Span<const int8_t>,
+ Span<const Int128>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)),
+ IsSameSlice(x.Slice<2>(p))));
+ }
+ {
+ const L x(1, 2, 3);
+ EXPECT_THAT((Type<std::tuple<Span<const int8_t>, Span<const int8_t>,
+ Span<const Int128>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)),
+ IsSameSlice(x.Slice<2>(p))));
+ }
+}
+
+TEST(Layout, MutableSlices) {
+ alignas(max_align_t) unsigned char p[100] = {};
+ using L = Layout<int8_t, int8_t, Int128>;
+ {
+ const auto x = L::Partial();
+ EXPECT_THAT(Type<std::tuple<>>(x.Slices(p)), Tuple());
+ }
+ {
+ const auto x = L::Partial(1);
+ EXPECT_THAT(Type<std::tuple<Span<int8_t>>>(x.Slices(p)),
+ Tuple(IsSameSlice(x.Slice<0>(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2);
+ EXPECT_THAT((Type<std::tuple<Span<int8_t>, Span<int8_t>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p))));
+ }
+ {
+ const auto x = L::Partial(1, 2, 3);
+ EXPECT_THAT(
+ (Type<std::tuple<Span<int8_t>, Span<int8_t>, Span<Int128>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)),
+ IsSameSlice(x.Slice<2>(p))));
+ }
+ {
+ const L x(1, 2, 3);
+ EXPECT_THAT(
+ (Type<std::tuple<Span<int8_t>, Span<int8_t>, Span<Int128>>>(x.Slices(p))),
+ Tuple(IsSameSlice(x.Slice<0>(p)), IsSameSlice(x.Slice<1>(p)),
+ IsSameSlice(x.Slice<2>(p))));
+ }
+}
+
+TEST(Layout, UnalignedTypes) {
+ constexpr Layout<unsigned char, unsigned char, unsigned char> x(1, 2, 3);
+ alignas(max_align_t) unsigned char p[x.AllocSize() + 1];
+ EXPECT_THAT(x.Pointers(p + 1), Tuple(p + 1, p + 2, p + 4));
+}
+
+TEST(Layout, CustomAlignment) {
+ constexpr Layout<unsigned char, Aligned<unsigned char, 8>> x(1, 2);
+ alignas(max_align_t) unsigned char p[x.AllocSize()];
+ EXPECT_EQ(10, x.AllocSize());
+ EXPECT_THAT(x.Pointers(p), Tuple(p + 0, p + 8));
+}
+
+TEST(Layout, OverAligned) {
+ constexpr size_t M = alignof(max_align_t);
+ constexpr Layout<unsigned char, Aligned<unsigned char, 2 * M>> x(1, 3);
+ alignas(2 * M) unsigned char p[x.AllocSize()];
+ EXPECT_EQ(2 * M + 3, x.AllocSize());
+ EXPECT_THAT(x.Pointers(p), Tuple(p + 0, p + 2 * M));
+}
+
+TEST(Layout, Alignment) {
+ static_assert(Layout<int8_t>::Alignment() == 1, "");
+ static_assert(Layout<int32_t>::Alignment() == 4, "");
+ static_assert(Layout<int64_t>::Alignment() == 8, "");
+ static_assert(Layout<Aligned<int8_t, 64>>::Alignment() == 64, "");
+ static_assert(Layout<int8_t, int32_t, int64_t>::Alignment() == 8, "");
+ static_assert(Layout<int8_t, int64_t, int32_t>::Alignment() == 8, "");
+ static_assert(Layout<int32_t, int8_t, int64_t>::Alignment() == 8, "");
+ static_assert(Layout<int32_t, int64_t, int8_t>::Alignment() == 8, "");
+ static_assert(Layout<int64_t, int8_t, int32_t>::Alignment() == 8, "");
+ static_assert(Layout<int64_t, int32_t, int8_t>::Alignment() == 8, "");
+}
+
+TEST(Layout, ConstexprPartial) {
+ constexpr size_t M = alignof(max_align_t);
+ constexpr Layout<unsigned char, Aligned<unsigned char, 2 * M>> x(1, 3);
+ static_assert(x.Partial(1).template Offset<1>() == 2 * M, "");
+}
+// [from, to)
+struct Region {
+ size_t from;
+ size_t to;
+};
+
+void ExpectRegionPoisoned(const unsigned char* p, size_t n, bool poisoned) {
+#ifdef ADDRESS_SANITIZER
+ for (size_t i = 0; i != n; ++i) {
+ EXPECT_EQ(poisoned, __asan_address_is_poisoned(p + i));
+ }
+#endif
+}
+
+template <size_t N>
+void ExpectPoisoned(const unsigned char (&buf)[N],
+ std::initializer_list<Region> reg) {
+ size_t prev = 0;
+ for (const Region& r : reg) {
+ ExpectRegionPoisoned(buf + prev, r.from - prev, false);
+ ExpectRegionPoisoned(buf + r.from, r.to - r.from, true);
+ prev = r.to;
+ }
+ ExpectRegionPoisoned(buf + prev, N - prev, false);
+}
+
+TEST(Layout, PoisonPadding) {
+ using L = Layout<int8_t, int64_t, int32_t, Int128>;
+
+ constexpr size_t n = L::Partial(1, 2, 3, 4).AllocSize();
+ {
+ constexpr auto x = L::Partial();
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {});
+ }
+ {
+ constexpr auto x = L::Partial(1);
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {{1, 8}});
+ }
+ {
+ constexpr auto x = L::Partial(1, 2);
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {{1, 8}});
+ }
+ {
+ constexpr auto x = L::Partial(1, 2, 3);
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {{1, 8}, {36, 40}});
+ }
+ {
+ constexpr auto x = L::Partial(1, 2, 3, 4);
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {{1, 8}, {36, 40}});
+ }
+ {
+ constexpr L x(1, 2, 3, 4);
+ alignas(max_align_t) const unsigned char c[n] = {};
+ x.PoisonPadding(c);
+ EXPECT_EQ(x.Slices(c), x.Slices(c));
+ ExpectPoisoned(c, {{1, 8}, {36, 40}});
+ }
+}
+
+TEST(Layout, DebugString) {
+ const std::string int64_type =
+#ifdef _MSC_VER
+ "__int64";
+#else // _MSC_VER
+ std::is_same<int64_t, long long>::value ? "long long" : "long"; // NOLINT
+#endif // _MSC_VER
+ {
+ constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial();
+ EXPECT_EQ("@0<signed char>(1)", x.DebugString());
+ }
+ {
+ constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1);
+ EXPECT_EQ("@0<signed char>(1)[1]; @4<int>(4)", x.DebugString());
+ }
+ {
+ constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2);
+ EXPECT_EQ("@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)",
+ x.DebugString());
+ }
+ {
+ constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2, 3);
+ EXPECT_EQ(
+ "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; "
+ "@16<" +
+ int64_type + " [2]>(16)",
+ x.DebugString());
+ }
+ {
+ constexpr auto x = Layout<int8_t, int32_t, int8_t, Int128>::Partial(1, 2, 3, 4);
+ EXPECT_EQ(
+ "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; "
+ "@16<" +
+ int64_type + " [2]>(16)[4]",
+ x.DebugString());
+ }
+ {
+ constexpr Layout<int8_t, int32_t, int8_t, Int128> x(1, 2, 3, 4);
+ EXPECT_EQ(
+ "@0<signed char>(1)[1]; @4<int>(4)[2]; @12<signed char>(1)[3]; "
+ "@16<" +
+ int64_type + " [2]>(16)[4]",
+ x.DebugString());
+ }
+}
+
+TEST(Layout, CharTypes) {
+ constexpr Layout<int32_t> x(1);
+ alignas(max_align_t) char c[x.AllocSize()] = {};
+ alignas(max_align_t) unsigned char uc[x.AllocSize()] = {};
+ alignas(max_align_t) signed char sc[x.AllocSize()] = {};
+ alignas(max_align_t) const char cc[x.AllocSize()] = {};
+ alignas(max_align_t) const unsigned char cuc[x.AllocSize()] = {};
+ alignas(max_align_t) const signed char csc[x.AllocSize()] = {};
+
+ Type<int32_t*>(x.Pointer<0>(c));
+ Type<int32_t*>(x.Pointer<0>(uc));
+ Type<int32_t*>(x.Pointer<0>(sc));
+ Type<const int32_t*>(x.Pointer<0>(cc));
+ Type<const int32_t*>(x.Pointer<0>(cuc));
+ Type<const int32_t*>(x.Pointer<0>(csc));
+
+ Type<int32_t*>(x.Pointer<int32_t>(c));
+ Type<int32_t*>(x.Pointer<int32_t>(uc));
+ Type<int32_t*>(x.Pointer<int32_t>(sc));
+ Type<const int32_t*>(x.Pointer<int32_t>(cc));
+ Type<const int32_t*>(x.Pointer<int32_t>(cuc));
+ Type<const int32_t*>(x.Pointer<int32_t>(csc));
+
+ Type<std::tuple<int32_t*>>(x.Pointers(c));
+ Type<std::tuple<int32_t*>>(x.Pointers(uc));
+ Type<std::tuple<int32_t*>>(x.Pointers(sc));
+ Type<std::tuple<const int32_t*>>(x.Pointers(cc));
+ Type<std::tuple<const int32_t*>>(x.Pointers(cuc));
+ Type<std::tuple<const int32_t*>>(x.Pointers(csc));
+
+ Type<Span<int32_t>>(x.Slice<0>(c));
+ Type<Span<int32_t>>(x.Slice<0>(uc));
+ Type<Span<int32_t>>(x.Slice<0>(sc));
+ Type<Span<const int32_t>>(x.Slice<0>(cc));
+ Type<Span<const int32_t>>(x.Slice<0>(cuc));
+ Type<Span<const int32_t>>(x.Slice<0>(csc));
+
+ Type<std::tuple<Span<int32_t>>>(x.Slices(c));
+ Type<std::tuple<Span<int32_t>>>(x.Slices(uc));
+ Type<std::tuple<Span<int32_t>>>(x.Slices(sc));
+ Type<std::tuple<Span<const int32_t>>>(x.Slices(cc));
+ Type<std::tuple<Span<const int32_t>>>(x.Slices(cuc));
+ Type<std::tuple<Span<const int32_t>>>(x.Slices(csc));
+}
+
+TEST(Layout, ConstElementType) {
+ constexpr Layout<const int32_t> x(1);
+ alignas(int32_t) char c[x.AllocSize()] = {};
+ const char* cc = c;
+ const int32_t* p = reinterpret_cast<const int32_t*>(cc);
+
+ EXPECT_EQ(alignof(int32_t), x.Alignment());
+
+ EXPECT_EQ(0, x.Offset<0>());
+ EXPECT_EQ(0, x.Offset<const int32_t>());
+
+ EXPECT_THAT(x.Offsets(), ElementsAre(0));
+
+ EXPECT_EQ(1, x.Size<0>());
+ EXPECT_EQ(1, x.Size<const int32_t>());
+
+ EXPECT_THAT(x.Sizes(), ElementsAre(1));
+
+ EXPECT_EQ(sizeof(int32_t), x.AllocSize());
+
+ EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<0>(c)));
+ EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<0>(cc)));
+
+ EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<const int32_t>(c)));
+ EXPECT_EQ(p, Type<const int32_t*>(x.Pointer<const int32_t>(cc)));
+
+ EXPECT_THAT(Type<std::tuple<const int32_t*>>(x.Pointers(c)), Tuple(p));
+ EXPECT_THAT(Type<std::tuple<const int32_t*>>(x.Pointers(cc)), Tuple(p));
+
+ EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<0>(c)),
+ IsSameSlice(Span<const int32_t>(p, 1)));
+ EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<0>(cc)),
+ IsSameSlice(Span<const int32_t>(p, 1)));
+
+ EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<const int32_t>(c)),
+ IsSameSlice(Span<const int32_t>(p, 1)));
+ EXPECT_THAT(Type<Span<const int32_t>>(x.Slice<const int32_t>(cc)),
+ IsSameSlice(Span<const int32_t>(p, 1)));
+
+ EXPECT_THAT(Type<std::tuple<Span<const int32_t>>>(x.Slices(c)),
+ Tuple(IsSameSlice(Span<const int32_t>(p, 1))));
+ EXPECT_THAT(Type<std::tuple<Span<const int32_t>>>(x.Slices(cc)),
+ Tuple(IsSameSlice(Span<const int32_t>(p, 1))));
+}
+
+namespace example {
+
+// Immutable move-only string with sizeof equal to sizeof(void*). The string
+// size and the characters are kept in the same heap allocation.
+class CompactString {
+ public:
+ CompactString(const char* s = "") { // NOLINT
+ const size_t size = strlen(s);
+ // size_t[1], followed by char[size + 1].
+ // This statement doesn't allocate memory.
+ const L layout(1, size + 1);
+ // AllocSize() tells us how much memory we need to allocate for all our
+ // data.
+ p_.reset(new unsigned char[layout.AllocSize()]);
+ // If running under ASAN, mark the padding bytes, if any, to catch memory
+ // errors.
+ layout.PoisonPadding(p_.get());
+ // Store the size in the allocation.
+ // Pointer<size_t>() is a synonym for Pointer<0>().
+ *layout.Pointer<size_t>(p_.get()) = size;
+ // Store the characters in the allocation.
+ memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
+ }
+
+ size_t size() const {
+ // Equivalent to reinterpret_cast<size_t&>(*p).
+ return *L::Partial().Pointer<size_t>(p_.get());
+ }
+
+ const char* c_str() const {
+ // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
+ // The argument in Partial(1) specifies that we have size_t[1] in front of
+ // the
+ // characters.
+ return L::Partial(1).Pointer<char>(p_.get());
+ }
+
+ private:
+ // Our heap allocation contains a size_t followed by an array of chars.
+ using L = Layout<size_t, char>;
+ std::unique_ptr<unsigned char[]> p_;
+};
+
+TEST(CompactString, Works) {
+ CompactString s = "hello";
+ EXPECT_EQ(5, s.size());
+ EXPECT_STREQ("hello", s.c_str());
+}
+
+} // namespace example
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/node_hash_policy.h b/absl/container/internal/node_hash_policy.h
new file mode 100644
index 0000000..065e700
--- /dev/null
+++ b/absl/container/internal/node_hash_policy.h
@@ -0,0 +1,88 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Adapts a policy for nodes.
+//
+// The node policy should model:
+//
+// struct Policy {
+// // Returns a new node allocated and constructed using the allocator, using
+// // the specified arguments.
+// template <class Alloc, class... Args>
+// value_type* new_element(Alloc* alloc, Args&&... args) const;
+//
+// // Destroys and deallocates node using the allocator.
+// template <class Alloc>
+// void delete_element(Alloc* alloc, value_type* node) const;
+// };
+//
+// It may also optionally define `value()` and `apply()`. For documentation on
+// these, see hash_policy_traits.h.
+
+#ifndef ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
+#define ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
+
+#include <cassert>
+#include <cstddef>
+#include <memory>
+#include <type_traits>
+#include <utility>
+
+namespace absl {
+namespace container_internal {
+
+template <class Reference, class Policy>
+struct node_hash_policy {
+ static_assert(std::is_lvalue_reference<Reference>::value, "");
+
+ using slot_type = typename std::remove_cv<
+ typename std::remove_reference<Reference>::type>::type*;
+
+ template <class Alloc, class... Args>
+ static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
+ *slot = Policy::new_element(alloc, std::forward<Args>(args)...);
+ }
+
+ template <class Alloc>
+ static void destroy(Alloc* alloc, slot_type* slot) {
+ Policy::delete_element(alloc, *slot);
+ }
+
+ template <class Alloc>
+ static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) {
+ *new_slot = *old_slot;
+ }
+
+ static size_t space_used(const slot_type* slot) {
+ if (slot == nullptr) return Policy::element_space_used(nullptr);
+ return Policy::element_space_used(*slot);
+ }
+
+ static Reference element(slot_type* slot) { return **slot; }
+
+ template <class T, class P = Policy>
+ static auto value(T* elem) -> decltype(P::value(elem)) {
+ return P::value(elem);
+ }
+
+ template <class... Ts, class P = Policy>
+ static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) {
+ return P::apply(std::forward<Ts>(ts)...);
+ }
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_NODE_HASH_POLICY_H_
diff --git a/absl/container/internal/node_hash_policy_test.cc b/absl/container/internal/node_hash_policy_test.cc
new file mode 100644
index 0000000..43d287e
--- /dev/null
+++ b/absl/container/internal/node_hash_policy_test.cc
@@ -0,0 +1,67 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/node_hash_policy.h"
+
+#include <memory>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_policy_traits.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::testing::Pointee;
+
+struct Policy : node_hash_policy<int&, Policy> {
+ using key_type = int;
+ using init_type = int;
+
+ template <class Alloc>
+ static int* new_element(Alloc* alloc, int value) {
+ return new int(value);
+ }
+
+ template <class Alloc>
+ static void delete_element(Alloc* alloc, int* elem) {
+ delete elem;
+ }
+};
+
+using NodePolicy = hash_policy_traits<Policy>;
+
+struct NodeTest : ::testing::Test {
+ std::allocator<int> alloc;
+ int n = 53;
+ int* a = &n;
+};
+
+TEST_F(NodeTest, ConstructDestroy) {
+ NodePolicy::construct(&alloc, &a, 42);
+ EXPECT_THAT(a, Pointee(42));
+ NodePolicy::destroy(&alloc, &a);
+}
+
+TEST_F(NodeTest, transfer) {
+ int s = 42;
+ int* b = &s;
+ NodePolicy::transfer(&alloc, &a, &b);
+ EXPECT_EQ(&s, a);
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/raw_hash_map.h b/absl/container/internal/raw_hash_map.h
new file mode 100644
index 0000000..1edc007
--- /dev/null
+++ b/absl/container/internal/raw_hash_map.h
@@ -0,0 +1,182 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
+#define ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
+
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
+
+namespace absl {
+namespace container_internal {
+
+template <class Policy, class Hash, class Eq, class Alloc>
+class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc> {
+ // P is Policy. It's passed as a template argument to support maps that have
+ // incomplete types as values, as in unordered_map<K, IncompleteType>.
+ // MappedReference<> may be a non-reference type.
+ template <class P>
+ using MappedReference = decltype(P::value(
+ std::addressof(std::declval<typename raw_hash_map::reference>())));
+
+ // MappedConstReference<> may be a non-reference type.
+ template <class P>
+ using MappedConstReference = decltype(P::value(
+ std::addressof(std::declval<typename raw_hash_map::const_reference>())));
+
+ public:
+ using key_type = typename Policy::key_type;
+ using mapped_type = typename Policy::mapped_type;
+ template <typename K>
+ using key_arg = typename raw_hash_map::raw_hash_set::template key_arg<K>;
+
+ static_assert(!std::is_reference<key_type>::value, "");
+ // TODO(alkis): remove this assertion and verify that reference mapped_type is
+ // supported.
+ static_assert(!std::is_reference<mapped_type>::value, "");
+
+ using iterator = typename raw_hash_map::raw_hash_set::iterator;
+ using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator;
+
+ raw_hash_map() {}
+ using raw_hash_map::raw_hash_set::raw_hash_set;
+
+ // The last two template parameters ensure that both arguments are rvalues
+ // (lvalue arguments are handled by the overloads below). This is necessary
+ // for supporting bitfield arguments.
+ //
+ // union { int n : 1; };
+ // flat_hash_map<int, int> m;
+ // m.insert_or_assign(n, n);
+ template <class K = key_type, class V = mapped_type, K* = nullptr,
+ V* = nullptr>
+ std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
+ return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
+ }
+
+ template <class K = key_type, class V = mapped_type, K* = nullptr>
+ std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
+ return insert_or_assign_impl(std::forward<K>(k), v);
+ }
+
+ template <class K = key_type, class V = mapped_type, V* = nullptr>
+ std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
+ return insert_or_assign_impl(k, std::forward<V>(v));
+ }
+
+ template <class K = key_type, class V = mapped_type>
+ std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
+ return insert_or_assign_impl(k, v);
+ }
+
+ template <class K = key_type, class V = mapped_type, K* = nullptr,
+ V* = nullptr>
+ iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
+ return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
+ }
+
+ template <class K = key_type, class V = mapped_type, K* = nullptr>
+ iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
+ return insert_or_assign(std::forward<K>(k), v).first;
+ }
+
+ template <class K = key_type, class V = mapped_type, V* = nullptr>
+ iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
+ return insert_or_assign(k, std::forward<V>(v)).first;
+ }
+
+ template <class K = key_type, class V = mapped_type>
+ iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
+ return insert_or_assign(k, v).first;
+ }
+
+ template <class K = key_type, class... Args,
+ typename std::enable_if<
+ !std::is_convertible<K, const_iterator>::value, int>::type = 0,
+ K* = nullptr>
+ std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
+ return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
+ }
+
+ template <class K = key_type, class... Args,
+ typename std::enable_if<
+ !std::is_convertible<K, const_iterator>::value, int>::type = 0>
+ std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
+ return try_emplace_impl(k, std::forward<Args>(args)...);
+ }
+
+ template <class K = key_type, class... Args, K* = nullptr>
+ iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
+ return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
+ }
+
+ template <class K = key_type, class... Args>
+ iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
+ return try_emplace(k, std::forward<Args>(args)...).first;
+ }
+
+ template <class K = key_type, class P = Policy>
+ MappedReference<P> at(const key_arg<K>& key) {
+ auto it = this->find(key);
+ if (it == this->end()) std::abort();
+ return Policy::value(&*it);
+ }
+
+ template <class K = key_type, class P = Policy>
+ MappedConstReference<P> at(const key_arg<K>& key) const {
+ auto it = this->find(key);
+ if (it == this->end()) std::abort();
+ return Policy::value(&*it);
+ }
+
+ template <class K = key_type, class P = Policy, K* = nullptr>
+ MappedReference<P> operator[](key_arg<K>&& key) {
+ return Policy::value(&*try_emplace(std::forward<K>(key)).first);
+ }
+
+ template <class K = key_type, class P = Policy>
+ MappedReference<P> operator[](const key_arg<K>& key) {
+ return Policy::value(&*try_emplace(key).first);
+ }
+
+ private:
+ template <class K, class V>
+ std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
+ auto res = this->find_or_prepare_insert(k);
+ if (res.second)
+ this->emplace_at(res.first, std::forward<K>(k), std::forward<V>(v));
+ else
+ Policy::value(&*this->iterator_at(res.first)) = std::forward<V>(v);
+ return {this->iterator_at(res.first), res.second};
+ }
+
+ template <class K = key_type, class... Args>
+ std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
+ auto res = this->find_or_prepare_insert(k);
+ if (res.second)
+ this->emplace_at(res.first, std::piecewise_construct,
+ std::forward_as_tuple(std::forward<K>(k)),
+ std::forward_as_tuple(std::forward<Args>(args)...));
+ return {this->iterator_at(res.first), res.second};
+ }
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_MAP_H_
diff --git a/absl/container/internal/raw_hash_set.cc b/absl/container/internal/raw_hash_set.cc
new file mode 100644
index 0000000..1015312
--- /dev/null
+++ b/absl/container/internal/raw_hash_set.cc
@@ -0,0 +1,45 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/raw_hash_set.h"
+
+#include <cstddef>
+
+#include "absl/base/config.h"
+
+namespace absl {
+namespace container_internal {
+
+constexpr size_t Group::kWidth;
+
+// Returns "random" seed.
+inline size_t RandomSeed() {
+#if ABSL_HAVE_THREAD_LOCAL
+ static thread_local size_t counter = 0;
+ size_t value = ++counter;
+#else // ABSL_HAVE_THREAD_LOCAL
+ static std::atomic<size_t> counter;
+ size_t value = counter.fetch_add(1, std::memory_order_relaxed);
+#endif // ABSL_HAVE_THREAD_LOCAL
+ return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
+}
+
+bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl) {
+ // To avoid problems with weak hashes and single bit tests, we use % 13.
+ // TODO(kfm,sbenza): revisit after we do unconditional mixing
+ return (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
+}
+
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/raw_hash_set.h b/absl/container/internal/raw_hash_set.h
new file mode 100644
index 0000000..0c0e590
--- /dev/null
+++ b/absl/container/internal/raw_hash_set.h
@@ -0,0 +1,1906 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// An open-addressing
+// hashtable with quadratic probing.
+//
+// This is a low level hashtable on top of which different interfaces can be
+// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
+//
+// The table interface is similar to that of std::unordered_set. Notable
+// differences are that most member functions support heterogeneous keys when
+// BOTH the hash and eq functions are marked as transparent. They do so by
+// providing a typedef called `is_transparent`.
+//
+// When heterogeneous lookup is enabled, functions that take key_type act as if
+// they have an overload set like:
+//
+// iterator find(const key_type& key);
+// template <class K>
+// iterator find(const K& key);
+//
+// size_type erase(const key_type& key);
+// template <class K>
+// size_type erase(const K& key);
+//
+// std::pair<iterator, iterator> equal_range(const key_type& key);
+// template <class K>
+// std::pair<iterator, iterator> equal_range(const K& key);
+//
+// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
+// exist.
+//
+// find() also supports passing the hash explicitly:
+//
+// iterator find(const key_type& key, size_t hash);
+// template <class U>
+// iterator find(const U& key, size_t hash);
+//
+// In addition the pointer to element and iterator stability guarantees are
+// weaker: all iterators and pointers are invalidated after a new element is
+// inserted.
+//
+// IMPLEMENTATION DETAILS
+//
+// The table stores elements inline in a slot array. In addition to the slot
+// array the table maintains some control state per slot. The extra state is one
+// byte per slot and stores empty or deleted marks, or alternatively 7 bits from
+// the hash of an occupied slot. The table is split into logical groups of
+// slots, like so:
+//
+// Group 1 Group 2 Group 3
+// +---------------+---------------+---------------+
+// | | | | | | | | | | | | | | | | | | | | | | | | |
+// +---------------+---------------+---------------+
+//
+// On lookup the hash is split into two parts:
+// - H2: 7 bits (those stored in the control bytes)
+// - H1: the rest of the bits
+// The groups are probed using H1. For each group the slots are matched to H2 in
+// parallel. Because H2 is 7 bits (128 states) and the number of slots per group
+// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
+//
+// On insert, once the right group is found (as in lookup), its slots are
+// filled in order.
+//
+// On erase a slot is cleared. In case the group did not have any empty slots
+// before the erase, the erased slot is marked as deleted.
+//
+// Groups without empty slots (but maybe with deleted slots) extend the probe
+// sequence. The probing algorithm is quadratic. Given N the number of groups,
+// the probing function for the i'th probe is:
+//
+// P(0) = H1 % N
+//
+// P(i) = (P(i - 1) + i) % N
+//
+// This probing function guarantees that after N probes, all the groups of the
+// table will be probed exactly once.
+
+#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
+#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
+
+#ifndef SWISSTABLE_HAVE_SSE2
+#ifdef __SSE2__
+#define SWISSTABLE_HAVE_SSE2 1
+#else
+#define SWISSTABLE_HAVE_SSE2 0
+#endif
+#endif
+
+#ifndef SWISSTABLE_HAVE_SSSE3
+#ifdef __SSSE3__
+#define SWISSTABLE_HAVE_SSSE3 1
+#else
+#define SWISSTABLE_HAVE_SSSE3 0
+#endif
+#endif
+
+#if SWISSTABLE_HAVE_SSSE3 && !SWISSTABLE_HAVE_SSE2
+#error "Bad configuration!"
+#endif
+
+#if SWISSTABLE_HAVE_SSE2
+#include <x86intrin.h>
+#endif
+
+#include <algorithm>
+#include <cmath>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/base/internal/bits.h"
+#include "absl/base/internal/endian.h"
+#include "absl/base/port.h"
+#include "absl/container/internal/compressed_tuple.h"
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_policy_traits.h"
+#include "absl/container/internal/hashtable_debug_hooks.h"
+#include "absl/container/internal/layout.h"
+#include "absl/memory/memory.h"
+#include "absl/meta/type_traits.h"
+#include "absl/types/optional.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+namespace container_internal {
+
+template <size_t Width>
+class probe_seq {
+ public:
+ probe_seq(size_t hash, size_t mask) {
+ assert(((mask + 1) & mask) == 0 && "not a mask");
+ mask_ = mask;
+ offset_ = hash & mask_;
+ }
+ size_t offset() const { return offset_; }
+ size_t offset(size_t i) const { return (offset_ + i) & mask_; }
+
+ void next() {
+ index_ += Width;
+ offset_ += index_;
+ offset_ &= mask_;
+ }
+ // 0-based probe index. The i-th probe in the probe sequence.
+ size_t index() const { return index_; }
+
+ private:
+ size_t mask_;
+ size_t offset_;
+ size_t index_ = 0;
+};
+
+template <class ContainerKey, class Hash, class Eq>
+struct RequireUsableKey {
+ template <class PassedKey, class... Args>
+ std::pair<
+ decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
+ decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
+ std::declval<const PassedKey&>()))>*
+ operator()(const PassedKey&, const Args&...) const;
+};
+
+template <class E, class Policy, class Hash, class Eq, class... Ts>
+struct IsDecomposable : std::false_type {};
+
+template <class Policy, class Hash, class Eq, class... Ts>
+struct IsDecomposable<
+ absl::void_t<decltype(
+ Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
+ std::declval<Ts>()...))>,
+ Policy, Hash, Eq, Ts...> : std::true_type {};
+
+template <class, class = void>
+struct IsTransparent : std::false_type {};
+template <class T>
+struct IsTransparent<T, absl::void_t<typename T::is_transparent>>
+ : std::true_type {};
+
+// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
+template <class T>
+constexpr bool IsNoThrowSwappable() {
+ using std::swap;
+ return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
+}
+
+template <typename T>
+int TrailingZeros(T x) {
+ return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64(x)
+ : base_internal::CountTrailingZerosNonZero32(x);
+}
+
+template <typename T>
+int LeadingZeros(T x) {
+ return sizeof(T) == 8 ? base_internal::CountLeadingZeros64(x)
+ : base_internal::CountLeadingZeros32(x);
+}
+
+// An abstraction over a bitmask. It provides an easy way to iterate through the
+// indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE),
+// this is a true bitmask. On non-SSE, platforms the arithematic used to
+// emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as
+// either 0x00 or 0x80.
+//
+// For example:
+// for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2
+// for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
+template <class T, int SignificantBits, int Shift = 0>
+class BitMask {
+ static_assert(std::is_unsigned<T>::value, "");
+ static_assert(Shift == 0 || Shift == 3, "");
+
+ public:
+ // These are useful for unit tests (gunit).
+ using value_type = int;
+ using iterator = BitMask;
+ using const_iterator = BitMask;
+
+ explicit BitMask(T mask) : mask_(mask) {}
+ BitMask& operator++() {
+ mask_ &= (mask_ - 1);
+ return *this;
+ }
+ explicit operator bool() const { return mask_ != 0; }
+ int operator*() const { return LowestBitSet(); }
+ int LowestBitSet() const {
+ return container_internal::TrailingZeros(mask_) >> Shift;
+ }
+ int HighestBitSet() const {
+ return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) -
+ 1) >>
+ Shift;
+ }
+
+ BitMask begin() const { return *this; }
+ BitMask end() const { return BitMask(0); }
+
+ int TrailingZeros() const {
+ return container_internal::TrailingZeros(mask_) >> Shift;
+ }
+
+ int LeadingZeros() const {
+ constexpr int total_significant_bits = SignificantBits << Shift;
+ constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
+ return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift;
+ }
+
+ private:
+ friend bool operator==(const BitMask& a, const BitMask& b) {
+ return a.mask_ == b.mask_;
+ }
+ friend bool operator!=(const BitMask& a, const BitMask& b) {
+ return a.mask_ != b.mask_;
+ }
+
+ T mask_;
+};
+
+using ctrl_t = signed char;
+using h2_t = uint8_t;
+
+// The values here are selected for maximum performance. See the static asserts
+// below for details.
+enum Ctrl : ctrl_t {
+ kEmpty = -128, // 0b10000000
+ kDeleted = -2, // 0b11111110
+ kSentinel = -1, // 0b11111111
+};
+static_assert(
+ kEmpty & kDeleted & kSentinel & 0x80,
+ "Special markers need to have the MSB to make checking for them efficient");
+static_assert(kEmpty < kSentinel && kDeleted < kSentinel,
+ "kEmpty and kDeleted must be smaller than kSentinel to make the "
+ "SIMD test of IsEmptyOrDeleted() efficient");
+static_assert(kSentinel == -1,
+ "kSentinel must be -1 to elide loading it from memory into SIMD "
+ "registers (pcmpeqd xmm, xmm)");
+static_assert(kEmpty == -128,
+ "kEmpty must be -128 to make the SIMD check for its "
+ "existence efficient (psignb xmm, xmm)");
+static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F,
+ "kEmpty and kDeleted must share an unset bit that is not shared "
+ "by kSentinel to make the scalar test for MatchEmptyOrDeleted() "
+ "efficient");
+static_assert(kDeleted == -2,
+ "kDeleted must be -2 to make the implementation of "
+ "ConvertSpecialToEmptyAndFullToDeleted efficient");
+
+// A single block of empty control bytes for tables without any slots allocated.
+// This enables removing a branch in the hot path of find().
+inline ctrl_t* EmptyGroup() {
+ alignas(16) static constexpr ctrl_t empty_group[] = {
+ kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty,
+ kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty};
+ return const_cast<ctrl_t*>(empty_group);
+}
+
+// Mixes a randomly generated per-process seed with `hash` and `ctrl` to
+// randomize insertion order within groups.
+bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl);
+
+// Returns a hash seed.
+//
+// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
+// non-determinism of iteration order in most cases.
+inline size_t HashSeed(const ctrl_t* ctrl) {
+ // The low bits of the pointer have little or no entropy because of
+ // alignment. We shift the pointer to try to use higher entropy bits. A
+ // good number seems to be 12 bits, because that aligns with page size.
+ return reinterpret_cast<uintptr_t>(ctrl) >> 12;
+}
+
+inline size_t H1(size_t hash, const ctrl_t* ctrl) {
+ return (hash >> 7) ^ HashSeed(ctrl);
+}
+inline ctrl_t H2(size_t hash) { return hash & 0x7F; }
+
+inline bool IsEmpty(ctrl_t c) { return c == kEmpty; }
+inline bool IsFull(ctrl_t c) { return c >= 0; }
+inline bool IsDeleted(ctrl_t c) { return c == kDeleted; }
+inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; }
+
+#if SWISSTABLE_HAVE_SSE2
+struct Group {
+ static constexpr size_t kWidth = 16; // the number of slots per group
+
+ explicit Group(const ctrl_t* pos) {
+ ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
+ }
+
+ // Returns a bitmask representing the positions of slots that match hash.
+ BitMask<uint32_t, kWidth> Match(h2_t hash) const {
+ auto match = _mm_set1_epi8(hash);
+ return BitMask<uint32_t, kWidth>(
+ _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)));
+ }
+
+ // Returns a bitmask representing the positions of empty slots.
+ BitMask<uint32_t, kWidth> MatchEmpty() const {
+#if SWISSTABLE_HAVE_SSSE3
+ // This only works because kEmpty is -128.
+ return BitMask<uint32_t, kWidth>(
+ _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)));
+#else
+ return Match(kEmpty);
+#endif
+ }
+
+ // Returns a bitmask representing the positions of empty or deleted slots.
+ BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
+ auto special = _mm_set1_epi8(kSentinel);
+ return BitMask<uint32_t, kWidth>(
+ _mm_movemask_epi8(_mm_cmpgt_epi8(special, ctrl)));
+ }
+
+ // Returns the number of trailing empty or deleted elements in the group.
+ uint32_t CountLeadingEmptyOrDeleted() const {
+ auto special = _mm_set1_epi8(kSentinel);
+ return TrailingZeros(_mm_movemask_epi8(_mm_cmpgt_epi8(special, ctrl)) + 1);
+ }
+
+ void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
+ auto msbs = _mm_set1_epi8(0x80);
+ auto x126 = _mm_set1_epi8(126);
+#if SWISSTABLE_HAVE_SSSE3
+ auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
+#else
+ auto zero = _mm_setzero_si128();
+ auto special_mask = _mm_cmpgt_epi8(zero, ctrl);
+ auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
+#endif
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
+ }
+
+ __m128i ctrl;
+};
+#else
+struct Group {
+ static constexpr size_t kWidth = 8;
+
+ explicit Group(const ctrl_t* pos) : ctrl(little_endian::Load64(pos)) {}
+
+ BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
+ // For the technique, see:
+ // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
+ // (Determine if a word has a byte equal to n).
+ //
+ // Caveat: there are false positives but:
+ // - they only occur if there is a real match
+ // - they never occur on kEmpty, kDeleted, kSentinel
+ // - they will be handled gracefully by subsequent checks in code
+ //
+ // Example:
+ // v = 0x1716151413121110
+ // hash = 0x12
+ // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
+ constexpr uint64_t msbs = 0x8080808080808080ULL;
+ constexpr uint64_t lsbs = 0x0101010101010101ULL;
+ auto x = ctrl ^ (lsbs * hash);
+ return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
+ }
+
+ BitMask<uint64_t, kWidth, 3> MatchEmpty() const {
+ constexpr uint64_t msbs = 0x8080808080808080ULL;
+ return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs);
+ }
+
+ BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const {
+ constexpr uint64_t msbs = 0x8080808080808080ULL;
+ return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs);
+ }
+
+ uint32_t CountLeadingEmptyOrDeleted() const {
+ constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL;
+ return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3;
+ }
+
+ void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
+ constexpr uint64_t msbs = 0x8080808080808080ULL;
+ constexpr uint64_t lsbs = 0x0101010101010101ULL;
+ auto x = ctrl & msbs;
+ auto res = (~x + (x >> 7)) & ~lsbs;
+ little_endian::Store64(dst, res);
+ }
+
+ uint64_t ctrl;
+};
+#endif // SWISSTABLE_HAVE_SSE2
+
+template <class Policy, class Hash, class Eq, class Alloc>
+class raw_hash_set;
+
+
+inline bool IsValidCapacity(size_t n) {
+ return ((n + 1) & n) == 0 && n >= Group::kWidth - 1;
+}
+
+// PRECONDITION:
+// IsValidCapacity(capacity)
+// ctrl[capacity] == kSentinel
+// ctrl[i] != kSentinel for all i < capacity
+// Applies mapping for every byte in ctrl:
+// DELETED -> EMPTY
+// EMPTY -> EMPTY
+// FULL -> DELETED
+inline void ConvertDeletedToEmptyAndFullToDeleted(
+ ctrl_t* ctrl, size_t capacity) {
+ assert(ctrl[capacity] == kSentinel);
+ assert(IsValidCapacity(capacity));
+ for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) {
+ Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
+ }
+ // Copy the cloned ctrl bytes.
+ std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth);
+ ctrl[capacity] = kSentinel;
+}
+
+// Rounds up the capacity to the next power of 2 minus 1 and ensures it is
+// greater or equal to Group::kWidth - 1.
+inline size_t NormalizeCapacity(size_t n) {
+ constexpr size_t kMinCapacity = Group::kWidth - 1;
+ return n <= kMinCapacity
+ ? kMinCapacity
+ : std::numeric_limits<size_t>::max() >> LeadingZeros(n);
+}
+
+// The node_handle concept from C++17.
+// We specialize node_handle for sets and maps. node_handle_base holds the
+// common API of both.
+template <typename Policy, typename Alloc>
+class node_handle_base {
+ protected:
+ using PolicyTraits = hash_policy_traits<Policy>;
+ using slot_type = typename PolicyTraits::slot_type;
+
+ public:
+ using allocator_type = Alloc;
+
+ constexpr node_handle_base() {}
+ node_handle_base(node_handle_base&& other) noexcept {
+ *this = std::move(other);
+ }
+ ~node_handle_base() { destroy(); }
+ node_handle_base& operator=(node_handle_base&& other) {
+ destroy();
+ if (!other.empty()) {
+ alloc_ = other.alloc_;
+ PolicyTraits::transfer(alloc(), slot(), other.slot());
+ other.reset();
+ }
+ return *this;
+ }
+
+ bool empty() const noexcept { return !alloc_; }
+ explicit operator bool() const noexcept { return !empty(); }
+ allocator_type get_allocator() const { return *alloc_; }
+
+ protected:
+ template <typename, typename, typename, typename>
+ friend class raw_hash_set;
+
+ node_handle_base(const allocator_type& a, slot_type* s) : alloc_(a) {
+ PolicyTraits::transfer(alloc(), slot(), s);
+ }
+
+ void destroy() {
+ if (!empty()) {
+ PolicyTraits::destroy(alloc(), slot());
+ reset();
+ }
+ }
+
+ void reset() {
+ assert(alloc_.has_value());
+ alloc_ = absl::nullopt;
+ }
+
+ slot_type* slot() const {
+ assert(!empty());
+ return reinterpret_cast<slot_type*>(std::addressof(slot_space_));
+ }
+ allocator_type* alloc() { return std::addressof(*alloc_); }
+
+ private:
+ absl::optional<allocator_type> alloc_;
+ mutable absl::aligned_storage_t<sizeof(slot_type), alignof(slot_type)>
+ slot_space_;
+};
+
+// For sets.
+template <typename Policy, typename Alloc, typename = void>
+class node_handle : public node_handle_base<Policy, Alloc> {
+ using Base = typename node_handle::node_handle_base;
+
+ public:
+ using value_type = typename Base::PolicyTraits::value_type;
+
+ constexpr node_handle() {}
+
+ value_type& value() const {
+ return Base::PolicyTraits::element(this->slot());
+ }
+
+ private:
+ template <typename, typename, typename, typename>
+ friend class raw_hash_set;
+
+ node_handle(const Alloc& a, typename Base::slot_type* s) : Base(a, s) {}
+};
+
+// For maps.
+template <typename Policy, typename Alloc>
+class node_handle<Policy, Alloc, absl::void_t<typename Policy::mapped_type>>
+ : public node_handle_base<Policy, Alloc> {
+ using Base = typename node_handle::node_handle_base;
+
+ public:
+ using key_type = typename Policy::key_type;
+ using mapped_type = typename Policy::mapped_type;
+
+ constexpr node_handle() {}
+
+ auto key() const -> decltype(Base::PolicyTraits::key(this->slot())) {
+ return Base::PolicyTraits::key(this->slot());
+ }
+
+ mapped_type& mapped() const {
+ return Base::PolicyTraits::value(
+ &Base::PolicyTraits::element(this->slot()));
+ }
+
+ private:
+ template <typename, typename, typename, typename>
+ friend class raw_hash_set;
+
+ node_handle(const Alloc& a, typename Base::slot_type* s) : Base(a, s) {}
+};
+
+// Implement the insert_return_type<> concept of C++17.
+template <class Iterator, class NodeType>
+struct insert_return_type {
+ Iterator position;
+ bool inserted;
+ NodeType node;
+};
+
+// Helper trait to allow or disallow arbitrary keys when the hash and
+// eq functions are transparent.
+// It is very important that the inner template is an alias and that the type it
+// produces is not a dependent type. Otherwise, type deduction would fail.
+template <bool is_transparent>
+struct KeyArg {
+ // Transparent. Forward `K`.
+ template <typename K, typename key_type>
+ using type = K;
+};
+
+template <>
+struct KeyArg<false> {
+ // Not transparent. Always use `key_type`.
+ template <typename K, typename key_type>
+ using type = key_type;
+};
+
+// Policy: a policy defines how to perform different operations on
+// the slots of the hashtable (see hash_policy_traits.h for the full interface
+// of policy).
+//
+// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
+// functor should accept a key and return size_t as hash. For best performance
+// it is important that the hash function provides high entropy across all bits
+// of the hash.
+//
+// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
+// should accept two (of possibly different type) keys and return a bool: true
+// if they are equal, false if they are not. If two keys compare equal, then
+// their hash values as defined by Hash MUST be equal.
+//
+// Allocator: an Allocator [http://devdocs.io/cpp/concept/allocator] with which
+// the storage of the hashtable will be allocated and the elements will be
+// constructed and destroyed.
+template <class Policy, class Hash, class Eq, class Alloc>
+class raw_hash_set {
+ using PolicyTraits = hash_policy_traits<Policy>;
+ using KeyArgImpl = container_internal::KeyArg<IsTransparent<Eq>::value &&
+ IsTransparent<Hash>::value>;
+
+ public:
+ using init_type = typename PolicyTraits::init_type;
+ using key_type = typename PolicyTraits::key_type;
+ // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
+ // code fixes!
+ using slot_type = typename PolicyTraits::slot_type;
+ using allocator_type = Alloc;
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+ using hasher = Hash;
+ using key_equal = Eq;
+ using policy_type = Policy;
+ using value_type = typename PolicyTraits::value_type;
+ using reference = value_type&;
+ using const_reference = const value_type&;
+ using pointer = typename absl::allocator_traits<
+ allocator_type>::template rebind_traits<value_type>::pointer;
+ using const_pointer = typename absl::allocator_traits<
+ allocator_type>::template rebind_traits<value_type>::const_pointer;
+
+ // Alias used for heterogeneous lookup functions.
+ // `key_arg<K>` evaluates to `K` when the functors are tranparent and to
+ // `key_type` otherwise. It permits template argument deduction on `K` for the
+ // transparent case.
+ template <class K>
+ using key_arg = typename KeyArgImpl::template type<K, key_type>;
+
+ private:
+ // Give an early error when key_type is not hashable/eq.
+ auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
+ auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
+
+ using Layout = absl::container_internal::Layout<ctrl_t, slot_type>;
+
+ static Layout MakeLayout(size_t capacity) {
+ assert(IsValidCapacity(capacity));
+ return Layout(capacity + Group::kWidth + 1, capacity);
+ }
+
+ using AllocTraits = absl::allocator_traits<allocator_type>;
+ using SlotAlloc = typename absl::allocator_traits<
+ allocator_type>::template rebind_alloc<slot_type>;
+ using SlotAllocTraits = typename absl::allocator_traits<
+ allocator_type>::template rebind_traits<slot_type>;
+
+ static_assert(std::is_lvalue_reference<reference>::value,
+ "Policy::element() must return a reference");
+
+ template <typename T>
+ struct SameAsElementReference
+ : std::is_same<typename std::remove_cv<
+ typename std::remove_reference<reference>::type>::type,
+ typename std::remove_cv<
+ typename std::remove_reference<T>::type>::type> {};
+
+ // An enabler for insert(T&&): T must be convertible to init_type or be the
+ // same as [cv] value_type [ref].
+ // Note: we separate SameAsElementReference into its own type to avoid using
+ // reference unless we need to. MSVC doesn't seem to like it in some
+ // cases.
+ template <class T>
+ using RequiresInsertable = typename std::enable_if<
+ absl::disjunction<std::is_convertible<T, init_type>,
+ SameAsElementReference<T>>::value,
+ int>::type;
+
+ // RequiresNotInit is a workaround for gcc prior to 7.1.
+ // See https://godbolt.org/g/Y4xsUh.
+ template <class T>
+ using RequiresNotInit =
+ typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
+
+ template <class... Ts>
+ using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
+
+ public:
+ static_assert(std::is_same<pointer, value_type*>::value,
+ "Allocators with custom pointer types are not supported");
+ static_assert(std::is_same<const_pointer, const value_type*>::value,
+ "Allocators with custom pointer types are not supported");
+
+ class iterator {
+ friend class raw_hash_set;
+
+ public:
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = typename raw_hash_set::value_type;
+ using reference =
+ absl::conditional_t<PolicyTraits::constant_iterators::value,
+ const value_type&, value_type&>;
+ using pointer = absl::remove_reference_t<reference>*;
+ using difference_type = typename raw_hash_set::difference_type;
+
+ iterator() {}
+
+ // PRECONDITION: not an end() iterator.
+ reference operator*() const { return PolicyTraits::element(slot_); }
+
+ // PRECONDITION: not an end() iterator.
+ pointer operator->() const { return &operator*(); }
+
+ // PRECONDITION: not an end() iterator.
+ iterator& operator++() {
+ ++ctrl_;
+ ++slot_;
+ skip_empty_or_deleted();
+ return *this;
+ }
+ // PRECONDITION: not an end() iterator.
+ iterator operator++(int) {
+ auto tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ friend bool operator==(const iterator& a, const iterator& b) {
+ return a.ctrl_ == b.ctrl_;
+ }
+ friend bool operator!=(const iterator& a, const iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ iterator(ctrl_t* ctrl) : ctrl_(ctrl) {} // for end()
+ iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
+
+ void skip_empty_or_deleted() {
+ while (IsEmptyOrDeleted(*ctrl_)) {
+ // ctrl is not necessarily aligned to Group::kWidth. It is also likely
+ // to read past the space for ctrl bytes and into slots. This is ok
+ // because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there
+ // is no way to read outside the combined slot array.
+ uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
+ ctrl_ += shift;
+ slot_ += shift;
+ }
+ }
+
+ ctrl_t* ctrl_ = nullptr;
+ slot_type* slot_;
+ };
+
+ class const_iterator {
+ friend class raw_hash_set;
+
+ public:
+ using iterator_category = typename iterator::iterator_category;
+ using value_type = typename raw_hash_set::value_type;
+ using reference = typename raw_hash_set::const_reference;
+ using pointer = typename raw_hash_set::const_pointer;
+ using difference_type = typename raw_hash_set::difference_type;
+
+ const_iterator() {}
+ // Implicit construction from iterator.
+ const_iterator(iterator i) : inner_(std::move(i)) {}
+
+ reference operator*() const { return *inner_; }
+ pointer operator->() const { return inner_.operator->(); }
+
+ const_iterator& operator++() {
+ ++inner_;
+ return *this;
+ }
+ const_iterator operator++(int) { return inner_++; }
+
+ friend bool operator==(const const_iterator& a, const const_iterator& b) {
+ return a.inner_ == b.inner_;
+ }
+ friend bool operator!=(const const_iterator& a, const const_iterator& b) {
+ return !(a == b);
+ }
+
+ private:
+ const_iterator(const ctrl_t* ctrl, const slot_type* slot)
+ : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
+
+ iterator inner_;
+ };
+
+ using node_type = container_internal::node_handle<Policy, Alloc>;
+
+ raw_hash_set() noexcept(
+ std::is_nothrow_default_constructible<hasher>::value&&
+ std::is_nothrow_default_constructible<key_equal>::value&&
+ std::is_nothrow_default_constructible<allocator_type>::value) {}
+
+ explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
+ const key_equal& eq = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) {
+ if (bucket_count) {
+ capacity_ = NormalizeCapacity(bucket_count);
+ growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor);
+ initialize_slots();
+ }
+ }
+
+ raw_hash_set(size_t bucket_count, const hasher& hash,
+ const allocator_type& alloc)
+ : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
+
+ raw_hash_set(size_t bucket_count, const allocator_type& alloc)
+ : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
+
+ explicit raw_hash_set(const allocator_type& alloc)
+ : raw_hash_set(0, hasher(), key_equal(), alloc) {}
+
+ template <class InputIter>
+ raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
+ const hasher& hash = hasher(), const key_equal& eq = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : raw_hash_set(bucket_count, hash, eq, alloc) {
+ insert(first, last);
+ }
+
+ template <class InputIter>
+ raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
+ const hasher& hash, const allocator_type& alloc)
+ : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
+
+ template <class InputIter>
+ raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
+ const allocator_type& alloc)
+ : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
+
+ template <class InputIter>
+ raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
+ : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
+
+ // Instead of accepting std::initializer_list<value_type> as the first
+ // argument like std::unordered_set<value_type> does, we have two overloads
+ // that accept std::initializer_list<T> and std::initializer_list<init_type>.
+ // This is advantageous for performance.
+ //
+ // // Turns {"abc", "def"} into std::initializer_list<std::string>, then copies
+ // // the strings into the set.
+ // std::unordered_set<std::string> s = {"abc", "def"};
+ //
+ // // Turns {"abc", "def"} into std::initializer_list<const char*>, then
+ // // copies the strings into the set.
+ // absl::flat_hash_set<std::string> s = {"abc", "def"};
+ //
+ // The same trick is used in insert().
+ //
+ // The enabler is necessary to prevent this constructor from triggering where
+ // the copy constructor is meant to be called.
+ //
+ // absl::flat_hash_set<int> a, b{a};
+ //
+ // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
+ template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
+ raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
+ const hasher& hash = hasher(), const key_equal& eq = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
+
+ raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
+ const hasher& hash = hasher(), const key_equal& eq = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
+
+ template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
+ raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
+ const hasher& hash, const allocator_type& alloc)
+ : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
+
+ raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
+ const hasher& hash, const allocator_type& alloc)
+ : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
+
+ template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
+ raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
+ const allocator_type& alloc)
+ : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
+
+ raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
+ const allocator_type& alloc)
+ : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
+
+ template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
+ raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
+ : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
+
+ raw_hash_set(std::initializer_list<init_type> init,
+ const allocator_type& alloc)
+ : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
+
+ raw_hash_set(const raw_hash_set& that)
+ : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
+ that.alloc_ref())) {}
+
+ raw_hash_set(const raw_hash_set& that, const allocator_type& a)
+ : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
+ reserve(that.size());
+ // Because the table is guaranteed to be empty, we can do something faster
+ // than a full `insert`.
+ for (const auto& v : that) {
+ const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
+ const size_t i = find_first_non_full(hash);
+ set_ctrl(i, H2(hash));
+ emplace_at(i, v);
+ }
+ size_ = that.size();
+ growth_left() -= that.size();
+ }
+
+ raw_hash_set(raw_hash_set&& that) noexcept(
+ std::is_nothrow_copy_constructible<hasher>::value&&
+ std::is_nothrow_copy_constructible<key_equal>::value&&
+ std::is_nothrow_copy_constructible<allocator_type>::value)
+ : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
+ slots_(absl::exchange(that.slots_, nullptr)),
+ size_(absl::exchange(that.size_, 0)),
+ capacity_(absl::exchange(that.capacity_, 0)),
+ // Hash, equality and allocator are copied instead of moved because
+ // `that` must be left valid. If Hash is std::function<Key>, moving it
+ // would create a nullptr functor that cannot be called.
+ settings_(that.settings_) {
+ // growth_left was copied above, reset the one from `that`.
+ that.growth_left() = 0;
+ }
+
+ raw_hash_set(raw_hash_set&& that, const allocator_type& a)
+ : ctrl_(EmptyGroup()),
+ slots_(nullptr),
+ size_(0),
+ capacity_(0),
+ settings_(0, that.hash_ref(), that.eq_ref(), a) {
+ if (a == that.alloc_ref()) {
+ std::swap(ctrl_, that.ctrl_);
+ std::swap(slots_, that.slots_);
+ std::swap(size_, that.size_);
+ std::swap(capacity_, that.capacity_);
+ std::swap(growth_left(), that.growth_left());
+ } else {
+ reserve(that.size());
+ // Note: this will copy elements of dense_set and unordered_set instead of
+ // moving them. This can be fixed if it ever becomes an issue.
+ for (auto& elem : that) insert(std::move(elem));
+ }
+ }
+
+ raw_hash_set& operator=(const raw_hash_set& that) {
+ raw_hash_set tmp(that,
+ AllocTraits::propagate_on_container_copy_assignment::value
+ ? that.alloc_ref()
+ : alloc_ref());
+ swap(tmp);
+ return *this;
+ }
+
+ raw_hash_set& operator=(raw_hash_set&& that) noexcept(
+ absl::allocator_traits<allocator_type>::is_always_equal::value&&
+ std::is_nothrow_move_assignable<hasher>::value&&
+ std::is_nothrow_move_assignable<key_equal>::value) {
+ // TODO(sbenza): We should only use the operations from the noexcept clause
+ // to make sure we actually adhere to that contract.
+ return move_assign(
+ std::move(that),
+ typename AllocTraits::propagate_on_container_move_assignment());
+ }
+
+ ~raw_hash_set() { destroy_slots(); }
+
+ iterator begin() {
+ auto it = iterator_at(0);
+ it.skip_empty_or_deleted();
+ return it;
+ }
+ iterator end() { return {ctrl_ + capacity_}; }
+
+ const_iterator begin() const {
+ return const_cast<raw_hash_set*>(this)->begin();
+ }
+ const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); }
+ const_iterator cbegin() const { return begin(); }
+ const_iterator cend() const { return end(); }
+
+ bool empty() const { return !size(); }
+ size_t size() const { return size_; }
+ size_t capacity() const { return capacity_; }
+ size_t max_size() const { return std::numeric_limits<size_t>::max(); }
+
+ void clear() {
+ // Iterating over this container is O(bucket_count()). When bucket_count()
+ // is much greater than size(), iteration becomes prohibitively expensive.
+ // For clear() it is more important to reuse the allocated array when the
+ // container is small because allocation takes comparatively long time
+ // compared to destruction of the elements of the container. So we pick the
+ // largest bucket_count() threshold for which iteration is still fast and
+ // past that we simply deallocate the array.
+ if (capacity_ > 127) {
+ destroy_slots();
+ } else if (capacity_) {
+ for (size_t i = 0; i != capacity_; ++i) {
+ if (IsFull(ctrl_[i])) {
+ PolicyTraits::destroy(&alloc_ref(), slots_ + i);
+ }
+ }
+ size_ = 0;
+ reset_ctrl();
+ growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor);
+ }
+ assert(empty());
+ }
+
+ // This overload kicks in when the argument is an rvalue of insertable and
+ // decomposable type other than init_type.
+ //
+ // flat_hash_map<std::string, int> m;
+ // m.insert(std::make_pair("abc", 42));
+ template <class T, RequiresInsertable<T> = 0,
+ typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
+ T* = nullptr>
+ std::pair<iterator, bool> insert(T&& value) {
+ return emplace(std::forward<T>(value));
+ }
+
+ // This overload kicks in when the argument is a bitfield or an lvalue of
+ // insertable and decomposable type.
+ //
+ // union { int n : 1; };
+ // flat_hash_set<int> s;
+ // s.insert(n);
+ //
+ // flat_hash_set<std::string> s;
+ // const char* p = "hello";
+ // s.insert(p);
+ //
+ // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
+ // RequiresInsertable<T> with RequiresInsertable<const T&>.
+ // We are hitting this bug: https://godbolt.org/g/1Vht4f.
+ template <
+ class T, RequiresInsertable<T> = 0,
+ typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
+ std::pair<iterator, bool> insert(const T& value) {
+ return emplace(value);
+ }
+
+ // This overload kicks in when the argument is an rvalue of init_type. Its
+ // purpose is to handle brace-init-list arguments.
+ //
+ // flat_hash_set<std::string, int> s;
+ // s.insert({"abc", 42});
+ std::pair<iterator, bool> insert(init_type&& value) {
+ return emplace(std::move(value));
+ }
+
+ template <class T, RequiresInsertable<T> = 0,
+ typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
+ T* = nullptr>
+ iterator insert(const_iterator, T&& value) {
+ return insert(std::forward<T>(value)).first;
+ }
+
+ // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
+ // RequiresInsertable<T> with RequiresInsertable<const T&>.
+ // We are hitting this bug: https://godbolt.org/g/1Vht4f.
+ template <
+ class T, RequiresInsertable<T> = 0,
+ typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
+ iterator insert(const_iterator, const T& value) {
+ return insert(value).first;
+ }
+
+ iterator insert(const_iterator, init_type&& value) {
+ return insert(std::move(value)).first;
+ }
+
+ template <class InputIt>
+ void insert(InputIt first, InputIt last) {
+ for (; first != last; ++first) insert(*first);
+ }
+
+ template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
+ void insert(std::initializer_list<T> ilist) {
+ insert(ilist.begin(), ilist.end());
+ }
+
+ void insert(std::initializer_list<init_type> ilist) {
+ insert(ilist.begin(), ilist.end());
+ }
+
+ insert_return_type<iterator, node_type> insert(node_type&& node) {
+ if (!node) return {end(), false, node_type()};
+ const auto& elem = PolicyTraits::element(node.slot());
+ auto res = PolicyTraits::apply(
+ InsertSlot<false>{*this, std::move(*node.slot())}, elem);
+ if (res.second) {
+ node.reset();
+ return {res.first, true, node_type()};
+ } else {
+ return {res.first, false, std::move(node)};
+ }
+ }
+
+ iterator insert(const_iterator, node_type&& node) {
+ return insert(std::move(node)).first;
+ }
+
+ // This overload kicks in if we can deduce the key from args. This enables us
+ // to avoid constructing value_type if an entry with the same key already
+ // exists.
+ //
+ // For example:
+ //
+ // flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
+ // // Creates no std::string copies and makes no heap allocations.
+ // m.emplace("abc", "xyz");
+ template <class... Args, typename std::enable_if<
+ IsDecomposable<Args...>::value, int>::type = 0>
+ std::pair<iterator, bool> emplace(Args&&... args) {
+ return PolicyTraits::apply(EmplaceDecomposable{*this},
+ std::forward<Args>(args)...);
+ }
+
+ // This overload kicks in if we cannot deduce the key from args. It constructs
+ // value_type unconditionally and then either moves it into the table or
+ // destroys.
+ template <class... Args, typename std::enable_if<
+ !IsDecomposable<Args...>::value, int>::type = 0>
+ std::pair<iterator, bool> emplace(Args&&... args) {
+ typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
+ raw;
+ slot_type* slot = reinterpret_cast<slot_type*>(&raw);
+
+ PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
+ const auto& elem = PolicyTraits::element(slot);
+ return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
+ }
+
+ template <class... Args>
+ iterator emplace_hint(const_iterator, Args&&... args) {
+ return emplace(std::forward<Args>(args)...).first;
+ }
+
+ // Extension API: support for lazy emplace.
+ //
+ // Looks up key in the table. If found, returns the iterator to the element.
+ // Otherwise calls f with one argument of type raw_hash_set::constructor. f
+ // MUST call raw_hash_set::constructor with arguments as if a
+ // raw_hash_set::value_type is constructed, otherwise the behavior is
+ // undefined.
+ //
+ // For example:
+ //
+ // std::unordered_set<ArenaString> s;
+ // // Makes ArenaStr even if "abc" is in the map.
+ // s.insert(ArenaString(&arena, "abc"));
+ //
+ // flat_hash_set<ArenaStr> s;
+ // // Makes ArenaStr only if "abc" is not in the map.
+ // s.lazy_emplace("abc", [&](const constructor& ctor) {
+ // ctor(&arena, "abc");
+ // });
+ //
+ // WARNING: This API is currently experimental. If there is a way to implement
+ // the same thing with the rest of the API, prefer that.
+ class constructor {
+ friend class raw_hash_set;
+
+ public:
+ template <class... Args>
+ void operator()(Args&&... args) const {
+ assert(*slot_);
+ PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
+ *slot_ = nullptr;
+ }
+
+ private:
+ constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
+
+ allocator_type* alloc_;
+ slot_type** slot_;
+ };
+
+ template <class K = key_type, class F>
+ iterator lazy_emplace(const key_arg<K>& key, F&& f) {
+ auto res = find_or_prepare_insert(key);
+ if (res.second) {
+ slot_type* slot = slots_ + res.first;
+ std::forward<F>(f)(constructor(&alloc_ref(), &slot));
+ assert(!slot);
+ }
+ return iterator_at(res.first);
+ }
+
+ // Extension API: support for heterogeneous keys.
+ //
+ // std::unordered_set<std::string> s;
+ // // Turns "abc" into std::string.
+ // s.erase("abc");
+ //
+ // flat_hash_set<std::string> s;
+ // // Uses "abc" directly without copying it into std::string.
+ // s.erase("abc");
+ template <class K = key_type>
+ size_type erase(const key_arg<K>& key) {
+ auto it = find(key);
+ if (it == end()) return 0;
+ erase(it);
+ return 1;
+ }
+
+ // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
+ // this method returns void to reduce algorithmic complexity to O(1). In
+ // order to erase while iterating across a map, use the following idiom (which
+ // also works for standard containers):
+ //
+ // for (auto it = m.begin(), end = m.end(); it != end;) {
+ // if (<pred>) {
+ // m.erase(it++);
+ // } else {
+ // ++it;
+ // }
+ // }
+ void erase(const_iterator cit) { erase(cit.inner_); }
+
+ // This overload is necessary because otherwise erase<K>(const K&) would be
+ // a better match if non-const iterator is passed as an argument.
+ void erase(iterator it) {
+ assert(it != end());
+ PolicyTraits::destroy(&alloc_ref(), it.slot_);
+ erase_meta_only(it);
+ }
+
+ iterator erase(const_iterator first, const_iterator last) {
+ while (first != last) {
+ erase(first++);
+ }
+ return last.inner_;
+ }
+
+ // Moves elements from `src` into `this`.
+ // If the element already exists in `this`, it is left unmodified in `src`.
+ template <typename H, typename E>
+ void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
+ assert(this != &src);
+ for (auto it = src.begin(), e = src.end(); it != e; ++it) {
+ if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
+ PolicyTraits::element(it.slot_))
+ .second) {
+ src.erase_meta_only(it);
+ }
+ }
+ }
+
+ template <typename H, typename E>
+ void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
+ merge(src);
+ }
+
+ node_type extract(const_iterator position) {
+ node_type node(alloc_ref(), position.inner_.slot_);
+ erase_meta_only(position);
+ return node;
+ }
+
+ template <
+ class K = key_type,
+ typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
+ node_type extract(const key_arg<K>& key) {
+ auto it = find(key);
+ return it == end() ? node_type() : extract(const_iterator{it});
+ }
+
+ void swap(raw_hash_set& that) noexcept(
+ IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
+ (!AllocTraits::propagate_on_container_swap::value ||
+ IsNoThrowSwappable<allocator_type>())) {
+ using std::swap;
+ swap(ctrl_, that.ctrl_);
+ swap(slots_, that.slots_);
+ swap(size_, that.size_);
+ swap(capacity_, that.capacity_);
+ swap(growth_left(), that.growth_left());
+ swap(hash_ref(), that.hash_ref());
+ swap(eq_ref(), that.eq_ref());
+ if (AllocTraits::propagate_on_container_swap::value) {
+ swap(alloc_ref(), that.alloc_ref());
+ } else {
+ // If the allocators do not compare equal it is officially undefined
+ // behavior. We choose to do nothing.
+ }
+ }
+
+ void rehash(size_t n) {
+ if (n == 0 && capacity_ == 0) return;
+ if (n == 0 && size_ == 0) return destroy_slots();
+ auto m = NormalizeCapacity(std::max(
+ n, static_cast<size_t>(std::ceil(size() / kMaxLoadFactor))));
+ // n == 0 unconditionally rehashes as per the standard.
+ if (n == 0 || m > capacity_) {
+ resize(m);
+ }
+ }
+
+ void reserve(size_t n) {
+ rehash(static_cast<size_t>(std::ceil(n / kMaxLoadFactor)));
+ }
+
+ // Extension API: support for heterogeneous keys.
+ //
+ // std::unordered_set<std::string> s;
+ // // Turns "abc" into std::string.
+ // s.count("abc");
+ //
+ // ch_set<std::string> s;
+ // // Uses "abc" directly without copying it into std::string.
+ // s.count("abc");
+ template <class K = key_type>
+ size_t count(const key_arg<K>& key) const {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ // Issues CPU prefetch instructions for the memory needed to find or insert
+ // a key. Like all lookup functions, this support heterogeneous keys.
+ //
+ // NOTE: This is a very low level operation and should not be used without
+ // specific benchmarks indicating its importance.
+ template <class K = key_type>
+ void prefetch(const key_arg<K>& key) const {
+ (void)key;
+#if defined(__GNUC__)
+ auto seq = probe(hash_ref()(key));
+ __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
+ __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
+#endif // __GNUC__
+ }
+
+ // The API of find() has two extensions.
+ //
+ // 1. The hash can be passed by the user. It must be equal to the hash of the
+ // key.
+ //
+ // 2. The type of the key argument doesn't have to be key_type. This is so
+ // called heterogeneous key support.
+ template <class K = key_type>
+ iterator find(const key_arg<K>& key, size_t hash) {
+ auto seq = probe(hash);
+ while (true) {
+ Group g{ctrl_ + seq.offset()};
+ for (int i : g.Match(H2(hash))) {
+ if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
+ EqualElement<K>{key, eq_ref()},
+ PolicyTraits::element(slots_ + seq.offset(i)))))
+ return iterator_at(seq.offset(i));
+ }
+ if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end();
+ seq.next();
+ }
+ }
+ template <class K = key_type>
+ iterator find(const key_arg<K>& key) {
+ return find(key, hash_ref()(key));
+ }
+
+ template <class K = key_type>
+ const_iterator find(const key_arg<K>& key, size_t hash) const {
+ return const_cast<raw_hash_set*>(this)->find(key, hash);
+ }
+ template <class K = key_type>
+ const_iterator find(const key_arg<K>& key) const {
+ return find(key, hash_ref()(key));
+ }
+
+ template <class K = key_type>
+ bool contains(const key_arg<K>& key) const {
+ return find(key) != end();
+ }
+
+ template <class K = key_type>
+ std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
+ auto it = find(key);
+ if (it != end()) return {it, std::next(it)};
+ return {it, it};
+ }
+ template <class K = key_type>
+ std::pair<const_iterator, const_iterator> equal_range(
+ const key_arg<K>& key) const {
+ auto it = find(key);
+ if (it != end()) return {it, std::next(it)};
+ return {it, it};
+ }
+
+ size_t bucket_count() const { return capacity_; }
+ float load_factor() const {
+ return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
+ }
+ float max_load_factor() const { return 1.0f; }
+ void max_load_factor(float) {
+ // Does nothing.
+ }
+
+ hasher hash_function() const { return hash_ref(); }
+ key_equal key_eq() const { return eq_ref(); }
+ allocator_type get_allocator() const { return alloc_ref(); }
+
+ friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
+ if (a.size() != b.size()) return false;
+ const raw_hash_set* outer = &a;
+ const raw_hash_set* inner = &b;
+ if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
+ for (const value_type& elem : *outer)
+ if (!inner->has_element(elem)) return false;
+ return true;
+ }
+
+ friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
+ return !(a == b);
+ }
+
+ friend void swap(raw_hash_set& a,
+ raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
+ a.swap(b);
+ }
+
+ private:
+ template <class Container, typename Enabler>
+ friend struct absl::container_internal::hashtable_debug_internal::
+ HashtableDebugAccess;
+
+ struct FindElement {
+ template <class K, class... Args>
+ const_iterator operator()(const K& key, Args&&...) const {
+ return s.find(key);
+ }
+ const raw_hash_set& s;
+ };
+
+ struct HashElement {
+ template <class K, class... Args>
+ size_t operator()(const K& key, Args&&...) const {
+ return h(key);
+ }
+ const hasher& h;
+ };
+
+ template <class K1>
+ struct EqualElement {
+ template <class K2, class... Args>
+ bool operator()(const K2& lhs, Args&&...) const {
+ return eq(lhs, rhs);
+ }
+ const K1& rhs;
+ const key_equal& eq;
+ };
+
+ struct EmplaceDecomposable {
+ template <class K, class... Args>
+ std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
+ auto res = s.find_or_prepare_insert(key);
+ if (res.second) {
+ s.emplace_at(res.first, std::forward<Args>(args)...);
+ }
+ return {s.iterator_at(res.first), res.second};
+ }
+ raw_hash_set& s;
+ };
+
+ template <bool do_destroy>
+ struct InsertSlot {
+ template <class K, class... Args>
+ std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
+ auto res = s.find_or_prepare_insert(key);
+ if (res.second) {
+ PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
+ } else if (do_destroy) {
+ PolicyTraits::destroy(&s.alloc_ref(), &slot);
+ }
+ return {s.iterator_at(res.first), res.second};
+ }
+ raw_hash_set& s;
+ // Constructed slot. Either moved into place or destroyed.
+ slot_type&& slot;
+ };
+
+ // "erases" the object from the container, except that it doesn't actually
+ // destroy the object. It only updates all the metadata of the class.
+ // This can be used in conjunction with Policy::transfer to move the object to
+ // another place.
+ void erase_meta_only(const_iterator it) {
+ assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
+ --size_;
+ const size_t index = it.inner_.ctrl_ - ctrl_;
+ const size_t index_before = (index - Group::kWidth) & capacity_;
+ const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty();
+ const auto empty_before = Group(ctrl_ + index_before).MatchEmpty();
+
+ // We count how many consecutive non empties we have to the right and to the
+ // left of `it`. If the sum is >= kWidth then there is at least one probe
+ // window that might have seen a full group.
+ bool was_never_full =
+ empty_before && empty_after &&
+ static_cast<size_t>(empty_after.TrailingZeros() +
+ empty_before.LeadingZeros()) < Group::kWidth;
+
+ set_ctrl(index, was_never_full ? kEmpty : kDeleted);
+ growth_left() += was_never_full;
+ }
+
+ void initialize_slots() {
+ assert(capacity_);
+ auto layout = MakeLayout(capacity_);
+ char* mem = static_cast<char*>(
+ Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
+ ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem));
+ slots_ = layout.template Pointer<1>(mem);
+ reset_ctrl();
+ growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_;
+ }
+
+ void destroy_slots() {
+ if (!capacity_) return;
+ for (size_t i = 0; i != capacity_; ++i) {
+ if (IsFull(ctrl_[i])) {
+ PolicyTraits::destroy(&alloc_ref(), slots_ + i);
+ }
+ }
+ auto layout = MakeLayout(capacity_);
+ // Unpoison before returning the memory to the allocator.
+ SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
+ Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize());
+ ctrl_ = EmptyGroup();
+ slots_ = nullptr;
+ size_ = 0;
+ capacity_ = 0;
+ growth_left() = 0;
+ }
+
+ void resize(size_t new_capacity) {
+ assert(IsValidCapacity(new_capacity));
+ auto* old_ctrl = ctrl_;
+ auto* old_slots = slots_;
+ const size_t old_capacity = capacity_;
+ capacity_ = new_capacity;
+ initialize_slots();
+
+ for (size_t i = 0; i != old_capacity; ++i) {
+ if (IsFull(old_ctrl[i])) {
+ size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
+ PolicyTraits::element(old_slots + i));
+ size_t new_i = find_first_non_full(hash);
+ set_ctrl(new_i, H2(hash));
+ PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
+ }
+ }
+ if (old_capacity) {
+ SanitizerUnpoisonMemoryRegion(old_slots,
+ sizeof(slot_type) * old_capacity);
+ auto layout = MakeLayout(old_capacity);
+ Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl,
+ layout.AllocSize());
+ }
+ }
+
+ void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
+ assert(IsValidCapacity(capacity_));
+ // Algorithm:
+ // - mark all DELETED slots as EMPTY
+ // - mark all FULL slots as DELETED
+ // - for each slot marked as DELETED
+ // hash = Hash(element)
+ // target = find_first_non_full(hash)
+ // if target is in the same group
+ // mark slot as FULL
+ // else if target is EMPTY
+ // transfer element to target
+ // mark slot as EMPTY
+ // mark target as FULL
+ // else if target is DELETED
+ // swap current element with target element
+ // mark target as FULL
+ // repeat procedure for current slot with moved from element (target)
+ ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
+ typename std::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
+ raw;
+ slot_type* slot = reinterpret_cast<slot_type*>(&raw);
+ for (size_t i = 0; i != capacity_; ++i) {
+ if (!IsDeleted(ctrl_[i])) continue;
+ size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
+ PolicyTraits::element(slots_ + i));
+ size_t new_i = find_first_non_full(hash);
+
+ // Verify if the old and new i fall within the same group wrt the hash.
+ // If they do, we don't need to move the object as it falls already in the
+ // best probe we can.
+ const auto probe_index = [&](size_t pos) {
+ return ((pos - probe(hash).offset()) & capacity_) / Group::kWidth;
+ };
+
+ // Element doesn't move.
+ if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
+ set_ctrl(i, H2(hash));
+ continue;
+ }
+ if (IsEmpty(ctrl_[new_i])) {
+ // Transfer element to the empty spot.
+ // set_ctrl poisons/unpoisons the slots so we have to call it at the
+ // right time.
+ set_ctrl(new_i, H2(hash));
+ PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
+ set_ctrl(i, kEmpty);
+ } else {
+ assert(IsDeleted(ctrl_[new_i]));
+ set_ctrl(new_i, H2(hash));
+ // Until we are done rehashing, DELETED marks previously FULL slots.
+ // Swap i and new_i elements.
+ PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
+ PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
+ PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
+ --i; // repeat
+ }
+ }
+ growth_left() = static_cast<size_t>(capacity_ * kMaxLoadFactor) - size_;
+ }
+
+ void rehash_and_grow_if_necessary() {
+ if (capacity_ == 0) {
+ resize(Group::kWidth - 1);
+ } else if (size() <= kMaxLoadFactor / 2 * capacity_) {
+ // Squash DELETED without growing if there is enough capacity.
+ drop_deletes_without_resize();
+ } else {
+ // Otherwise grow the container.
+ resize(capacity_ * 2 + 1);
+ }
+ }
+
+ bool has_element(const value_type& elem) const {
+ size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
+ auto seq = probe(hash);
+ while (true) {
+ Group g{ctrl_ + seq.offset()};
+ for (int i : g.Match(H2(hash))) {
+ if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
+ elem))
+ return true;
+ }
+ if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false;
+ seq.next();
+ assert(seq.index() < capacity_ && "full table!");
+ }
+ return false;
+ }
+
+ // Probes the raw_hash_set with the probe sequence for hash and returns the
+ // pointer to the first empty or deleted slot.
+ // NOTE: this function must work with tables having both kEmpty and kDelete
+ // in one group. Such tables appears during drop_deletes_without_resize.
+ //
+ // This function is very useful when insertions happen and:
+ // - the input is already a set
+ // - there are enough slots
+ // - the element with the hash is not in the table
+ size_t find_first_non_full(size_t hash) {
+ auto seq = probe(hash);
+ while (true) {
+ Group g{ctrl_ + seq.offset()};
+ auto mask = g.MatchEmptyOrDeleted();
+ if (mask) {
+#if !defined(NDEBUG)
+ // We want to force small tables to have random entries too, so
+ // in debug build we will randomly insert in either the front or back of
+ // the group.
+ // TODO(kfm,sbenza): revisit after we do unconditional mixing
+ if (ShouldInsertBackwards(hash, ctrl_))
+ return seq.offset(mask.HighestBitSet());
+ else
+ return seq.offset(mask.LowestBitSet());
+#else
+ return seq.offset(mask.LowestBitSet());
+#endif
+ }
+ assert(seq.index() < capacity_ && "full table!");
+ seq.next();
+ }
+ }
+
+ // TODO(alkis): Optimize this assuming *this and that don't overlap.
+ raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
+ raw_hash_set tmp(std::move(that));
+ swap(tmp);
+ return *this;
+ }
+ raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
+ raw_hash_set tmp(std::move(that), alloc_ref());
+ swap(tmp);
+ return *this;
+ }
+
+ protected:
+ template <class K>
+ std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
+ auto hash = hash_ref()(key);
+ auto seq = probe(hash);
+ while (true) {
+ Group g{ctrl_ + seq.offset()};
+ for (int i : g.Match(H2(hash))) {
+ if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
+ EqualElement<K>{key, eq_ref()},
+ PolicyTraits::element(slots_ + seq.offset(i)))))
+ return {seq.offset(i), false};
+ }
+ if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break;
+ seq.next();
+ }
+ return {prepare_insert(hash), true};
+ }
+
+ size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
+ size_t target = find_first_non_full(hash);
+ if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target]))) {
+ rehash_and_grow_if_necessary();
+ target = find_first_non_full(hash);
+ }
+ ++size_;
+ growth_left() -= IsEmpty(ctrl_[target]);
+ set_ctrl(target, H2(hash));
+ return target;
+ }
+
+ // Constructs the value in the space pointed by the iterator. This only works
+ // after an unsuccessful find_or_prepare_insert() and before any other
+ // modifications happen in the raw_hash_set.
+ //
+ // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
+ // k is the key decomposed from `forward<Args>(args)...`, and the bool
+ // returned by find_or_prepare_insert(k) was true.
+ // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
+ template <class... Args>
+ void emplace_at(size_t i, Args&&... args) {
+ PolicyTraits::construct(&alloc_ref(), slots_ + i,
+ std::forward<Args>(args)...);
+
+ assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
+ iterator_at(i) &&
+ "constructed value does not match the lookup key");
+ }
+
+ iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
+ const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
+
+ private:
+ friend struct RawHashSetTestOnlyAccess;
+
+ probe_seq<Group::kWidth> probe(size_t hash) const {
+ return probe_seq<Group::kWidth>(H1(hash, ctrl_), capacity_);
+ }
+
+ // Reset all ctrl bytes back to kEmpty, except the sentinel.
+ void reset_ctrl() {
+ std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth);
+ ctrl_[capacity_] = kSentinel;
+ SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
+ }
+
+ // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at
+ // the end too.
+ void set_ctrl(size_t i, ctrl_t h) {
+ assert(i < capacity_);
+
+ if (IsFull(h)) {
+ SanitizerUnpoisonObject(slots_ + i);
+ } else {
+ SanitizerPoisonObject(slots_ + i);
+ }
+
+ ctrl_[i] = h;
+ ctrl_[((i - Group::kWidth) & capacity_) + Group::kWidth] = h;
+ }
+
+ size_t& growth_left() { return settings_.template get<0>(); }
+
+ hasher& hash_ref() { return settings_.template get<1>(); }
+ const hasher& hash_ref() const { return settings_.template get<1>(); }
+ key_equal& eq_ref() { return settings_.template get<2>(); }
+ const key_equal& eq_ref() const { return settings_.template get<2>(); }
+ allocator_type& alloc_ref() { return settings_.template get<3>(); }
+ const allocator_type& alloc_ref() const {
+ return settings_.template get<3>();
+ }
+
+ // On average each group has 2 empty slot (for the vectorized case).
+ static constexpr float kMaxLoadFactor = 14.0 / 16.0;
+
+ // TODO(alkis): Investigate removing some of these fields:
+ // - ctrl/slots can be derived from each other
+ // - size can be moved into the slot array
+ ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t]
+ slot_type* slots_ = nullptr; // [capacity * slot_type]
+ size_t size_ = 0; // number of full slots
+ size_t capacity_ = 0; // total number of slots
+ absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher,
+ key_equal, allocator_type>
+ settings_{0, hasher{}, key_equal{}, allocator_type{}};
+};
+
+namespace hashtable_debug_internal {
+template <typename Set>
+struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
+ using Traits = typename Set::PolicyTraits;
+ using Slot = typename Traits::slot_type;
+
+ static size_t GetNumProbes(const Set& set,
+ const typename Set::key_type& key) {
+ size_t num_probes = 0;
+ size_t hash = set.hash_ref()(key);
+ auto seq = set.probe(hash);
+ while (true) {
+ container_internal::Group g{set.ctrl_ + seq.offset()};
+ for (int i : g.Match(container_internal::H2(hash))) {
+ if (Traits::apply(
+ typename Set::template EqualElement<typename Set::key_type>{
+ key, set.eq_ref()},
+ Traits::element(set.slots_ + seq.offset(i))))
+ return num_probes;
+ ++num_probes;
+ }
+ if (g.MatchEmpty()) return num_probes;
+ seq.next();
+ ++num_probes;
+ }
+ }
+
+ static size_t AllocatedByteSize(const Set& c) {
+ size_t capacity = c.capacity_;
+ if (capacity == 0) return 0;
+ auto layout = Set::MakeLayout(capacity);
+ size_t m = layout.AllocSize();
+
+ size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
+ if (per_slot != ~size_t{}) {
+ m += per_slot * c.size();
+ } else {
+ for (size_t i = 0; i != capacity; ++i) {
+ if (container_internal::IsFull(c.ctrl_[i])) {
+ m += Traits::space_used(c.slots_ + i);
+ }
+ }
+ }
+ return m;
+ }
+
+ static size_t LowerBoundAllocatedByteSize(size_t size) {
+ size_t capacity = container_internal::NormalizeCapacity(
+ std::ceil(size / Set::kMaxLoadFactor));
+ if (capacity == 0) return 0;
+ auto layout = Set::MakeLayout(capacity);
+ size_t m = layout.AllocSize();
+ size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
+ if (per_slot != ~size_t{}) {
+ m += per_slot * size;
+ }
+ return m;
+ }
+};
+
+} // namespace hashtable_debug_internal
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
diff --git a/absl/container/internal/raw_hash_set_allocator_test.cc b/absl/container/internal/raw_hash_set_allocator_test.cc
new file mode 100644
index 0000000..891fa45
--- /dev/null
+++ b/absl/container/internal/raw_hash_set_allocator_test.cc
@@ -0,0 +1,428 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <limits>
+#include <scoped_allocator>
+
+#include "gtest/gtest.h"
+#include "absl/container/internal/raw_hash_set.h"
+#include "absl/container/internal/tracked.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+enum AllocSpec {
+ kPropagateOnCopy = 1,
+ kPropagateOnMove = 2,
+ kPropagateOnSwap = 4,
+};
+
+struct AllocState {
+ size_t num_allocs = 0;
+ std::set<void*> owned;
+};
+
+template <class T,
+ int Spec = kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>
+class CheckedAlloc {
+ public:
+ template <class, int>
+ friend class CheckedAlloc;
+
+ using value_type = T;
+
+ CheckedAlloc() {}
+ explicit CheckedAlloc(size_t id) : id_(id) {}
+ CheckedAlloc(const CheckedAlloc&) = default;
+ CheckedAlloc& operator=(const CheckedAlloc&) = default;
+
+ template <class U>
+ CheckedAlloc(const CheckedAlloc<U, Spec>& that)
+ : id_(that.id_), state_(that.state_) {}
+
+ template <class U>
+ struct rebind {
+ using other = CheckedAlloc<U, Spec>;
+ };
+
+ using propagate_on_container_copy_assignment =
+ std::integral_constant<bool, (Spec & kPropagateOnCopy) != 0>;
+
+ using propagate_on_container_move_assignment =
+ std::integral_constant<bool, (Spec & kPropagateOnMove) != 0>;
+
+ using propagate_on_container_swap =
+ std::integral_constant<bool, (Spec & kPropagateOnSwap) != 0>;
+
+ CheckedAlloc select_on_container_copy_construction() const {
+ if (Spec & kPropagateOnCopy) return *this;
+ return {};
+ }
+
+ T* allocate(size_t n) {
+ T* ptr = std::allocator<T>().allocate(n);
+ track_alloc(ptr);
+ return ptr;
+ }
+ void deallocate(T* ptr, size_t n) {
+ memset(ptr, 0, n * sizeof(T)); // The freed memory must be unpoisoned.
+ track_dealloc(ptr);
+ return std::allocator<T>().deallocate(ptr, n);
+ }
+
+ friend bool operator==(const CheckedAlloc& a, const CheckedAlloc& b) {
+ return a.id_ == b.id_;
+ }
+ friend bool operator!=(const CheckedAlloc& a, const CheckedAlloc& b) {
+ return !(a == b);
+ }
+
+ size_t num_allocs() const { return state_->num_allocs; }
+
+ void swap(CheckedAlloc& that) {
+ using std::swap;
+ swap(id_, that.id_);
+ swap(state_, that.state_);
+ }
+
+ friend void swap(CheckedAlloc& a, CheckedAlloc& b) { a.swap(b); }
+
+ friend std::ostream& operator<<(std::ostream& o, const CheckedAlloc& a) {
+ return o << "alloc(" << a.id_ << ")";
+ }
+
+ private:
+ void track_alloc(void* ptr) {
+ AllocState* state = state_.get();
+ ++state->num_allocs;
+ if (!state->owned.insert(ptr).second)
+ ADD_FAILURE() << *this << " got previously allocated memory: " << ptr;
+ }
+ void track_dealloc(void* ptr) {
+ if (state_->owned.erase(ptr) != 1)
+ ADD_FAILURE() << *this
+ << " deleting memory owned by another allocator: " << ptr;
+ }
+
+ size_t id_ = std::numeric_limits<size_t>::max();
+
+ std::shared_ptr<AllocState> state_ = std::make_shared<AllocState>();
+};
+
+struct Identity {
+ int32_t operator()(int32_t v) const { return v; }
+};
+
+struct Policy {
+ using slot_type = Tracked<int32_t>;
+ using init_type = Tracked<int32_t>;
+ using key_type = int32_t;
+
+ template <class allocator_type, class... Args>
+ static void construct(allocator_type* alloc, slot_type* slot,
+ Args&&... args) {
+ std::allocator_traits<allocator_type>::construct(
+ *alloc, slot, std::forward<Args>(args)...);
+ }
+
+ template <class allocator_type>
+ static void destroy(allocator_type* alloc, slot_type* slot) {
+ std::allocator_traits<allocator_type>::destroy(*alloc, slot);
+ }
+
+ template <class allocator_type>
+ static void transfer(allocator_type* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ construct(alloc, new_slot, std::move(*old_slot));
+ destroy(alloc, old_slot);
+ }
+
+ template <class F>
+ static auto apply(F&& f, int32_t v) -> decltype(std::forward<F>(f)(v, v)) {
+ return std::forward<F>(f)(v, v);
+ }
+
+ template <class F>
+ static auto apply(F&& f, const slot_type& v)
+ -> decltype(std::forward<F>(f)(v.val(), v)) {
+ return std::forward<F>(f)(v.val(), v);
+ }
+
+ template <class F>
+ static auto apply(F&& f, slot_type&& v)
+ -> decltype(std::forward<F>(f)(v.val(), std::move(v))) {
+ return std::forward<F>(f)(v.val(), std::move(v));
+ }
+
+ static slot_type& element(slot_type* slot) { return *slot; }
+};
+
+template <int Spec>
+struct PropagateTest : public ::testing::Test {
+ using Alloc = CheckedAlloc<Tracked<int32_t>, Spec>;
+
+ using Table = raw_hash_set<Policy, Identity, std::equal_to<int32_t>, Alloc>;
+
+ PropagateTest() {
+ EXPECT_EQ(a1, t1.get_allocator());
+ EXPECT_NE(a2, t1.get_allocator());
+ }
+
+ Alloc a1 = Alloc(1);
+ Table t1 = Table(0, a1);
+ Alloc a2 = Alloc(2);
+};
+
+using PropagateOnAll =
+ PropagateTest<kPropagateOnCopy | kPropagateOnMove | kPropagateOnSwap>;
+using NoPropagateOnCopy = PropagateTest<kPropagateOnMove | kPropagateOnSwap>;
+using NoPropagateOnMove = PropagateTest<kPropagateOnCopy | kPropagateOnSwap>;
+
+TEST_F(PropagateOnAll, Empty) { EXPECT_EQ(0, a1.num_allocs()); }
+
+TEST_F(PropagateOnAll, InsertAllocates) {
+ auto it = t1.insert(0).first;
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, InsertDecomposes) {
+ auto it = t1.insert(0).first;
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+
+ EXPECT_FALSE(t1.insert(0).second);
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, RehashMoves) {
+ auto it = t1.insert(0).first;
+ EXPECT_EQ(0, it->num_moves());
+ t1.rehash(2 * t1.capacity());
+ EXPECT_EQ(2, a1.num_allocs());
+ it = t1.find(0);
+ EXPECT_EQ(1, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, CopyConstructor) {
+ auto it = t1.insert(0).first;
+ Table u(t1);
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(NoPropagateOnCopy, CopyConstructor) {
+ auto it = t1.insert(0).first;
+ Table u(t1);
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, u.get_allocator().num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, CopyConstructorWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(t1, a1);
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(NoPropagateOnCopy, CopyConstructorWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(t1, a1);
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, CopyConstructorWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(t1, a2);
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(NoPropagateOnCopy, CopyConstructorWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(t1, a2);
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, MoveConstructor) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1));
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(NoPropagateOnMove, MoveConstructor) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1));
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, MoveConstructorWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1), a1);
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(NoPropagateOnMove, MoveConstructorWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1), a1);
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, MoveConstructorWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1), a2);
+ it = u.find(0);
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(1, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(NoPropagateOnMove, MoveConstructorWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(std::move(t1), a2);
+ it = u.find(0);
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(1, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, CopyAssignmentWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a1);
+ u = t1;
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(NoPropagateOnCopy, CopyAssignmentWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a1);
+ u = t1;
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, CopyAssignmentWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a2);
+ u = t1;
+ EXPECT_EQ(a1, u.get_allocator());
+ EXPECT_EQ(2, a1.num_allocs());
+ EXPECT_EQ(0, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(NoPropagateOnCopy, CopyAssignmentWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a2);
+ u = t1;
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(1, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, MoveAssignmentWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a1);
+ u = std::move(t1);
+ EXPECT_EQ(a1, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(NoPropagateOnMove, MoveAssignmentWithSameAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a1);
+ u = std::move(t1);
+ EXPECT_EQ(a1, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, MoveAssignmentWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a2);
+ u = std::move(t1);
+ EXPECT_EQ(a1, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(NoPropagateOnMove, MoveAssignmentWithDifferentAlloc) {
+ auto it = t1.insert(0).first;
+ Table u(0, a2);
+ u = std::move(t1);
+ it = u.find(0);
+ EXPECT_EQ(a2, u.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(1, a2.num_allocs());
+ EXPECT_EQ(1, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+TEST_F(PropagateOnAll, Swap) {
+ auto it = t1.insert(0).first;
+ Table u(0, a2);
+ u.swap(t1);
+ EXPECT_EQ(a1, u.get_allocator());
+ EXPECT_EQ(a2, t1.get_allocator());
+ EXPECT_EQ(1, a1.num_allocs());
+ EXPECT_EQ(0, a2.num_allocs());
+ EXPECT_EQ(0, it->num_moves());
+ EXPECT_EQ(0, it->num_copies());
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/raw_hash_set_test.cc b/absl/container/internal/raw_hash_set_test.cc
new file mode 100644
index 0000000..f59a19b
--- /dev/null
+++ b/absl/container/internal/raw_hash_set_test.cc
@@ -0,0 +1,1961 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/internal/raw_hash_set.h"
+
+#include <array>
+#include <cmath>
+#include <cstdint>
+#include <deque>
+#include <functional>
+#include <memory>
+#include <numeric>
+#include <random>
+#include <string>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/attributes.h"
+#include "absl/base/internal/cycleclock.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h"
+#include "absl/container/internal/hash_policy_testing.h"
+#include "absl/container/internal/hashtable_debug.h"
+#include "absl/strings/string_view.h"
+
+namespace absl {
+namespace container_internal {
+
+struct RawHashSetTestOnlyAccess {
+ template <typename C>
+ static auto GetSlots(const C& c) -> decltype(c.slots_) {
+ return c.slots_;
+ }
+};
+
+namespace {
+
+using ::testing::DoubleNear;
+using ::testing::ElementsAre;
+using ::testing::Optional;
+using ::testing::Pair;
+using ::testing::UnorderedElementsAre;
+
+TEST(Util, NormalizeCapacity) {
+ constexpr size_t kMinCapacity = Group::kWidth - 1;
+ EXPECT_EQ(kMinCapacity, NormalizeCapacity(0));
+ EXPECT_EQ(kMinCapacity, NormalizeCapacity(1));
+ EXPECT_EQ(kMinCapacity, NormalizeCapacity(2));
+ EXPECT_EQ(kMinCapacity, NormalizeCapacity(kMinCapacity));
+ EXPECT_EQ(kMinCapacity * 2 + 1, NormalizeCapacity(kMinCapacity + 1));
+ EXPECT_EQ(kMinCapacity * 2 + 1, NormalizeCapacity(kMinCapacity + 2));
+}
+
+TEST(Util, probe_seq) {
+ probe_seq<16> seq(0, 127);
+ auto gen = [&]() {
+ size_t res = seq.offset();
+ seq.next();
+ return res;
+ };
+ std::vector<size_t> offsets(8);
+ std::generate_n(offsets.begin(), 8, gen);
+ EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
+ seq = probe_seq<16>(128, 127);
+ std::generate_n(offsets.begin(), 8, gen);
+ EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
+}
+
+TEST(BitMask, Smoke) {
+ EXPECT_FALSE((BitMask<uint8_t, 8>(0)));
+ EXPECT_TRUE((BitMask<uint8_t, 8>(5)));
+
+ EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre());
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6));
+ EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7));
+}
+
+TEST(BitMask, WithShift) {
+ // See the non-SSE version of Group for details on what this math is for.
+ uint64_t ctrl = 0x1716151413121110;
+ uint64_t hash = 0x12;
+ constexpr uint64_t msbs = 0x8080808080808080ULL;
+ constexpr uint64_t lsbs = 0x0101010101010101ULL;
+ auto x = ctrl ^ (lsbs * hash);
+ uint64_t mask = (x - lsbs) & ~x & msbs;
+ EXPECT_EQ(0x0000000080800000, mask);
+
+ BitMask<uint64_t, 8, 3> b(mask);
+ EXPECT_EQ(*b, 2);
+}
+
+TEST(BitMask, LeadingTrailing) {
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b0001101001000000).LeadingZeros()), 3);
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b0001101001000000).TrailingZeros()), 6);
+
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b0000000000000001).LeadingZeros()), 15);
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b0000000000000001).TrailingZeros()), 0);
+
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b1000000000000000).LeadingZeros()), 0);
+ EXPECT_EQ((BitMask<uint32_t, 16>(0b1000000000000000).TrailingZeros()), 15);
+
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3);
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1);
+
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7);
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0);
+
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0);
+ EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7);
+}
+
+TEST(Group, EmptyGroup) {
+ for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h));
+}
+
+#if SWISSTABLE_HAVE_SSE2
+TEST(Group, Match) {
+ ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
+ 7, 5, 3, 1, 1, 1, 1, 1};
+ EXPECT_THAT(Group{group}.Match(0), ElementsAre());
+ EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
+ EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
+ EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
+ EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
+}
+
+TEST(Group, MatchEmpty) {
+ ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
+ 7, 5, 3, 1, 1, 1, 1, 1};
+ EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0, 4));
+}
+
+TEST(Group, MatchEmptyOrDeleted) {
+ ctrl_t group[] = {kEmpty, 1, kDeleted, 3, kEmpty, 5, kSentinel, 7,
+ 7, 5, 3, 1, 1, 1, 1, 1};
+ EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 2, 4));
+}
+#else
+TEST(Group, Match) {
+ ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ EXPECT_THAT(Group{group}.Match(0), ElementsAre());
+ EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
+ EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
+}
+TEST(Group, MatchEmpty) {
+ ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ EXPECT_THAT(Group{group}.MatchEmpty(), ElementsAre(0));
+}
+
+TEST(Group, MatchEmptyOrDeleted) {
+ ctrl_t group[] = {kEmpty, 1, 2, kDeleted, 2, 1, kSentinel, 1};
+ EXPECT_THAT(Group{group}.MatchEmptyOrDeleted(), ElementsAre(0, 3));
+}
+#endif
+
+TEST(Batch, DropDeletes) {
+ constexpr size_t kCapacity = 63;
+ constexpr size_t kGroupWidth = container_internal::Group::kWidth;
+ std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
+ ctrl[kCapacity] = kSentinel;
+ std::vector<ctrl_t> pattern = {kEmpty, 2, kDeleted, 2, kEmpty, 1, kDeleted};
+ for (size_t i = 0; i != kCapacity; ++i) {
+ ctrl[i] = pattern[i % pattern.size()];
+ if (i < kGroupWidth - 1)
+ ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
+ }
+ ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
+ ASSERT_EQ(ctrl[kCapacity], kSentinel);
+ for (size_t i = 0; i < kCapacity + 1 + kGroupWidth; ++i) {
+ ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
+ if (i == kCapacity) expected = kSentinel;
+ if (expected == kDeleted) expected = kEmpty;
+ if (IsFull(expected)) expected = kDeleted;
+ EXPECT_EQ(ctrl[i], expected)
+ << i << " " << int{pattern[i % pattern.size()]};
+ }
+}
+
+TEST(Group, CountLeadingEmptyOrDeleted) {
+ const std::vector<ctrl_t> empty_examples = {kEmpty, kDeleted};
+ const std::vector<ctrl_t> full_examples = {0, 1, 2, 3, 5, 9, 127, kSentinel};
+
+ for (ctrl_t empty : empty_examples) {
+ std::vector<ctrl_t> e(Group::kWidth, empty);
+ EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted());
+ for (ctrl_t full : full_examples) {
+ for (size_t i = 0; i != Group::kWidth; ++i) {
+ std::vector<ctrl_t> f(Group::kWidth, empty);
+ f[i] = full;
+ EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted());
+ }
+ std::vector<ctrl_t> f(Group::kWidth, empty);
+ f[Group::kWidth * 2 / 3] = full;
+ f[Group::kWidth / 2] = full;
+ EXPECT_EQ(
+ Group::kWidth / 2, Group{f.data()}.CountLeadingEmptyOrDeleted());
+ }
+ }
+}
+
+struct IntPolicy {
+ using slot_type = int64_t;
+ using key_type = int64_t;
+ using init_type = int64_t;
+
+ static void construct(void*, int64_t* slot, int64_t v) { *slot = v; }
+ static void destroy(void*, int64_t*) {}
+ static void transfer(void*, int64_t* new_slot, int64_t* old_slot) {
+ *new_slot = *old_slot;
+ }
+
+ static int64_t& element(slot_type* slot) { return *slot; }
+
+ template <class F>
+ static auto apply(F&& f, int64_t x) -> decltype(std::forward<F>(f)(x, x)) {
+ return std::forward<F>(f)(x, x);
+ }
+};
+
+class StringPolicy {
+ template <class F, class K, class V,
+ class = typename std::enable_if<
+ std::is_convertible<const K&, absl::string_view>::value>::type>
+ decltype(std::declval<F>()(
+ std::declval<const absl::string_view&>(), std::piecewise_construct,
+ std::declval<std::tuple<K>>(),
+ std::declval<V>())) static apply_impl(F&& f,
+ std::pair<std::tuple<K>, V> p) {
+ const absl::string_view& key = std::get<0>(p.first);
+ return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
+ std::move(p.second));
+ }
+
+ public:
+ struct slot_type {
+ struct ctor {};
+
+ template <class... Ts>
+ slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
+
+ std::pair<std::string, std::string> pair;
+ };
+
+ using key_type = std::string;
+ using init_type = std::pair<std::string, std::string>;
+
+ template <class allocator_type, class... Args>
+ static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
+ std::allocator_traits<allocator_type>::construct(
+ *alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
+ }
+
+ template <class allocator_type>
+ static void destroy(allocator_type* alloc, slot_type* slot) {
+ std::allocator_traits<allocator_type>::destroy(*alloc, slot);
+ }
+
+ template <class allocator_type>
+ static void transfer(allocator_type* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ construct(alloc, new_slot, std::move(old_slot->pair));
+ destroy(alloc, old_slot);
+ }
+
+ static std::pair<std::string, std::string>& element(slot_type* slot) {
+ return slot->pair;
+ }
+
+ template <class F, class... Args>
+ static auto apply(F&& f, Args&&... args)
+ -> decltype(apply_impl(std::forward<F>(f),
+ PairArgs(std::forward<Args>(args)...))) {
+ return apply_impl(std::forward<F>(f),
+ PairArgs(std::forward<Args>(args)...));
+ }
+};
+
+struct StringHash : absl::Hash<absl::string_view> {
+ using is_transparent = void;
+};
+struct StringEq : std::equal_to<absl::string_view> {
+ using is_transparent = void;
+};
+
+struct StringTable
+ : raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
+ using Base = typename StringTable::raw_hash_set;
+ StringTable() {}
+ using Base::Base;
+};
+
+struct IntTable
+ : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
+ std::equal_to<int64_t>, std::allocator<int64_t>> {
+ using Base = typename IntTable::raw_hash_set;
+ IntTable() {}
+ using Base::Base;
+};
+
+struct BadFastHash {
+ template <class T>
+ size_t operator()(const T&) const {
+ return 0;
+ }
+};
+
+struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>,
+ std::allocator<int>> {
+ using Base = typename BadTable::raw_hash_set;
+ BadTable() {}
+ using Base::Base;
+};
+
+TEST(Table, EmptyFunctorOptimization) {
+ static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, "");
+ static_assert(std::is_empty<std::allocator<int>>::value, "");
+
+ struct MockTable {
+ void* ctrl;
+ void* slots;
+ size_t size;
+ size_t capacity;
+ size_t growth_left;
+ };
+ struct StatelessHash {
+ size_t operator()(absl::string_view) const { return 0; }
+ };
+ struct StatefulHash : StatelessHash {
+ size_t dummy;
+ };
+
+ EXPECT_EQ(
+ sizeof(MockTable),
+ sizeof(
+ raw_hash_set<StringPolicy, StatelessHash,
+ std::equal_to<absl::string_view>, std::allocator<int>>));
+
+ EXPECT_EQ(
+ sizeof(MockTable) + sizeof(StatefulHash),
+ sizeof(
+ raw_hash_set<StringPolicy, StatefulHash,
+ std::equal_to<absl::string_view>, std::allocator<int>>));
+}
+
+TEST(Table, Empty) {
+ IntTable t;
+ EXPECT_EQ(0, t.size());
+ EXPECT_TRUE(t.empty());
+}
+
+#ifdef __GNUC__
+template <class T>
+ABSL_ATTRIBUTE_ALWAYS_INLINE inline void DoNotOptimize(const T& v) {
+ asm volatile("" : : "r,m"(v) : "memory");
+}
+#endif
+
+TEST(Table, Prefetch) {
+ IntTable t;
+ t.emplace(1);
+ // Works for both present and absent keys.
+ t.prefetch(1);
+ t.prefetch(2);
+
+ // Do not run in debug mode, when prefetch is not implemented, or when
+ // sanitizers are enabled.
+#if defined(NDEBUG) && defined(__GNUC__) && !defined(ADDRESS_SANITIZER) && \
+ !defined(MEMORY_SANITIZER) && !defined(THREAD_SANITIZER) && \
+ !defined(UNDEFINED_BEHAVIOR_SANITIZER)
+ const auto now = [] { return absl::base_internal::CycleClock::Now(); };
+
+ static constexpr int size = 1000000;
+ for (int i = 0; i < size; ++i) t.insert(i);
+
+ int64_t no_prefetch = 0, prefetch = 0;
+ for (int iter = 0; iter < 10; ++iter) {
+ int64_t time = now();
+ for (int i = 0; i < size; ++i) {
+ DoNotOptimize(t.find(i));
+ }
+ no_prefetch += now() - time;
+
+ time = now();
+ for (int i = 0; i < size; ++i) {
+ t.prefetch(i + 20);
+ DoNotOptimize(t.find(i));
+ }
+ prefetch += now() - time;
+ }
+
+ // no_prefetch is at least 30% slower.
+ EXPECT_GE(1.0 * no_prefetch / prefetch, 1.3);
+#endif
+}
+
+TEST(Table, LookupEmpty) {
+ IntTable t;
+ auto it = t.find(0);
+ EXPECT_TRUE(it == t.end());
+}
+
+TEST(Table, Insert1) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ auto res = t.emplace(0);
+ EXPECT_TRUE(res.second);
+ EXPECT_THAT(*res.first, 0);
+ EXPECT_EQ(1, t.size());
+ EXPECT_THAT(*t.find(0), 0);
+}
+
+TEST(Table, Insert2) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ auto res = t.emplace(0);
+ EXPECT_TRUE(res.second);
+ EXPECT_THAT(*res.first, 0);
+ EXPECT_EQ(1, t.size());
+ EXPECT_TRUE(t.find(1) == t.end());
+ res = t.emplace(1);
+ EXPECT_TRUE(res.second);
+ EXPECT_THAT(*res.first, 1);
+ EXPECT_EQ(2, t.size());
+ EXPECT_THAT(*t.find(0), 0);
+ EXPECT_THAT(*t.find(1), 1);
+}
+
+TEST(Table, InsertCollision) {
+ BadTable t;
+ EXPECT_TRUE(t.find(1) == t.end());
+ auto res = t.emplace(1);
+ EXPECT_TRUE(res.second);
+ EXPECT_THAT(*res.first, 1);
+ EXPECT_EQ(1, t.size());
+
+ EXPECT_TRUE(t.find(2) == t.end());
+ res = t.emplace(2);
+ EXPECT_THAT(*res.first, 2);
+ EXPECT_TRUE(res.second);
+ EXPECT_EQ(2, t.size());
+
+ EXPECT_THAT(*t.find(1), 1);
+ EXPECT_THAT(*t.find(2), 2);
+}
+
+// Test that we do not add existent element in case we need to search through
+// many groups with deleted elements
+TEST(Table, InsertCollisionAndFindAfterDelete) {
+ BadTable t; // all elements go to the same group.
+ // Have at least 2 groups with Group::kWidth collisions
+ // plus some extra collisions in the last group.
+ constexpr size_t kNumInserts = Group::kWidth * 2 + 5;
+ for (size_t i = 0; i < kNumInserts; ++i) {
+ auto res = t.emplace(i);
+ EXPECT_TRUE(res.second);
+ EXPECT_THAT(*res.first, i);
+ EXPECT_EQ(i + 1, t.size());
+ }
+
+ // Remove elements one by one and check
+ // that we still can find all other elements.
+ for (size_t i = 0; i < kNumInserts; ++i) {
+ EXPECT_EQ(1, t.erase(i)) << i;
+ for (size_t j = i + 1; j < kNumInserts; ++j) {
+ EXPECT_THAT(*t.find(j), j);
+ auto res = t.emplace(j);
+ EXPECT_FALSE(res.second) << i << " " << j;
+ EXPECT_THAT(*res.first, j);
+ EXPECT_EQ(kNumInserts - i - 1, t.size());
+ }
+ }
+ EXPECT_TRUE(t.empty());
+}
+
+TEST(Table, LazyEmplace) {
+ StringTable t;
+ bool called = false;
+ auto it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
+ called = true;
+ f("abc", "ABC");
+ });
+ EXPECT_TRUE(called);
+ EXPECT_THAT(*it, Pair("abc", "ABC"));
+ called = false;
+ it = t.lazy_emplace("abc", [&](const StringTable::constructor& f) {
+ called = true;
+ f("abc", "DEF");
+ });
+ EXPECT_FALSE(called);
+ EXPECT_THAT(*it, Pair("abc", "ABC"));
+}
+
+TEST(Table, ContainsEmpty) {
+ IntTable t;
+
+ EXPECT_FALSE(t.contains(0));
+}
+
+TEST(Table, Contains1) {
+ IntTable t;
+
+ EXPECT_TRUE(t.insert(0).second);
+ EXPECT_TRUE(t.contains(0));
+ EXPECT_FALSE(t.contains(1));
+
+ EXPECT_EQ(1, t.erase(0));
+ EXPECT_FALSE(t.contains(0));
+}
+
+TEST(Table, Contains2) {
+ IntTable t;
+
+ EXPECT_TRUE(t.insert(0).second);
+ EXPECT_TRUE(t.contains(0));
+ EXPECT_FALSE(t.contains(1));
+
+ t.clear();
+ EXPECT_FALSE(t.contains(0));
+}
+
+int decompose_constructed;
+struct DecomposeType {
+ DecomposeType(int i) : i(i) { // NOLINT
+ ++decompose_constructed;
+ }
+
+ explicit DecomposeType(const char* d) : DecomposeType(*d) {}
+
+ int i;
+};
+
+struct DecomposeHash {
+ using is_transparent = void;
+ size_t operator()(DecomposeType a) const { return a.i; }
+ size_t operator()(int a) const { return a; }
+ size_t operator()(const char* a) const { return *a; }
+};
+
+struct DecomposeEq {
+ using is_transparent = void;
+ bool operator()(DecomposeType a, DecomposeType b) const { return a.i == b.i; }
+ bool operator()(DecomposeType a, int b) const { return a.i == b; }
+ bool operator()(DecomposeType a, const char* b) const { return a.i == *b; }
+};
+
+struct DecomposePolicy {
+ using slot_type = DecomposeType;
+ using key_type = DecomposeType;
+ using init_type = DecomposeType;
+
+ template <typename T>
+ static void construct(void*, DecomposeType* slot, T&& v) {
+ *slot = DecomposeType(std::forward<T>(v));
+ }
+ static void destroy(void*, DecomposeType*) {}
+ static DecomposeType& element(slot_type* slot) { return *slot; }
+
+ template <class F, class T>
+ static auto apply(F&& f, const T& x) -> decltype(std::forward<F>(f)(x, x)) {
+ return std::forward<F>(f)(x, x);
+ }
+};
+
+template <typename Hash, typename Eq>
+void TestDecompose(bool construct_three) {
+ DecomposeType elem{0};
+ const int one = 1;
+ const char* three_p = "3";
+ const auto& three = three_p;
+
+ raw_hash_set<DecomposePolicy, Hash, Eq, std::allocator<int>> set1;
+
+ decompose_constructed = 0;
+ int expected_constructed = 0;
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.insert(elem);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.insert(1);
+ EXPECT_EQ(++expected_constructed, decompose_constructed);
+ set1.emplace("3");
+ EXPECT_EQ(++expected_constructed, decompose_constructed);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+
+ { // insert(T&&)
+ set1.insert(1);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+
+ { // insert(const T&)
+ set1.insert(one);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+
+ { // insert(hint, T&&)
+ set1.insert(set1.begin(), 1);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+
+ { // insert(hint, const T&)
+ set1.insert(set1.begin(), one);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+
+ { // emplace(...)
+ set1.emplace(1);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace("3");
+ expected_constructed += construct_three;
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace(one);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace(three);
+ expected_constructed += construct_three;
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+
+ { // emplace_hint(...)
+ set1.emplace_hint(set1.begin(), 1);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace_hint(set1.begin(), "3");
+ expected_constructed += construct_three;
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace_hint(set1.begin(), one);
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ set1.emplace_hint(set1.begin(), three);
+ expected_constructed += construct_three;
+ EXPECT_EQ(expected_constructed, decompose_constructed);
+ }
+}
+
+TEST(Table, Decompose) {
+ TestDecompose<DecomposeHash, DecomposeEq>(false);
+
+ struct TransparentHashIntOverload {
+ size_t operator()(DecomposeType a) const { return a.i; }
+ size_t operator()(int a) const { return a; }
+ };
+ struct TransparentEqIntOverload {
+ bool operator()(DecomposeType a, DecomposeType b) const {
+ return a.i == b.i;
+ }
+ bool operator()(DecomposeType a, int b) const { return a.i == b; }
+ };
+ TestDecompose<TransparentHashIntOverload, DecomposeEq>(true);
+ TestDecompose<TransparentHashIntOverload, TransparentEqIntOverload>(true);
+ TestDecompose<DecomposeHash, TransparentEqIntOverload>(true);
+}
+
+// Returns the largest m such that a table with m elements has the same number
+// of buckets as a table with n elements.
+size_t MaxDensitySize(size_t n) {
+ IntTable t;
+ t.reserve(n);
+ for (size_t i = 0; i != n; ++i) t.emplace(i);
+ const size_t c = t.bucket_count();
+ while (c == t.bucket_count()) t.emplace(n++);
+ return t.size() - 1;
+}
+
+struct Modulo1000Hash {
+ size_t operator()(int x) const { return x % 1000; }
+};
+
+struct Modulo1000HashTable
+ : public raw_hash_set<IntPolicy, Modulo1000Hash, std::equal_to<int>,
+ std::allocator<int>> {};
+
+// Test that rehash with no resize happen in case of many deleted slots.
+TEST(Table, RehashWithNoResize) {
+ Modulo1000HashTable t;
+ // Adding the same length (and the same hash) strings
+ // to have at least kMinFullGroups groups
+ // with Group::kWidth collisions. Then feel upto MaxDensitySize;
+ const size_t kMinFullGroups = 7;
+ std::vector<int> keys;
+ for (size_t i = 0; i < MaxDensitySize(Group::kWidth * kMinFullGroups); ++i) {
+ int k = i * 1000;
+ t.emplace(k);
+ keys.push_back(k);
+ }
+ const size_t capacity = t.capacity();
+
+ // Remove elements from all groups except the first and the last one.
+ // All elements removed from full groups will be marked as kDeleted.
+ const size_t erase_begin = Group::kWidth / 2;
+ const size_t erase_end = (t.size() / Group::kWidth - 1) * Group::kWidth;
+ for (size_t i = erase_begin; i < erase_end; ++i) {
+ EXPECT_EQ(1, t.erase(keys[i])) << i;
+ }
+ keys.erase(keys.begin() + erase_begin, keys.begin() + erase_end);
+
+ auto last_key = keys.back();
+ size_t last_key_num_probes = GetHashtableDebugNumProbes(t, last_key);
+
+ // Make sure that we have to make a lot of probes for last key.
+ ASSERT_GT(last_key_num_probes, kMinFullGroups);
+
+ int x = 1;
+ // Insert and erase one element, before inplace rehash happen.
+ while (last_key_num_probes == GetHashtableDebugNumProbes(t, last_key)) {
+ t.emplace(x);
+ ASSERT_EQ(capacity, t.capacity());
+ // All elements should be there.
+ ASSERT_TRUE(t.find(x) != t.end()) << x;
+ for (const auto& k : keys) {
+ ASSERT_TRUE(t.find(k) != t.end()) << k;
+ }
+ t.erase(x);
+ ++x;
+ }
+}
+
+TEST(Table, InsertEraseStressTest) {
+ IntTable t;
+ const size_t kMinElementCount = 250;
+ std::deque<int> keys;
+ size_t i = 0;
+ for (; i < MaxDensitySize(kMinElementCount); ++i) {
+ t.emplace(i);
+ keys.push_back(i);
+ }
+ const size_t kNumIterations = 1000000;
+ for (; i < kNumIterations; ++i) {
+ ASSERT_EQ(1, t.erase(keys.front()));
+ keys.pop_front();
+ t.emplace(i);
+ keys.push_back(i);
+ }
+}
+
+TEST(Table, InsertOverloads) {
+ StringTable t;
+ // These should all trigger the insert(init_type) overload.
+ t.insert({{}, {}});
+ t.insert({"ABC", {}});
+ t.insert({"DEF", "!!!"});
+
+ EXPECT_THAT(t, UnorderedElementsAre(Pair("", ""), Pair("ABC", ""),
+ Pair("DEF", "!!!")));
+}
+
+TEST(Table, LargeTable) {
+ IntTable t;
+ for (int64_t i = 0; i != 100000; ++i) t.emplace(i << 40);
+ for (int64_t i = 0; i != 100000; ++i) ASSERT_EQ(i << 40, *t.find(i << 40));
+}
+
+// Timeout if copy is quadratic as it was in Rust.
+TEST(Table, EnsureNonQuadraticAsInRust) {
+ static const size_t kLargeSize = 1 << 15;
+
+ IntTable t;
+ for (size_t i = 0; i != kLargeSize; ++i) {
+ t.insert(i);
+ }
+
+ // If this is quadratic, the test will timeout.
+ IntTable t2;
+ for (const auto& entry : t) t2.insert(entry);
+}
+
+TEST(Table, ClearBug) {
+ IntTable t;
+ constexpr size_t capacity = container_internal::Group::kWidth - 1;
+ constexpr size_t max_size = capacity / 2;
+ for (size_t i = 0; i < max_size; ++i) {
+ t.insert(i);
+ }
+ ASSERT_EQ(capacity, t.capacity());
+ intptr_t original = reinterpret_cast<intptr_t>(&*t.find(2));
+ t.clear();
+ ASSERT_EQ(capacity, t.capacity());
+ for (size_t i = 0; i < max_size; ++i) {
+ t.insert(i);
+ }
+ ASSERT_EQ(capacity, t.capacity());
+ intptr_t second = reinterpret_cast<intptr_t>(&*t.find(2));
+ // We are checking that original and second are close enough to each other
+ // that they are probably still in the same group. This is not strictly
+ // guaranteed.
+ EXPECT_LT(std::abs(original - second),
+ capacity * sizeof(IntTable::value_type));
+}
+
+TEST(Table, Erase) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ auto res = t.emplace(0);
+ EXPECT_TRUE(res.second);
+ EXPECT_EQ(1, t.size());
+ t.erase(res.first);
+ EXPECT_EQ(0, t.size());
+ EXPECT_TRUE(t.find(0) == t.end());
+}
+
+// Collect N bad keys by following algorithm:
+// 1. Create an empty table and reserve it to 2 * N.
+// 2. Insert N random elements.
+// 3. Take first Group::kWidth - 1 to bad_keys array.
+// 4. Clear the table without resize.
+// 5. Go to point 2 while N keys not collected
+std::vector<int64_t> CollectBadMergeKeys(size_t N) {
+ static constexpr int kGroupSize = Group::kWidth - 1;
+
+ auto topk_range = [](size_t b, size_t e, IntTable* t) -> std::vector<int64_t> {
+ for (size_t i = b; i != e; ++i) {
+ t->emplace(i);
+ }
+ std::vector<int64_t> res;
+ res.reserve(kGroupSize);
+ auto it = t->begin();
+ for (size_t i = b; i != e && i != b + kGroupSize; ++i, ++it) {
+ res.push_back(*it);
+ }
+ return res;
+ };
+
+ std::vector<int64_t> bad_keys;
+ bad_keys.reserve(N);
+ IntTable t;
+ t.reserve(N * 2);
+
+ for (size_t b = 0; bad_keys.size() < N; b += N) {
+ auto keys = topk_range(b, b + N, &t);
+ bad_keys.insert(bad_keys.end(), keys.begin(), keys.end());
+ t.erase(t.begin(), t.end());
+ EXPECT_TRUE(t.empty());
+ }
+ return bad_keys;
+}
+
+struct ProbeStats {
+ // Number of elements with specific probe length over all tested tables.
+ std::vector<size_t> all_probes_histogram;
+ // Ratios total_probe_length/size for every tested table.
+ std::vector<double> single_table_ratios;
+
+ friend ProbeStats operator+(const ProbeStats& a, const ProbeStats& b) {
+ ProbeStats res = a;
+ res.all_probes_histogram.resize(std::max(res.all_probes_histogram.size(),
+ b.all_probes_histogram.size()));
+ std::transform(b.all_probes_histogram.begin(), b.all_probes_histogram.end(),
+ res.all_probes_histogram.begin(),
+ res.all_probes_histogram.begin(), std::plus<size_t>());
+ res.single_table_ratios.insert(res.single_table_ratios.end(),
+ b.single_table_ratios.begin(),
+ b.single_table_ratios.end());
+ return res;
+ }
+
+ // Average ratio total_probe_length/size over tables.
+ double AvgRatio() const {
+ return std::accumulate(single_table_ratios.begin(),
+ single_table_ratios.end(), 0.0) /
+ single_table_ratios.size();
+ }
+
+ // Maximum ratio total_probe_length/size over tables.
+ double MaxRatio() const {
+ return *std::max_element(single_table_ratios.begin(),
+ single_table_ratios.end());
+ }
+
+ // Percentile ratio total_probe_length/size over tables.
+ double PercentileRatio(double Percentile = 0.95) const {
+ auto r = single_table_ratios;
+ auto mid = r.begin() + static_cast<size_t>(r.size() * Percentile);
+ if (mid != r.end()) {
+ std::nth_element(r.begin(), mid, r.end());
+ return *mid;
+ } else {
+ return MaxRatio();
+ }
+ }
+
+ // Maximum probe length over all elements and all tables.
+ size_t MaxProbe() const { return all_probes_histogram.size(); }
+
+ // Fraction of elements with specified probe length.
+ std::vector<double> ProbeNormalizedHistogram() const {
+ double total_elements = std::accumulate(all_probes_histogram.begin(),
+ all_probes_histogram.end(), 0ull);
+ std::vector<double> res;
+ for (size_t p : all_probes_histogram) {
+ res.push_back(p / total_elements);
+ }
+ return res;
+ }
+
+ size_t PercentileProbe(double Percentile = 0.99) const {
+ size_t idx = 0;
+ for (double p : ProbeNormalizedHistogram()) {
+ if (Percentile > p) {
+ Percentile -= p;
+ ++idx;
+ } else {
+ return idx;
+ }
+ }
+ return idx;
+ }
+
+ friend std::ostream& operator<<(std::ostream& out, const ProbeStats& s) {
+ out << "{AvgRatio:" << s.AvgRatio() << ", MaxRatio:" << s.MaxRatio()
+ << ", PercentileRatio:" << s.PercentileRatio()
+ << ", MaxProbe:" << s.MaxProbe() << ", Probes=[";
+ for (double p : s.ProbeNormalizedHistogram()) {
+ out << p << ",";
+ }
+ out << "]}";
+
+ return out;
+ }
+};
+
+struct ExpectedStats {
+ double avg_ratio;
+ double max_ratio;
+ std::vector<std::pair<double, double>> pecentile_ratios;
+ std::vector<std::pair<double, double>> pecentile_probes;
+
+ friend std::ostream& operator<<(std::ostream& out, const ExpectedStats& s) {
+ out << "{AvgRatio:" << s.avg_ratio << ", MaxRatio:" << s.max_ratio
+ << ", PercentileRatios: [";
+ for (auto el : s.pecentile_ratios) {
+ out << el.first << ":" << el.second << ", ";
+ }
+ out << "], PercentileProbes: [";
+ for (auto el : s.pecentile_probes) {
+ out << el.first << ":" << el.second << ", ";
+ }
+ out << "]}";
+
+ return out;
+ }
+};
+
+void VerifyStats(size_t size, const ExpectedStats& exp,
+ const ProbeStats& stats) {
+ EXPECT_LT(stats.AvgRatio(), exp.avg_ratio) << size << " " << stats;
+ EXPECT_LT(stats.MaxRatio(), exp.max_ratio) << size << " " << stats;
+ for (auto pr : exp.pecentile_ratios) {
+ EXPECT_LE(stats.PercentileRatio(pr.first), pr.second)
+ << size << " " << pr.first << " " << stats;
+ }
+
+ for (auto pr : exp.pecentile_probes) {
+ EXPECT_LE(stats.PercentileProbe(pr.first), pr.second)
+ << size << " " << pr.first << " " << stats;
+ }
+}
+
+using ProbeStatsPerSize = std::map<size_t, ProbeStats>;
+
+// Collect total ProbeStats on num_iters iterations of the following algorithm:
+// 1. Create new table and reserve it to keys.size() * 2
+// 2. Insert all keys xored with seed
+// 3. Collect ProbeStats from final table.
+ProbeStats CollectProbeStatsOnKeysXoredWithSeed(const std::vector<int64_t>& keys,
+ size_t num_iters) {
+ const size_t reserve_size = keys.size() * 2;
+
+ ProbeStats stats;
+
+ int64_t seed = 0x71b1a19b907d6e33;
+ while (num_iters--) {
+ seed = static_cast<int64_t>(static_cast<uint64_t>(seed) * 17 + 13);
+ IntTable t1;
+ t1.reserve(reserve_size);
+ for (const auto& key : keys) {
+ t1.emplace(key ^ seed);
+ }
+
+ auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
+ stats.all_probes_histogram.resize(
+ std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
+ std::transform(probe_histogram.begin(), probe_histogram.end(),
+ stats.all_probes_histogram.begin(),
+ stats.all_probes_histogram.begin(), std::plus<size_t>());
+
+ size_t total_probe_seq_length = 0;
+ for (size_t i = 0; i < probe_histogram.size(); ++i) {
+ total_probe_seq_length += i * probe_histogram[i];
+ }
+ stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
+ keys.size());
+ t1.erase(t1.begin(), t1.end());
+ }
+ return stats;
+}
+
+ExpectedStats XorSeedExpectedStats() {
+ constexpr bool kRandomizesInserts =
+#if NDEBUG
+ false;
+#else // NDEBUG
+ true;
+#endif // NDEBUG
+
+ // The effective load factor is larger in non-opt mode because we insert
+ // elements out of order.
+ switch (container_internal::Group::kWidth) {
+ case 8:
+ if (kRandomizesInserts) {
+ return {0.05,
+ 1.0,
+ {{0.95, 0.5}},
+ {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
+ } else {
+ return {0.05,
+ 2.0,
+ {{0.95, 0.1}},
+ {{0.95, 0}, {0.99, 2}, {0.999, 4}, {0.9999, 10}}};
+ }
+ break;
+ case 16:
+ if (kRandomizesInserts) {
+ return {0.1,
+ 1.0,
+ {{0.95, 0.1}},
+ {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
+ } else {
+ return {0.05,
+ 1.0,
+ {{0.95, 0.05}},
+ {{0.95, 0}, {0.99, 1}, {0.999, 4}, {0.9999, 10}}};
+ }
+ break;
+ default:
+ ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
+ }
+ return {};
+}
+TEST(Table, DISABLED_EnsureNonQuadraticTopNXorSeedByProbeSeqLength) {
+ ProbeStatsPerSize stats;
+ std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
+ for (size_t size : sizes) {
+ stats[size] =
+ CollectProbeStatsOnKeysXoredWithSeed(CollectBadMergeKeys(size), 200);
+ }
+ auto expected = XorSeedExpectedStats();
+ for (size_t size : sizes) {
+ auto& stat = stats[size];
+ VerifyStats(size, expected, stat);
+ }
+}
+
+// Collect total ProbeStats on num_iters iterations of the following algorithm:
+// 1. Create new table
+// 2. Select 10% of keys and insert 10 elements key * 17 + j * 13
+// 3. Collect ProbeStats from final table
+ProbeStats CollectProbeStatsOnLinearlyTransformedKeys(
+ const std::vector<int64_t>& keys, size_t num_iters) {
+ ProbeStats stats;
+
+ std::random_device rd;
+ std::mt19937 rng(rd());
+ auto linear_transform = [](size_t x, size_t y) { return x * 17 + y * 13; };
+ std::uniform_int_distribution<size_t> dist(0, keys.size()-1);
+ while (num_iters--) {
+ IntTable t1;
+ size_t num_keys = keys.size() / 10;
+ size_t start = dist(rng);
+ for (size_t i = 0; i != num_keys; ++i) {
+ for (size_t j = 0; j != 10; ++j) {
+ t1.emplace(linear_transform(keys[(i + start) % keys.size()], j));
+ }
+ }
+
+ auto probe_histogram = GetHashtableDebugNumProbesHistogram(t1);
+ stats.all_probes_histogram.resize(
+ std::max(stats.all_probes_histogram.size(), probe_histogram.size()));
+ std::transform(probe_histogram.begin(), probe_histogram.end(),
+ stats.all_probes_histogram.begin(),
+ stats.all_probes_histogram.begin(), std::plus<size_t>());
+
+ size_t total_probe_seq_length = 0;
+ for (size_t i = 0; i < probe_histogram.size(); ++i) {
+ total_probe_seq_length += i * probe_histogram[i];
+ }
+ stats.single_table_ratios.push_back(total_probe_seq_length * 1.0 /
+ t1.size());
+ t1.erase(t1.begin(), t1.end());
+ }
+ return stats;
+}
+
+ExpectedStats LinearTransformExpectedStats() {
+ constexpr bool kRandomizesInserts =
+#if NDEBUG
+ false;
+#else // NDEBUG
+ true;
+#endif // NDEBUG
+
+ // The effective load factor is larger in non-opt mode because we insert
+ // elements out of order.
+ switch (container_internal::Group::kWidth) {
+ case 8:
+ if (kRandomizesInserts) {
+ return {0.1,
+ 0.5,
+ {{0.95, 0.3}},
+ {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
+ } else {
+ return {0.15,
+ 0.5,
+ {{0.95, 0.3}},
+ {{0.95, 0}, {0.99, 3}, {0.999, 15}, {0.9999, 25}}};
+ }
+ break;
+ case 16:
+ if (kRandomizesInserts) {
+ return {0.1,
+ 0.4,
+ {{0.95, 0.3}},
+ {{0.95, 0}, {0.99, 1}, {0.999, 8}, {0.9999, 15}}};
+ } else {
+ return {0.05,
+ 0.2,
+ {{0.95, 0.1}},
+ {{0.95, 0}, {0.99, 1}, {0.999, 6}, {0.9999, 10}}};
+ }
+ break;
+ default:
+ ABSL_RAW_LOG(FATAL, "%s", "Unknown Group width");
+ }
+ return {};
+}
+TEST(Table, DISABLED_EnsureNonQuadraticTopNLinearTransformByProbeSeqLength) {
+ ProbeStatsPerSize stats;
+ std::vector<size_t> sizes = {Group::kWidth << 5, Group::kWidth << 10};
+ for (size_t size : sizes) {
+ stats[size] = CollectProbeStatsOnLinearlyTransformedKeys(
+ CollectBadMergeKeys(size), 300);
+ }
+ auto expected = LinearTransformExpectedStats();
+ for (size_t size : sizes) {
+ auto& stat = stats[size];
+ VerifyStats(size, expected, stat);
+ }
+}
+
+TEST(Table, EraseCollision) {
+ BadTable t;
+
+ // 1 2 3
+ t.emplace(1);
+ t.emplace(2);
+ t.emplace(3);
+ EXPECT_THAT(*t.find(1), 1);
+ EXPECT_THAT(*t.find(2), 2);
+ EXPECT_THAT(*t.find(3), 3);
+ EXPECT_EQ(3, t.size());
+
+ // 1 DELETED 3
+ t.erase(t.find(2));
+ EXPECT_THAT(*t.find(1), 1);
+ EXPECT_TRUE(t.find(2) == t.end());
+ EXPECT_THAT(*t.find(3), 3);
+ EXPECT_EQ(2, t.size());
+
+ // DELETED DELETED 3
+ t.erase(t.find(1));
+ EXPECT_TRUE(t.find(1) == t.end());
+ EXPECT_TRUE(t.find(2) == t.end());
+ EXPECT_THAT(*t.find(3), 3);
+ EXPECT_EQ(1, t.size());
+
+ // DELETED DELETED DELETED
+ t.erase(t.find(3));
+ EXPECT_TRUE(t.find(1) == t.end());
+ EXPECT_TRUE(t.find(2) == t.end());
+ EXPECT_TRUE(t.find(3) == t.end());
+ EXPECT_EQ(0, t.size());
+}
+
+TEST(Table, EraseInsertProbing) {
+ BadTable t(100);
+
+ // 1 2 3 4
+ t.emplace(1);
+ t.emplace(2);
+ t.emplace(3);
+ t.emplace(4);
+
+ // 1 DELETED 3 DELETED
+ t.erase(t.find(2));
+ t.erase(t.find(4));
+
+ // 1 10 3 11 12
+ t.emplace(10);
+ t.emplace(11);
+ t.emplace(12);
+
+ EXPECT_EQ(5, t.size());
+ EXPECT_THAT(t, UnorderedElementsAre(1, 10, 3, 11, 12));
+}
+
+TEST(Table, Clear) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ t.clear();
+ EXPECT_TRUE(t.find(0) == t.end());
+ auto res = t.emplace(0);
+ EXPECT_TRUE(res.second);
+ EXPECT_EQ(1, t.size());
+ t.clear();
+ EXPECT_EQ(0, t.size());
+ EXPECT_TRUE(t.find(0) == t.end());
+}
+
+TEST(Table, Swap) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ auto res = t.emplace(0);
+ EXPECT_TRUE(res.second);
+ EXPECT_EQ(1, t.size());
+ IntTable u;
+ t.swap(u);
+ EXPECT_EQ(0, t.size());
+ EXPECT_EQ(1, u.size());
+ EXPECT_TRUE(t.find(0) == t.end());
+ EXPECT_THAT(*u.find(0), 0);
+}
+
+TEST(Table, Rehash) {
+ IntTable t;
+ EXPECT_TRUE(t.find(0) == t.end());
+ t.emplace(0);
+ t.emplace(1);
+ EXPECT_EQ(2, t.size());
+ t.rehash(128);
+ EXPECT_EQ(2, t.size());
+ EXPECT_THAT(*t.find(0), 0);
+ EXPECT_THAT(*t.find(1), 1);
+}
+
+TEST(Table, RehashDoesNotRehashWhenNotNecessary) {
+ IntTable t;
+ t.emplace(0);
+ t.emplace(1);
+ auto* p = &*t.find(0);
+ t.rehash(1);
+ EXPECT_EQ(p, &*t.find(0));
+}
+
+TEST(Table, RehashZeroDoesNotAllocateOnEmptyTable) {
+ IntTable t;
+ t.rehash(0);
+ EXPECT_EQ(0, t.bucket_count());
+}
+
+TEST(Table, RehashZeroDeallocatesEmptyTable) {
+ IntTable t;
+ t.emplace(0);
+ t.clear();
+ EXPECT_NE(0, t.bucket_count());
+ t.rehash(0);
+ EXPECT_EQ(0, t.bucket_count());
+}
+
+TEST(Table, RehashZeroForcesRehash) {
+ IntTable t;
+ t.emplace(0);
+ t.emplace(1);
+ auto* p = &*t.find(0);
+ t.rehash(0);
+ EXPECT_NE(p, &*t.find(0));
+}
+
+TEST(Table, ConstructFromInitList) {
+ using P = std::pair<std::string, std::string>;
+ struct Q {
+ operator P() const { return {}; }
+ };
+ StringTable t = {P(), Q(), {}, {{}, {}}};
+}
+
+TEST(Table, CopyConstruct) {
+ IntTable t;
+ t.max_load_factor(.321f);
+ t.emplace(0);
+ EXPECT_EQ(1, t.size());
+ {
+ IntTable u(t);
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
+ EXPECT_THAT(*u.find(0), 0);
+ }
+ {
+ IntTable u{t};
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
+ EXPECT_THAT(*u.find(0), 0);
+ }
+ {
+ IntTable u = t;
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
+ EXPECT_THAT(*u.find(0), 0);
+ }
+}
+
+TEST(Table, CopyConstructWithAlloc) {
+ StringTable t;
+ t.max_load_factor(.321f);
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+ StringTable u(t, Alloc<std::pair<std::string, std::string>>());
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+}
+
+struct ExplicitAllocIntTable
+ : raw_hash_set<IntPolicy, container_internal::hash_default_hash<int64_t>,
+ std::equal_to<int64_t>, Alloc<int64_t>> {
+ ExplicitAllocIntTable() {}
+};
+
+TEST(Table, AllocWithExplicitCtor) {
+ ExplicitAllocIntTable t;
+ EXPECT_EQ(0, t.size());
+}
+
+TEST(Table, MoveConstruct) {
+ {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+
+ StringTable u(std::move(t));
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(lf, u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+ }
+ {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+
+ StringTable u{std::move(t)};
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(lf, u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+ }
+ {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+
+ StringTable u = std::move(t);
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(lf, u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+ }
+}
+
+TEST(Table, MoveConstructWithAlloc) {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+ StringTable u(std::move(t), Alloc<std::pair<std::string, std::string>>());
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(lf, u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+}
+
+TEST(Table, CopyAssign) {
+ StringTable t;
+ t.max_load_factor(.321f);
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+ StringTable u;
+ u = t;
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(t.max_load_factor(), u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+}
+
+TEST(Table, CopySelfAssign) {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+ t = *&t;
+ EXPECT_EQ(1, t.size());
+ EXPECT_EQ(lf, t.max_load_factor());
+ EXPECT_THAT(*t.find("a"), Pair("a", "b"));
+}
+
+TEST(Table, MoveAssign) {
+ StringTable t;
+ t.max_load_factor(.321f);
+ const float lf = t.max_load_factor();
+ t.emplace("a", "b");
+ EXPECT_EQ(1, t.size());
+ StringTable u;
+ u = std::move(t);
+ EXPECT_EQ(1, u.size());
+ EXPECT_EQ(lf, u.max_load_factor());
+ EXPECT_THAT(*u.find("a"), Pair("a", "b"));
+}
+
+TEST(Table, Equality) {
+ StringTable t;
+ std::vector<std::pair<std::string, std::string>> v = {{"a", "b"}, {"aa", "bb"}};
+ t.insert(std::begin(v), std::end(v));
+ StringTable u = t;
+ EXPECT_EQ(u, t);
+}
+
+TEST(Table, Equality2) {
+ StringTable t;
+ std::vector<std::pair<std::string, std::string>> v1 = {{"a", "b"}, {"aa", "bb"}};
+ t.insert(std::begin(v1), std::end(v1));
+ StringTable u;
+ std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, {"aa", "aa"}};
+ u.insert(std::begin(v2), std::end(v2));
+ EXPECT_NE(u, t);
+}
+
+TEST(Table, Equality3) {
+ StringTable t;
+ std::vector<std::pair<std::string, std::string>> v1 = {{"b", "b"}, {"bb", "bb"}};
+ t.insert(std::begin(v1), std::end(v1));
+ StringTable u;
+ std::vector<std::pair<std::string, std::string>> v2 = {{"a", "a"}, {"aa", "aa"}};
+ u.insert(std::begin(v2), std::end(v2));
+ EXPECT_NE(u, t);
+}
+
+TEST(Table, NumDeletedRegression) {
+ IntTable t;
+ t.emplace(0);
+ t.erase(t.find(0));
+ // construct over a deleted slot.
+ t.emplace(0);
+ t.clear();
+}
+
+TEST(Table, FindFullDeletedRegression) {
+ IntTable t;
+ for (int i = 0; i < 1000; ++i) {
+ t.emplace(i);
+ t.erase(t.find(i));
+ }
+ EXPECT_EQ(0, t.size());
+}
+
+TEST(Table, ReplacingDeletedSlotDoesNotRehash) {
+ size_t n;
+ {
+ // Compute n such that n is the maximum number of elements before rehash.
+ IntTable t;
+ t.emplace(0);
+ size_t c = t.bucket_count();
+ for (n = 1; c == t.bucket_count(); ++n) t.emplace(n);
+ --n;
+ }
+ IntTable t;
+ t.rehash(n);
+ const size_t c = t.bucket_count();
+ for (size_t i = 0; i != n; ++i) t.emplace(i);
+ EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
+ t.erase(0);
+ t.emplace(0);
+ EXPECT_EQ(c, t.bucket_count()) << "rehashing threshold = " << n;
+}
+
+TEST(Table, NoThrowMoveConstruct) {
+ ASSERT_TRUE(
+ std::is_nothrow_copy_constructible<absl::Hash<absl::string_view>>::value);
+ ASSERT_TRUE(std::is_nothrow_copy_constructible<
+ std::equal_to<absl::string_view>>::value);
+ ASSERT_TRUE(std::is_nothrow_copy_constructible<std::allocator<int>>::value);
+ EXPECT_TRUE(std::is_nothrow_move_constructible<StringTable>::value);
+}
+
+TEST(Table, NoThrowMoveAssign) {
+ ASSERT_TRUE(
+ std::is_nothrow_move_assignable<absl::Hash<absl::string_view>>::value);
+ ASSERT_TRUE(
+ std::is_nothrow_move_assignable<std::equal_to<absl::string_view>>::value);
+ ASSERT_TRUE(std::is_nothrow_move_assignable<std::allocator<int>>::value);
+ ASSERT_TRUE(
+ absl::allocator_traits<std::allocator<int>>::is_always_equal::value);
+ EXPECT_TRUE(std::is_nothrow_move_assignable<StringTable>::value);
+}
+
+TEST(Table, NoThrowSwappable) {
+ ASSERT_TRUE(
+ container_internal::IsNoThrowSwappable<absl::Hash<absl::string_view>>());
+ ASSERT_TRUE(container_internal::IsNoThrowSwappable<
+ std::equal_to<absl::string_view>>());
+ ASSERT_TRUE(container_internal::IsNoThrowSwappable<std::allocator<int>>());
+ EXPECT_TRUE(container_internal::IsNoThrowSwappable<StringTable>());
+}
+
+TEST(Table, HeterogeneousLookup) {
+ struct Hash {
+ size_t operator()(int64_t i) const { return i; }
+ size_t operator()(double i) const {
+ ADD_FAILURE();
+ return i;
+ }
+ };
+ struct Eq {
+ bool operator()(int64_t a, int64_t b) const { return a == b; }
+ bool operator()(double a, int64_t b) const {
+ ADD_FAILURE();
+ return a == b;
+ }
+ bool operator()(int64_t a, double b) const {
+ ADD_FAILURE();
+ return a == b;
+ }
+ bool operator()(double a, double b) const {
+ ADD_FAILURE();
+ return a == b;
+ }
+ };
+
+ struct THash {
+ using is_transparent = void;
+ size_t operator()(int64_t i) const { return i; }
+ size_t operator()(double i) const { return i; }
+ };
+ struct TEq {
+ using is_transparent = void;
+ bool operator()(int64_t a, int64_t b) const { return a == b; }
+ bool operator()(double a, int64_t b) const { return a == b; }
+ bool operator()(int64_t a, double b) const { return a == b; }
+ bool operator()(double a, double b) const { return a == b; }
+ };
+
+ raw_hash_set<IntPolicy, Hash, Eq, Alloc<int64_t>> s{0, 1, 2};
+ // It will convert to int64_t before the query.
+ EXPECT_EQ(1, *s.find(double{1.1}));
+
+ raw_hash_set<IntPolicy, THash, TEq, Alloc<int64_t>> ts{0, 1, 2};
+ // It will try to use the double, and fail to find the object.
+ EXPECT_TRUE(ts.find(1.1) == ts.end());
+}
+
+template <class Table>
+using CallFind = decltype(std::declval<Table&>().find(17));
+
+template <class Table>
+using CallErase = decltype(std::declval<Table&>().erase(17));
+
+template <class Table>
+using CallExtract = decltype(std::declval<Table&>().extract(17));
+
+template <class Table>
+using CallPrefetch = decltype(std::declval<Table&>().prefetch(17));
+
+template <class Table>
+using CallCount = decltype(std::declval<Table&>().count(17));
+
+template <template <typename> class C, class Table, class = void>
+struct VerifyResultOf : std::false_type {};
+
+template <template <typename> class C, class Table>
+struct VerifyResultOf<C, Table, absl::void_t<C<Table>>> : std::true_type {};
+
+TEST(Table, HeterogeneousLookupOverloads) {
+ using NonTransparentTable =
+ raw_hash_set<StringPolicy, absl::Hash<absl::string_view>,
+ std::equal_to<absl::string_view>, std::allocator<int>>;
+
+ EXPECT_FALSE((VerifyResultOf<CallFind, NonTransparentTable>()));
+ EXPECT_FALSE((VerifyResultOf<CallErase, NonTransparentTable>()));
+ EXPECT_FALSE((VerifyResultOf<CallExtract, NonTransparentTable>()));
+ EXPECT_FALSE((VerifyResultOf<CallPrefetch, NonTransparentTable>()));
+ EXPECT_FALSE((VerifyResultOf<CallCount, NonTransparentTable>()));
+
+ using TransparentTable = raw_hash_set<
+ StringPolicy,
+ absl::container_internal::hash_default_hash<absl::string_view>,
+ absl::container_internal::hash_default_eq<absl::string_view>,
+ std::allocator<int>>;
+
+ EXPECT_TRUE((VerifyResultOf<CallFind, TransparentTable>()));
+ EXPECT_TRUE((VerifyResultOf<CallErase, TransparentTable>()));
+ EXPECT_TRUE((VerifyResultOf<CallExtract, TransparentTable>()));
+ EXPECT_TRUE((VerifyResultOf<CallPrefetch, TransparentTable>()));
+ EXPECT_TRUE((VerifyResultOf<CallCount, TransparentTable>()));
+}
+
+// TODO(alkis): Expand iterator tests.
+TEST(Iterator, IsDefaultConstructible) {
+ StringTable::iterator i;
+ EXPECT_TRUE(i == StringTable::iterator());
+}
+
+TEST(ConstIterator, IsDefaultConstructible) {
+ StringTable::const_iterator i;
+ EXPECT_TRUE(i == StringTable::const_iterator());
+}
+
+TEST(Iterator, ConvertsToConstIterator) {
+ StringTable::iterator i;
+ EXPECT_TRUE(i == StringTable::const_iterator());
+}
+
+TEST(Iterator, Iterates) {
+ IntTable t;
+ for (size_t i = 3; i != 6; ++i) EXPECT_TRUE(t.emplace(i).second);
+ EXPECT_THAT(t, UnorderedElementsAre(3, 4, 5));
+}
+
+TEST(Table, Merge) {
+ StringTable t1, t2;
+ t1.emplace("0", "-0");
+ t1.emplace("1", "-1");
+ t2.emplace("0", "~0");
+ t2.emplace("2", "~2");
+
+ EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1")));
+ EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0"), Pair("2", "~2")));
+
+ t1.merge(t2);
+ EXPECT_THAT(t1, UnorderedElementsAre(Pair("0", "-0"), Pair("1", "-1"),
+ Pair("2", "~2")));
+ EXPECT_THAT(t2, UnorderedElementsAre(Pair("0", "~0")));
+}
+
+TEST(Nodes, EmptyNodeType) {
+ using node_type = StringTable::node_type;
+ node_type n;
+ EXPECT_FALSE(n);
+ EXPECT_TRUE(n.empty());
+
+ EXPECT_TRUE((std::is_same<node_type::allocator_type,
+ StringTable::allocator_type>::value));
+}
+
+TEST(Nodes, ExtractInsert) {
+ constexpr char k0[] = "Very long std::string zero.";
+ constexpr char k1[] = "Very long std::string one.";
+ constexpr char k2[] = "Very long std::string two.";
+ StringTable t = {{k0, ""}, {k1, ""}, {k2, ""}};
+ EXPECT_THAT(t,
+ UnorderedElementsAre(Pair(k0, ""), Pair(k1, ""), Pair(k2, "")));
+
+ auto node = t.extract(k0);
+ EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
+ EXPECT_TRUE(node);
+ EXPECT_FALSE(node.empty());
+
+ StringTable t2;
+ auto res = t2.insert(std::move(node));
+ EXPECT_TRUE(res.inserted);
+ EXPECT_THAT(*res.position, Pair(k0, ""));
+ EXPECT_FALSE(res.node);
+ EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
+
+ // Not there.
+ EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
+ node = t.extract("Not there!");
+ EXPECT_THAT(t, UnorderedElementsAre(Pair(k1, ""), Pair(k2, "")));
+ EXPECT_FALSE(node);
+
+ // Inserting nothing.
+ res = t2.insert(std::move(node));
+ EXPECT_FALSE(res.inserted);
+ EXPECT_EQ(res.position, t2.end());
+ EXPECT_FALSE(res.node);
+ EXPECT_THAT(t2, UnorderedElementsAre(Pair(k0, "")));
+
+ t.emplace(k0, "1");
+ node = t.extract(k0);
+
+ // Insert duplicate.
+ res = t2.insert(std::move(node));
+ EXPECT_FALSE(res.inserted);
+ EXPECT_THAT(*res.position, Pair(k0, ""));
+ EXPECT_TRUE(res.node);
+ EXPECT_FALSE(node);
+}
+
+StringTable MakeSimpleTable(size_t size) {
+ StringTable t;
+ for (size_t i = 0; i < size; ++i) t.emplace(std::string(1, 'A' + i), "");
+ return t;
+}
+
+std::string OrderOfIteration(const StringTable& t) {
+ std::string order;
+ for (auto& p : t) order += p.first;
+ return order;
+}
+
+TEST(Table, IterationOrderChangesByInstance) {
+ // Needs to be more than kWidth elements to be able to affect order.
+ const StringTable reference = MakeSimpleTable(20);
+
+ // Since order is non-deterministic we can't just try once and verify.
+ // We'll try until we find that order changed. It should not take many tries
+ // for that.
+ // Important: we have to keep the old tables around. Otherwise tcmalloc will
+ // just give us the same blocks and we would be doing the same order again.
+ std::vector<StringTable> garbage;
+ for (int i = 0; i < 10; ++i) {
+ auto trial = MakeSimpleTable(20);
+ if (OrderOfIteration(trial) != OrderOfIteration(reference)) {
+ // We are done.
+ return;
+ }
+ garbage.push_back(std::move(trial));
+ }
+ FAIL();
+}
+
+TEST(Table, IterationOrderChangesOnRehash) {
+ // Since order is non-deterministic we can't just try once and verify.
+ // We'll try until we find that order changed. It should not take many tries
+ // for that.
+ // Important: we have to keep the old tables around. Otherwise tcmalloc will
+ // just give us the same blocks and we would be doing the same order again.
+ std::vector<StringTable> garbage;
+ for (int i = 0; i < 10; ++i) {
+ // Needs to be more than kWidth elements to be able to affect order.
+ StringTable t = MakeSimpleTable(20);
+ const std::string reference = OrderOfIteration(t);
+ // Force rehash to the same size.
+ t.rehash(0);
+ std::string trial = OrderOfIteration(t);
+ if (trial != reference) {
+ // We are done.
+ return;
+ }
+ garbage.push_back(std::move(t));
+ }
+ FAIL();
+}
+
+TEST(Table, IterationOrderChangesForSmallTables) {
+ // Since order is non-deterministic we can't just try once and verify.
+ // We'll try until we find that order changed.
+ // Important: we have to keep the old tables around. Otherwise tcmalloc will
+ // just give us the same blocks and we would be doing the same order again.
+ StringTable reference_table = MakeSimpleTable(5);
+ const std::string reference = OrderOfIteration(reference_table);
+ std::vector<StringTable> garbage;
+ for (int i = 0; i < 50; ++i) {
+ StringTable t = MakeSimpleTable(5);
+ std::string trial = OrderOfIteration(t);
+ if (trial != reference) {
+ // We are done.
+ return;
+ }
+ garbage.push_back(std::move(t));
+ }
+ FAIL() << "Iteration order remained the same across many attempts.";
+}
+
+// Fill the table to 3 different load factors (min, median, max) and evaluate
+// the percentage of perfect hits using the debug API.
+template <class Table, class AddFn>
+std::vector<double> CollectPerfectRatios(Table t, AddFn add) {
+ using Key = typename Table::key_type;
+
+ // First, fill enough to have a good distribution.
+ constexpr size_t kMinSize = 10000;
+ std::vector<Key> keys;
+ while (t.size() < kMinSize) keys.push_back(add(t));
+ // Then, insert until we reach min load factor.
+ double lf = t.load_factor();
+ while (lf <= t.load_factor()) keys.push_back(add(t));
+
+ // We are now at min load factor. Take a snapshot.
+ size_t perfect = 0;
+ auto update_perfect = [&](Key k) {
+ perfect += GetHashtableDebugNumProbes(t, k) == 0;
+ };
+ for (const auto& k : keys) update_perfect(k);
+
+ std::vector<double> perfect_ratios;
+ // Keep going until we hit max load factor.
+ while (t.load_factor() < .6) {
+ perfect_ratios.push_back(1.0 * perfect / t.size());
+ update_perfect(add(t));
+ }
+ while (t.load_factor() > .5) {
+ perfect_ratios.push_back(1.0 * perfect / t.size());
+ update_perfect(add(t));
+ }
+ return perfect_ratios;
+}
+
+std::vector<std::pair<double, double>> StringTablePefectRatios() {
+ constexpr bool kRandomizesInserts =
+#if NDEBUG
+ false;
+#else // NDEBUG
+ true;
+#endif // NDEBUG
+
+ // The effective load factor is larger in non-opt mode because we insert
+ // elements out of order.
+ switch (container_internal::Group::kWidth) {
+ case 8:
+ if (kRandomizesInserts) {
+ return {{0.986, 0.02}, {0.95, 0.02}, {0.89, 0.02}};
+ } else {
+ return {{0.995, 0.01}, {0.97, 0.01}, {0.89, 0.02}};
+ }
+ break;
+ case 16:
+ if (kRandomizesInserts) {
+ return {{0.973, 0.01}, {0.965, 0.01}, {0.92, 0.02}};
+ } else {
+ return {{0.995, 0.005}, {0.99, 0.005}, {0.94, 0.01}};
+ }
+ break;
+ default:
+ // Ignore anything else.
+ return {};
+ }
+}
+
+// This is almost a change detector, but it allows us to know how we are
+// affecting the probe distribution.
+TEST(Table, EffectiveLoadFactorStrings) {
+ std::vector<double> perfect_ratios =
+ CollectPerfectRatios(StringTable(), [](StringTable& t) {
+ return t.emplace(std::to_string(t.size()), "").first->first;
+ });
+
+ auto ratios = StringTablePefectRatios();
+ if (ratios.empty()) return;
+
+ EXPECT_THAT(perfect_ratios.front(),
+ DoubleNear(ratios[0].first, ratios[0].second));
+ EXPECT_THAT(perfect_ratios[perfect_ratios.size() / 2],
+ DoubleNear(ratios[1].first, ratios[1].second));
+ EXPECT_THAT(perfect_ratios.back(),
+ DoubleNear(ratios[2].first, ratios[2].second));
+}
+
+std::vector<std::pair<double, double>> IntTablePefectRatios() {
+ constexpr bool kRandomizesInserts =
+#ifdef NDEBUG
+ false;
+#else // NDEBUG
+ true;
+#endif // NDEBUG
+
+ // The effective load factor is larger in non-opt mode because we insert
+ // elements out of order.
+ switch (container_internal::Group::kWidth) {
+ case 8:
+ if (kRandomizesInserts) {
+ return {{0.99, 0.02}, {0.985, 0.02}, {0.95, 0.05}};
+ } else {
+ return {{0.99, 0.01}, {0.99, 0.01}, {0.95, 0.02}};
+ }
+ break;
+ case 16:
+ if (kRandomizesInserts) {
+ return {{0.98, 0.02}, {0.978, 0.02}, {0.96, 0.02}};
+ } else {
+ return {{0.998, 0.003}, {0.995, 0.01}, {0.975, 0.02}};
+ }
+ break;
+ default:
+ // Ignore anything else.
+ return {};
+ }
+}
+
+// This is almost a change detector, but it allows us to know how we are
+// affecting the probe distribution.
+TEST(Table, EffectiveLoadFactorInts) {
+ std::vector<double> perfect_ratios = CollectPerfectRatios(
+ IntTable(), [](IntTable& t) { return *t.emplace(t.size()).first; });
+
+ auto ratios = IntTablePefectRatios();
+ if (ratios.empty()) return;
+
+ EXPECT_THAT(perfect_ratios.front(),
+ DoubleNear(ratios[0].first, ratios[0].second));
+ EXPECT_THAT(perfect_ratios[perfect_ratios.size() / 2],
+ DoubleNear(ratios[1].first, ratios[1].second));
+ EXPECT_THAT(perfect_ratios.back(),
+ DoubleNear(ratios[2].first, ratios[2].second));
+}
+
+// Confirm that we assert if we try to erase() end().
+TEST(Table, EraseOfEndAsserts) {
+ // Use an assert with side-effects to figure out if they are actually enabled.
+ bool assert_enabled = false;
+ assert([&]() {
+ assert_enabled = true;
+ return true;
+ }());
+ if (!assert_enabled) return;
+
+ IntTable t;
+ // Extra simple "regexp" as regexp support is highly varied across platforms.
+ constexpr char kDeathMsg[] = "it != end";
+ EXPECT_DEATH(t.erase(t.end()), kDeathMsg);
+}
+
+#ifdef ADDRESS_SANITIZER
+TEST(Sanitizer, PoisoningUnused) {
+ IntTable t;
+ // Insert something to force an allocation.
+ int64_t& v1 = *t.insert(0).first;
+
+ // Make sure there is something to test.
+ ASSERT_GT(t.capacity(), 1);
+
+ int64_t* slots = RawHashSetTestOnlyAccess::GetSlots(t);
+ for (size_t i = 0; i < t.capacity(); ++i) {
+ EXPECT_EQ(slots + i != &v1, __asan_address_is_poisoned(slots + i));
+ }
+}
+
+TEST(Sanitizer, PoisoningOnErase) {
+ IntTable t;
+ int64_t& v = *t.insert(0).first;
+
+ EXPECT_FALSE(__asan_address_is_poisoned(&v));
+ t.erase(0);
+ EXPECT_TRUE(__asan_address_is_poisoned(&v));
+}
+#endif // ADDRESS_SANITIZER
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/tracked.h b/absl/container/internal/tracked.h
new file mode 100644
index 0000000..7d14af0
--- /dev/null
+++ b/absl/container/internal/tracked.h
@@ -0,0 +1,78 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_TRACKED_H_
+#define ABSL_CONTAINER_INTERNAL_TRACKED_H_
+
+#include <stddef.h>
+#include <memory>
+#include <utility>
+
+namespace absl {
+namespace container_internal {
+
+// A class that tracks its copies and moves so that it can be queried in tests.
+template <class T>
+class Tracked {
+ public:
+ Tracked() {}
+ // NOLINTNEXTLINE(runtime/explicit)
+ Tracked(const T& val) : val_(val) {}
+ Tracked(const Tracked& that)
+ : val_(that.val_),
+ num_moves_(that.num_moves_),
+ num_copies_(that.num_copies_) {
+ ++(*num_copies_);
+ }
+ Tracked(Tracked&& that)
+ : val_(std::move(that.val_)),
+ num_moves_(std::move(that.num_moves_)),
+ num_copies_(std::move(that.num_copies_)) {
+ ++(*num_moves_);
+ }
+ Tracked& operator=(const Tracked& that) {
+ val_ = that.val_;
+ num_moves_ = that.num_moves_;
+ num_copies_ = that.num_copies_;
+ ++(*num_copies_);
+ }
+ Tracked& operator=(Tracked&& that) {
+ val_ = std::move(that.val_);
+ num_moves_ = std::move(that.num_moves_);
+ num_copies_ = std::move(that.num_copies_);
+ ++(*num_moves_);
+ }
+
+ const T& val() const { return val_; }
+
+ friend bool operator==(const Tracked& a, const Tracked& b) {
+ return a.val_ == b.val_;
+ }
+ friend bool operator!=(const Tracked& a, const Tracked& b) {
+ return !(a == b);
+ }
+
+ size_t num_copies() { return *num_copies_; }
+ size_t num_moves() { return *num_moves_; }
+
+ private:
+ T val_;
+ std::shared_ptr<size_t> num_moves_ = std::make_shared<size_t>(0);
+ std::shared_ptr<size_t> num_copies_ = std::make_shared<size_t>(0);
+};
+
+} // namespace container_internal
+} // namespace absl
+
+#endif // ABSL_CONTAINER_INTERNAL_TRACKED_H_
diff --git a/absl/container/internal/unordered_map_constructor_test.h b/absl/container/internal/unordered_map_constructor_test.h
new file mode 100644
index 0000000..2ffb646
--- /dev/null
+++ b/absl/container/internal/unordered_map_constructor_test.h
@@ -0,0 +1,404 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
+
+#include <algorithm>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordMap>
+class ConstructorTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(ConstructorTest);
+
+TYPED_TEST_P(ConstructorTest, NoArgs) {
+ TypeParam m;
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCount) {
+ TypeParam m(123);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHash) {
+ using H = typename TypeParam::hasher;
+ H hasher;
+ TypeParam m(123, hasher);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ H hasher;
+ E equal;
+ TypeParam m(123, hasher, equal);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ TypeParam m(123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ TypeParam m(123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, BucketAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ TypeParam m(alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(m, ::testing::UnorderedElementsAre());
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end(), 123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, CopyConstructor) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam n(m);
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam n(m, A(11));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_NE(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+#endif
+}
+
+// TODO(alkis): Test non-propagating allocators on copy constructors.
+
+TYPED_TEST_P(ConstructorTest, MoveConstructor) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam t(m);
+ TypeParam n(std::move(t));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam t(m);
+ TypeParam n(std::move(t), A(1));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_NE(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+#endif
+}
+
+// TODO(alkis): Test non-propagating allocators on move constructors.
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(values, 123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using A = typename TypeParam::allocator_type;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ A alloc(0);
+ TypeParam m(values, 123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
+#if defined(UNORDERED_MAP_CXX14) || defined(UNORDERED_MAP_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m(values, 123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, Assignment) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
+ TypeParam n;
+ n = m;
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m, n);
+}
+
+// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
+// (it depends on traits).
+
+TYPED_TEST_P(ConstructorTest, MoveAssignment) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
+ TypeParam t(m);
+ TypeParam n;
+ n = std::move(t);
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m;
+ m = values;
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()});
+ TypeParam n({gen()});
+ n = m;
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()});
+ TypeParam t(m);
+ TypeParam n({gen()});
+ n = std::move(t);
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m;
+ m = values;
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m(values);
+ m = *&m; // Avoid -Wself-assign
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+// We cannot test self move as standard states that it leaves standard
+// containers in unspecified state (and in practice in causes memory-leak
+// according to heap-checker!).
+
+REGISTER_TYPED_TEST_CASE_P(
+ ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
+ BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
+ BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
+ InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
+ MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
+ InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
+ MoveAssignment, AssignmentFromInitializerList,
+ AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
+ AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_CONSTRUCTOR_TEST_H_
diff --git a/absl/container/internal/unordered_map_lookup_test.h b/absl/container/internal/unordered_map_lookup_test.h
new file mode 100644
index 0000000..1f1b6b4
--- /dev/null
+++ b/absl/container/internal/unordered_map_lookup_test.h
@@ -0,0 +1,114 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordMap>
+class LookupTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(LookupTest);
+
+TYPED_TEST_P(LookupTest, At) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ for (const auto& p : values) {
+ const auto& val = m.at(p.first);
+ EXPECT_EQ(p.second, val) << ::testing::PrintToString(p.first);
+ }
+}
+
+TYPED_TEST_P(LookupTest, OperatorBracket) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& p : values) {
+ auto& val = m[p.first];
+ EXPECT_EQ(V(), val) << ::testing::PrintToString(p.first);
+ val = p.second;
+ }
+ for (const auto& p : values)
+ EXPECT_EQ(p.second, m[p.first]) << ::testing::PrintToString(p.first);
+}
+
+TYPED_TEST_P(LookupTest, Count) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& p : values)
+ EXPECT_EQ(0, m.count(p.first)) << ::testing::PrintToString(p.first);
+ m.insert(values.begin(), values.end());
+ for (const auto& p : values)
+ EXPECT_EQ(1, m.count(p.first)) << ::testing::PrintToString(p.first);
+}
+
+TYPED_TEST_P(LookupTest, Find) {
+ using std::get;
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& p : values)
+ EXPECT_TRUE(m.end() == m.find(p.first))
+ << ::testing::PrintToString(p.first);
+ m.insert(values.begin(), values.end());
+ for (const auto& p : values) {
+ auto it = m.find(p.first);
+ EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(p.first);
+ EXPECT_EQ(p.second, get<1>(*it)) << ::testing::PrintToString(p.first);
+ }
+}
+
+TYPED_TEST_P(LookupTest, EqualRange) {
+ using std::get;
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& p : values) {
+ auto r = m.equal_range(p.first);
+ ASSERT_EQ(0, std::distance(r.first, r.second));
+ }
+ m.insert(values.begin(), values.end());
+ for (const auto& p : values) {
+ auto r = m.equal_range(p.first);
+ ASSERT_EQ(1, std::distance(r.first, r.second));
+ EXPECT_EQ(p.second, get<1>(*r.first)) << ::testing::PrintToString(p.first);
+ }
+}
+
+REGISTER_TYPED_TEST_CASE_P(LookupTest, At, OperatorBracket, Count, Find,
+ EqualRange);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_LOOKUP_TEST_H_
diff --git a/absl/container/internal/unordered_map_modifiers_test.h b/absl/container/internal/unordered_map_modifiers_test.h
new file mode 100644
index 0000000..b6c633a
--- /dev/null
+++ b/absl/container/internal/unordered_map_modifiers_test.h
@@ -0,0 +1,272 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordMap>
+class ModifiersTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(ModifiersTest);
+
+TYPED_TEST_P(ModifiersTest, Clear) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ m.clear();
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
+ EXPECT_TRUE(m.empty());
+}
+
+TYPED_TEST_P(ModifiersTest, Insert) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ auto p = m.insert(val);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(val, *p.first);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ p = m.insert(val2);
+ EXPECT_FALSE(p.second);
+ EXPECT_EQ(val, *p.first);
+}
+
+TYPED_TEST_P(ModifiersTest, InsertHint) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ auto it = m.insert(m.end(), val);
+ EXPECT_TRUE(it != m.end());
+ EXPECT_EQ(val, *it);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ it = m.insert(it, val2);
+ EXPECT_TRUE(it != m.end());
+ EXPECT_EQ(val, *it);
+}
+
+TYPED_TEST_P(ModifiersTest, InsertRange) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ m.insert(values.begin(), values.end());
+ ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ModifiersTest, InsertOrAssign) {
+#ifdef UNORDERED_MAP_CXX17
+ using std::get;
+ using K = typename TypeParam::key_type;
+ using V = typename TypeParam::mapped_type;
+ K k = hash_internal::Generator<K>()();
+ V val = hash_internal::Generator<V>()();
+ TypeParam m;
+ auto p = m.insert_or_assign(k, val);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(k, get<0>(*p.first));
+ EXPECT_EQ(val, get<1>(*p.first));
+ V val2 = hash_internal::Generator<V>()();
+ p = m.insert_or_assign(k, val2);
+ EXPECT_FALSE(p.second);
+ EXPECT_EQ(k, get<0>(*p.first));
+ EXPECT_EQ(val2, get<1>(*p.first));
+#endif
+}
+
+TYPED_TEST_P(ModifiersTest, InsertOrAssignHint) {
+#ifdef UNORDERED_MAP_CXX17
+ using std::get;
+ using K = typename TypeParam::key_type;
+ using V = typename TypeParam::mapped_type;
+ K k = hash_internal::Generator<K>()();
+ V val = hash_internal::Generator<V>()();
+ TypeParam m;
+ auto it = m.insert_or_assign(m.end(), k, val);
+ EXPECT_TRUE(it != m.end());
+ EXPECT_EQ(k, get<0>(*it));
+ EXPECT_EQ(val, get<1>(*it));
+ V val2 = hash_internal::Generator<V>()();
+ it = m.insert_or_assign(it, k, val2);
+ EXPECT_EQ(k, get<0>(*it));
+ EXPECT_EQ(val2, get<1>(*it));
+#endif
+}
+
+TYPED_TEST_P(ModifiersTest, Emplace) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto p = m.emplace(val);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(val, *p.first);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ p = m.emplace(val2);
+ EXPECT_FALSE(p.second);
+ EXPECT_EQ(val, *p.first);
+}
+
+TYPED_TEST_P(ModifiersTest, EmplaceHint) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto it = m.emplace_hint(m.end(), val);
+ EXPECT_EQ(val, *it);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ it = m.emplace_hint(it, val2);
+ EXPECT_EQ(val, *it);
+}
+
+TYPED_TEST_P(ModifiersTest, TryEmplace) {
+#ifdef UNORDERED_MAP_CXX17
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto p = m.try_emplace(val.first, val.second);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(val, *p.first);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ p = m.try_emplace(val2.first, val2.second);
+ EXPECT_FALSE(p.second);
+ EXPECT_EQ(val, *p.first);
+#endif
+}
+
+TYPED_TEST_P(ModifiersTest, TryEmplaceHint) {
+#ifdef UNORDERED_MAP_CXX17
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using V = typename TypeParam::mapped_type;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto it = m.try_emplace(m.end(), val.first, val.second);
+ EXPECT_EQ(val, *it);
+ T val2 = {val.first, hash_internal::Generator<V>()()};
+ it = m.try_emplace(it, val2.first, val2.second);
+ EXPECT_EQ(val, *it);
+#endif
+}
+
+template <class V>
+using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
+
+// In openmap we chose not to return the iterator from erase because that's
+// more expensive. As such we adapt erase to return an iterator here.
+struct EraseFirst {
+ template <class Map>
+ auto operator()(Map* m, int) const
+ -> IfNotVoid<decltype(m->erase(m->begin()))> {
+ return m->erase(m->begin());
+ }
+ template <class Map>
+ typename Map::iterator operator()(Map* m, ...) const {
+ auto it = m->begin();
+ m->erase(it++);
+ return it;
+ }
+};
+
+TYPED_TEST_P(ModifiersTest, Erase) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using std::get;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ auto& first = *m.begin();
+ std::vector<T> values2;
+ for (const auto& val : values)
+ if (get<0>(val) != get<0>(first)) values2.push_back(val);
+ auto it = EraseFirst()(&m, 0);
+ ASSERT_TRUE(it != m.end());
+ EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values2.begin(),
+ values2.end()));
+}
+
+TYPED_TEST_P(ModifiersTest, EraseRange) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ auto it = m.erase(m.begin(), m.end());
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAre());
+ EXPECT_TRUE(it == m.end());
+}
+
+TYPED_TEST_P(ModifiersTest, EraseKey) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(items(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_EQ(1, m.erase(values[0].first));
+ EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
+ EXPECT_THAT(items(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
+ values.end()));
+}
+
+TYPED_TEST_P(ModifiersTest, Swap) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> v1;
+ std::vector<T> v2;
+ std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
+ std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
+ TypeParam m1(v1.begin(), v1.end());
+ TypeParam m2(v2.begin(), v2.end());
+ EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v1));
+ EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v2));
+ m1.swap(m2);
+ EXPECT_THAT(items(m1), ::testing::UnorderedElementsAreArray(v2));
+ EXPECT_THAT(items(m2), ::testing::UnorderedElementsAreArray(v1));
+}
+
+// TODO(alkis): Write tests for extract.
+// TODO(alkis): Write tests for merge.
+
+REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
+ InsertRange, InsertOrAssign, InsertOrAssignHint,
+ Emplace, EmplaceHint, TryEmplace, TryEmplaceHint,
+ Erase, EraseRange, EraseKey, Swap);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_MAP_MODIFIERS_TEST_H_
diff --git a/absl/container/internal/unordered_map_test.cc b/absl/container/internal/unordered_map_test.cc
new file mode 100644
index 0000000..40e799c
--- /dev/null
+++ b/absl/container/internal/unordered_map_test.cc
@@ -0,0 +1,38 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <unordered_map>
+
+#include "absl/container/internal/unordered_map_constructor_test.h"
+#include "absl/container/internal/unordered_map_lookup_test.h"
+#include "absl/container/internal/unordered_map_modifiers_test.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using MapTypes = ::testing::Types<
+ std::unordered_map<int, int, StatefulTestingHash, StatefulTestingEqual,
+ Alloc<std::pair<const int, int>>>,
+ std::unordered_map<std::string, std::string, StatefulTestingHash,
+ StatefulTestingEqual,
+ Alloc<std::pair<const std::string, std::string>>>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ConstructorTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, LookupTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedMap, ModifiersTest, MapTypes);
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/internal/unordered_set_constructor_test.h b/absl/container/internal/unordered_set_constructor_test.h
new file mode 100644
index 0000000..cb59370
--- /dev/null
+++ b/absl/container/internal/unordered_set_constructor_test.h
@@ -0,0 +1,408 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
+
+#include <algorithm>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordMap>
+class ConstructorTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(ConstructorTest);
+
+TYPED_TEST_P(ConstructorTest, NoArgs) {
+ TypeParam m;
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCount) {
+ TypeParam m(123);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHash) {
+ using H = typename TypeParam::hasher;
+ H hasher;
+ TypeParam m(123, hasher);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashEqual) {
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ H hasher;
+ E equal;
+ TypeParam m(123, hasher, equal);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashEqualAlloc) {
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+
+ const auto& cm = m;
+ EXPECT_EQ(cm.hash_function(), hasher);
+ EXPECT_EQ(cm.key_eq(), equal);
+ EXPECT_EQ(cm.get_allocator(), alloc);
+ EXPECT_TRUE(cm.empty());
+ EXPECT_THAT(keys(cm), ::testing::UnorderedElementsAre());
+ EXPECT_GE(cm.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ TypeParam m(123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, BucketCountHashAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ TypeParam m(123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, BucketAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ TypeParam m(alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_TRUE(m.empty());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashEqualAlloc) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ std::vector<T> values;
+ for (size_t i = 0; i != 10; ++i)
+ values.push_back(hash_internal::Generator<T>()());
+ TypeParam m(values.begin(), values.end(), 123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using A = typename TypeParam::allocator_type;
+ A alloc(0);
+ std::vector<T> values;
+ for (size_t i = 0; i != 10; ++i)
+ values.push_back(hash_internal::Generator<T>()());
+ TypeParam m(values.begin(), values.end(), 123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InputIteratorBucketHashAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ std::vector<T> values;
+ for (size_t i = 0; i != 10; ++i)
+ values.push_back(hash_internal::Generator<T>()());
+ TypeParam m(values.begin(), values.end(), 123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, CopyConstructor) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam n(m);
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, CopyConstructorAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam n(m, A(11));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_NE(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+#endif
+}
+
+// TODO(alkis): Test non-propagating allocators on copy constructors.
+
+TYPED_TEST_P(ConstructorTest, MoveConstructor) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam t(m);
+ TypeParam n(std::move(t));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, MoveConstructorAlloc) {
+#if ABSL_UNORDERED_SUPPORTS_ALLOC_CTORS
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(123, hasher, equal, alloc);
+ for (size_t i = 0; i != 10; ++i) m.insert(hash_internal::Generator<T>()());
+ TypeParam t(m);
+ TypeParam n(std::move(t), A(1));
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_NE(m.get_allocator(), n.get_allocator());
+ EXPECT_EQ(m, n);
+#endif
+}
+
+// TODO(alkis): Test non-propagating allocators on move constructors.
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketHashEqualAlloc) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ TypeParam m(values, 123, hasher, equal, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.key_eq(), equal);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+}
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using A = typename TypeParam::allocator_type;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ A alloc(0);
+ TypeParam m(values, 123, alloc);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, InitializerListBucketHashAlloc) {
+#if defined(UNORDERED_SET_CXX14) || defined(UNORDERED_SET_CXX17)
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m(values, 123, hasher, alloc);
+ EXPECT_EQ(m.hash_function(), hasher);
+ EXPECT_EQ(m.get_allocator(), alloc);
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_GE(m.bucket_count(), 123);
+#endif
+}
+
+TYPED_TEST_P(ConstructorTest, Assignment) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
+ TypeParam n;
+ n = m;
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m, n);
+}
+
+// TODO(alkis): Test [non-]propagating allocators on move/copy assignments
+// (it depends on traits).
+
+TYPED_TEST_P(ConstructorTest, MoveAssignment) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ using H = typename TypeParam::hasher;
+ using E = typename TypeParam::key_equal;
+ using A = typename TypeParam::allocator_type;
+ H hasher;
+ E equal;
+ A alloc(0);
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()}, 123, hasher, equal, alloc);
+ TypeParam t(m);
+ TypeParam n;
+ n = std::move(t);
+ EXPECT_EQ(m.hash_function(), n.hash_function());
+ EXPECT_EQ(m.key_eq(), n.key_eq());
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerList) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m;
+ m = values;
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()});
+ TypeParam n({gen()});
+ n = m;
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, MoveAssignmentOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ TypeParam m({gen(), gen(), gen()});
+ TypeParam t(m);
+ TypeParam n({gen()});
+ n = std::move(t);
+ EXPECT_EQ(m, n);
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentFromInitializerListOverwritesExisting) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m;
+ m = values;
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ConstructorTest, AssignmentOnSelf) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ hash_internal::Generator<T> gen;
+ std::initializer_list<T> values = {gen(), gen(), gen(), gen(), gen()};
+ TypeParam m(values);
+ m = *&m; // Avoid -Wself-assign.
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+REGISTER_TYPED_TEST_CASE_P(
+ ConstructorTest, NoArgs, BucketCount, BucketCountHash, BucketCountHashEqual,
+ BucketCountHashEqualAlloc, BucketCountAlloc, BucketCountHashAlloc,
+ BucketAlloc, InputIteratorBucketHashEqualAlloc, InputIteratorBucketAlloc,
+ InputIteratorBucketHashAlloc, CopyConstructor, CopyConstructorAlloc,
+ MoveConstructor, MoveConstructorAlloc, InitializerListBucketHashEqualAlloc,
+ InitializerListBucketAlloc, InitializerListBucketHashAlloc, Assignment,
+ MoveAssignment, AssignmentFromInitializerList,
+ AssignmentOverwritesExisting, MoveAssignmentOverwritesExisting,
+ AssignmentFromInitializerListOverwritesExisting, AssignmentOnSelf);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_CONSTRUCTOR_TEST_H_
diff --git a/absl/container/internal/unordered_set_lookup_test.h b/absl/container/internal/unordered_set_lookup_test.h
new file mode 100644
index 0000000..aca9c6a
--- /dev/null
+++ b/absl/container/internal/unordered_set_lookup_test.h
@@ -0,0 +1,88 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordSet>
+class LookupTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(LookupTest);
+
+TYPED_TEST_P(LookupTest, Count) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& v : values)
+ EXPECT_EQ(0, m.count(v)) << ::testing::PrintToString(v);
+ m.insert(values.begin(), values.end());
+ for (const auto& v : values)
+ EXPECT_EQ(1, m.count(v)) << ::testing::PrintToString(v);
+}
+
+TYPED_TEST_P(LookupTest, Find) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& v : values)
+ EXPECT_TRUE(m.end() == m.find(v)) << ::testing::PrintToString(v);
+ m.insert(values.begin(), values.end());
+ for (const auto& v : values) {
+ typename TypeParam::iterator it = m.find(v);
+ static_assert(std::is_same<const typename TypeParam::value_type&,
+ decltype(*it)>::value,
+ "");
+ static_assert(std::is_same<const typename TypeParam::value_type*,
+ decltype(it.operator->())>::value,
+ "");
+ EXPECT_TRUE(m.end() != it) << ::testing::PrintToString(v);
+ EXPECT_EQ(v, *it) << ::testing::PrintToString(v);
+ }
+}
+
+TYPED_TEST_P(LookupTest, EqualRange) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ for (const auto& v : values) {
+ auto r = m.equal_range(v);
+ ASSERT_EQ(0, std::distance(r.first, r.second));
+ }
+ m.insert(values.begin(), values.end());
+ for (const auto& v : values) {
+ auto r = m.equal_range(v);
+ ASSERT_EQ(1, std::distance(r.first, r.second));
+ EXPECT_EQ(v, *r.first);
+ }
+}
+
+REGISTER_TYPED_TEST_CASE_P(LookupTest, Count, Find, EqualRange);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_LOOKUP_TEST_H_
diff --git a/absl/container/internal/unordered_set_modifiers_test.h b/absl/container/internal/unordered_set_modifiers_test.h
new file mode 100644
index 0000000..9beacf3
--- /dev/null
+++ b/absl/container/internal/unordered_set_modifiers_test.h
@@ -0,0 +1,187 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
+#define ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/internal/hash_generator_testing.h"
+#include "absl/container/internal/hash_policy_testing.h"
+
+namespace absl {
+namespace container_internal {
+
+template <class UnordSet>
+class ModifiersTest : public ::testing::Test {};
+
+TYPED_TEST_CASE_P(ModifiersTest);
+
+TYPED_TEST_P(ModifiersTest, Clear) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ m.clear();
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_TRUE(m.empty());
+}
+
+TYPED_TEST_P(ModifiersTest, Insert) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ auto p = m.insert(val);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(val, *p.first);
+ p = m.insert(val);
+ EXPECT_FALSE(p.second);
+}
+
+TYPED_TEST_P(ModifiersTest, InsertHint) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ auto it = m.insert(m.end(), val);
+ EXPECT_TRUE(it != m.end());
+ EXPECT_EQ(val, *it);
+ it = m.insert(it, val);
+ EXPECT_TRUE(it != m.end());
+ EXPECT_EQ(val, *it);
+}
+
+TYPED_TEST_P(ModifiersTest, InsertRange) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m;
+ m.insert(values.begin(), values.end());
+ ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+}
+
+TYPED_TEST_P(ModifiersTest, Emplace) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto p = m.emplace(val);
+ EXPECT_TRUE(p.second);
+ EXPECT_EQ(val, *p.first);
+ p = m.emplace(val);
+ EXPECT_FALSE(p.second);
+ EXPECT_EQ(val, *p.first);
+}
+
+TYPED_TEST_P(ModifiersTest, EmplaceHint) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ T val = hash_internal::Generator<T>()();
+ TypeParam m;
+ // TODO(alkis): We need a way to run emplace in a more meaningful way. Perhaps
+ // with test traits/policy.
+ auto it = m.emplace_hint(m.end(), val);
+ EXPECT_EQ(val, *it);
+ it = m.emplace_hint(it, val);
+ EXPECT_EQ(val, *it);
+}
+
+template <class V>
+using IfNotVoid = typename std::enable_if<!std::is_void<V>::value, V>::type;
+
+// In openmap we chose not to return the iterator from erase because that's
+// more expensive. As such we adapt erase to return an iterator here.
+struct EraseFirst {
+ template <class Map>
+ auto operator()(Map* m, int) const
+ -> IfNotVoid<decltype(m->erase(m->begin()))> {
+ return m->erase(m->begin());
+ }
+ template <class Map>
+ typename Map::iterator operator()(Map* m, ...) const {
+ auto it = m->begin();
+ m->erase(it++);
+ return it;
+ }
+};
+
+TYPED_TEST_P(ModifiersTest, Erase) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ std::vector<T> values2;
+ for (const auto& val : values)
+ if (val != *m.begin()) values2.push_back(val);
+ auto it = EraseFirst()(&m, 0);
+ ASSERT_TRUE(it != m.end());
+ EXPECT_EQ(1, std::count(values2.begin(), values2.end(), *it));
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values2.begin(),
+ values2.end()));
+}
+
+TYPED_TEST_P(ModifiersTest, EraseRange) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ auto it = m.erase(m.begin(), m.end());
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAre());
+ EXPECT_TRUE(it == m.end());
+}
+
+TYPED_TEST_P(ModifiersTest, EraseKey) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> values;
+ std::generate_n(std::back_inserter(values), 10,
+ hash_internal::Generator<T>());
+ TypeParam m(values.begin(), values.end());
+ ASSERT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values));
+ EXPECT_EQ(1, m.erase(values[0]));
+ EXPECT_EQ(0, std::count(m.begin(), m.end(), values[0]));
+ EXPECT_THAT(keys(m), ::testing::UnorderedElementsAreArray(values.begin() + 1,
+ values.end()));
+}
+
+TYPED_TEST_P(ModifiersTest, Swap) {
+ using T = hash_internal::GeneratedType<TypeParam>;
+ std::vector<T> v1;
+ std::vector<T> v2;
+ std::generate_n(std::back_inserter(v1), 5, hash_internal::Generator<T>());
+ std::generate_n(std::back_inserter(v2), 5, hash_internal::Generator<T>());
+ TypeParam m1(v1.begin(), v1.end());
+ TypeParam m2(v2.begin(), v2.end());
+ EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v1));
+ EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v2));
+ m1.swap(m2);
+ EXPECT_THAT(keys(m1), ::testing::UnorderedElementsAreArray(v2));
+ EXPECT_THAT(keys(m2), ::testing::UnorderedElementsAreArray(v1));
+}
+
+// TODO(alkis): Write tests for extract.
+// TODO(alkis): Write tests for merge.
+
+REGISTER_TYPED_TEST_CASE_P(ModifiersTest, Clear, Insert, InsertHint,
+ InsertRange, Emplace, EmplaceHint, Erase, EraseRange,
+ EraseKey, Swap);
+
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_INTERNAL_UNORDERED_SET_MODIFIERS_TEST_H_
diff --git a/absl/container/internal/unordered_set_test.cc b/absl/container/internal/unordered_set_test.cc
new file mode 100644
index 0000000..1281ce5
--- /dev/null
+++ b/absl/container/internal/unordered_set_test.cc
@@ -0,0 +1,37 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <unordered_set>
+
+#include "absl/container/internal/unordered_set_constructor_test.h"
+#include "absl/container/internal/unordered_set_lookup_test.h"
+#include "absl/container/internal/unordered_set_modifiers_test.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using SetTypes =
+ ::testing::Types<std::unordered_set<int, StatefulTestingHash,
+ StatefulTestingEqual, Alloc<int>>,
+ std::unordered_set<std::string, StatefulTestingHash,
+ StatefulTestingEqual, Alloc<std::string>>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ConstructorTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, LookupTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(UnorderedSet, ModifiersTest, SetTypes);
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/node_hash_map.h b/absl/container/node_hash_map.h
new file mode 100644
index 0000000..3c7de1e
--- /dev/null
+++ b/absl/container/node_hash_map.h
@@ -0,0 +1,530 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: node_hash_map.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::node_hash_map<K, V>` is an unordered associative container of
+// unique keys and associated values designed to be a more efficient replacement
+// for `std::unordered_map`. Like `unordered_map`, search, insertion, and
+// deletion of map elements can be done as an `O(1)` operation. However,
+// `node_hash_map` (and other unordered associative containers known as the
+// collection of Abseil "Swiss tables") contain other optimizations that result
+// in both memory and computation advantages.
+//
+// In most cases, your default choice for a hash map should be a map of type
+// `flat_hash_map`. However, if you need pointer stability and cannot store
+// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
+// valid alternative. As well, if you are migrating your code from using
+// `std::unordered_map`, a `node_hash_map` provides a more straightforward
+// migration, because it guarantees pointer stability. Consider migrating to
+// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
+// upon further review.
+
+#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
+#define ABSL_CONTAINER_NODE_HASH_MAP_H_
+
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
+#include "absl/container/internal/node_hash_policy.h"
+#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
+namespace container_internal {
+template <class Key, class Value>
+class NodeHashMapPolicy;
+} // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::node_hash_map
+// -----------------------------------------------------------------------------
+//
+// An `absl::node_hash_map<K, V>` is an unordered associative container which
+// has been optimized for both speed and memory footprint in most common use
+// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
+// the following notable differences:
+//
+// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
+// `insert()`, provided that the map is provided a compatible heterogeneous
+// hashing function and equality operator.
+// * Contains a `capacity()` member function indicating the number of element
+// slots (open, deleted, and empty) within the hash map.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `node_hash_map` uses the `absl::Hash` hashing framework.
+// All fundamental and Abseil types that support the `absl::Hash` framework have
+// a compatible equality operator for comparing insertions into `node_hash_map`.
+// If your type is not yet supported by the `asbl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// Example:
+//
+// // Create a node hash map of three strings (that map to strings)
+// absl::node_hash_map<std::string, std::string> ducks =
+// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
+//
+// // Insert a new element into the node hash map
+// ducks.insert({"d", "donald"}};
+//
+// // Force a rehash of the node hash map
+// ducks.rehash(0);
+//
+// // Find the element with the key "b"
+// std::string search_key = "b";
+// auto result = ducks.find(search_key);
+// if (result != ducks.end()) {
+// std::cout << "Result: " << search_key->second << std::endl;
+// }
+template <class Key, class Value,
+ class Hash = absl::container_internal::hash_default_hash<Key>,
+ class Eq = absl::container_internal::hash_default_eq<Key>,
+ class Alloc = std::allocator<std::pair<const Key, Value>>>
+class node_hash_map
+ : public absl::container_internal::raw_hash_map<
+ absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
+ Alloc> {
+ using Base = typename node_hash_map::raw_hash_map;
+
+ public:
+ node_hash_map() {}
+ using Base::Base;
+
+ // node_hash_map::begin()
+ //
+ // Returns an iterator to the beginning of the `node_hash_map`.
+ using Base::begin;
+
+ // node_hash_map::cbegin()
+ //
+ // Returns a const iterator to the beginning of the `node_hash_map`.
+ using Base::cbegin;
+
+ // node_hash_map::cend()
+ //
+ // Returns a const iterator to the end of the `node_hash_map`.
+ using Base::cend;
+
+ // node_hash_map::end()
+ //
+ // Returns an iterator to the end of the `node_hash_map`.
+ using Base::end;
+
+ // node_hash_map::capacity()
+ //
+ // Returns the number of element slots (assigned, deleted, and empty)
+ // available within the `node_hash_map`.
+ //
+ // NOTE: this member function is particular to `absl::node_hash_map` and is
+ // not provided in the `std::unordered_map` API.
+ using Base::capacity;
+
+ // node_hash_map::empty()
+ //
+ // Returns whether or not the `node_hash_map` is empty.
+ using Base::empty;
+
+ // node_hash_map::max_size()
+ //
+ // Returns the largest theoretical possible number of elements within a
+ // `node_hash_map` under current memory constraints. This value can be thought
+ // of as the largest value of `std::distance(begin(), end())` for a
+ // `node_hash_map<K, V>`.
+ using Base::max_size;
+
+ // node_hash_map::size()
+ //
+ // Returns the number of elements currently within the `node_hash_map`.
+ using Base::size;
+
+ // node_hash_map::clear()
+ //
+ // Removes all elements from the `node_hash_map`. Invalidates any references,
+ // pointers, or iterators referring to contained elements.
+ //
+ // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+ // the underlying buffer call `erase(begin(), end())`.
+ using Base::clear;
+
+ // node_hash_map::erase()
+ //
+ // Erases elements within the `node_hash_map`. Erasing does not trigger a
+ // rehash. Overloads are listed below.
+ //
+ // void erase(const_iterator pos):
+ //
+ // Erases the element at `position` of the `node_hash_map`, returning
+ // `void`.
+ //
+ // NOTE: this return behavior is different than that of STL containers in
+ // general and `std::unordered_map` in particular.
+ //
+ // iterator erase(const_iterator first, const_iterator last):
+ //
+ // Erases the elements in the open interval [`first`, `last`), returning an
+ // iterator pointing to `last`.
+ //
+ // size_type erase(const key_type& key):
+ //
+ // Erases the element with the matching key, if it exists.
+ using Base::erase;
+
+ // node_hash_map::insert()
+ //
+ // Inserts an element of the specified value into the `node_hash_map`,
+ // returning an iterator pointing to the newly inserted element, provided that
+ // an element with the given key does not already exist. If rehashing occurs
+ // due to the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator,bool> insert(const init_type& value):
+ //
+ // Inserts a value into the `node_hash_map`. Returns a pair consisting of an
+ // iterator to the inserted element (or to the element that prevented the
+ // insertion) and a `bool` denoting whether the insertion took place.
+ //
+ // std::pair<iterator,bool> insert(T&& value):
+ // std::pair<iterator,bool> insert(init_type&& value ):
+ //
+ // Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
+ // consisting of an iterator to the inserted element (or to the element that
+ // prevented the insertion) and a `bool` denoting whether the insertion took
+ // place.
+ //
+ // iterator insert(const_iterator hint, const init_type& value):
+ // iterator insert(const_iterator hint, T&& value):
+ // iterator insert(const_iterator hint, init_type&& value );
+ //
+ // Inserts a value, using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search. Returns an iterator to the
+ // inserted element, or to the existing element that prevented the
+ // insertion.
+ //
+ // void insert(InputIterator first, InputIterator last ):
+ //
+ // Inserts a range of values [`first`, `last`).
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently, for `node_hash_map` we guarantee the
+ // first match is inserted.
+ //
+ // void insert(std::initializer_list<init_type> ilist ):
+ //
+ // Inserts the elements within the initializer list `ilist`.
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently within the initializer list, for
+ // `node_hash_map` we guarantee the first match is inserted.
+ using Base::insert;
+
+ // node_hash_map::insert_or_assign()
+ //
+ // Inserts an element of the specified value into the `node_hash_map` provided
+ // that a value with the given key does not already exist, or replaces it with
+ // the element value if a key for that value already exists, returning an
+ // iterator pointing to the newly inserted element. If rehashing occurs due to
+ // the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
+ // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
+ //
+ // Inserts/Assigns (or moves) the element of the specified key into the
+ // `node_hash_map`.
+ //
+ // iterator insert_or_assign(const_iterator hint,
+ // const init_type& k, T&& obj):
+ // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
+ //
+ // Inserts/Assigns (or moves) the element of the specified key into the
+ // `node_hash_map` using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search.
+ using Base::insert_or_assign;
+
+ // node_hash_map::emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `node_hash_map`, provided that no element with the given key
+ // already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace;
+
+ // node_hash_map::emplace_hint()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `node_hash_map`, using the position of `hint` as a non-binding
+ // suggestion for where to begin the insertion search, and only inserts
+ // provided that no element with the given key already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace_hint;
+
+ // node_hash_map::try_emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `node_hash_map`, provided that no element with the given key
+ // already exists. Unlike `emplace()`, if an element with the given key
+ // already exists, we guarantee that no element is constructed.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ // Overloads are listed below.
+ //
+ // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
+ // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
+ //
+ // Inserts (via copy or move) the element of the specified key into the
+ // `node_hash_map`.
+ //
+ // iterator try_emplace(const_iterator hint,
+ // const init_type& k, Args&&... args):
+ // iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
+ //
+ // Inserts (via copy or move) the element of the specified key into the
+ // `node_hash_map` using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search.
+ using Base::try_emplace;
+
+ // node_hash_map::extract()
+ //
+ // Extracts the indicated element, erasing it in the process, and returns it
+ // as a C++17-compatible node handle. Overloads are listed below.
+ //
+ // node_type extract(const_iterator position):
+ //
+ // Extracts the key,value pair of the element at the indicated position and
+ // returns a node handle owning that extracted data.
+ //
+ // node_type extract(const key_type& x):
+ //
+ // Extracts the key,value pair of the element with a key matching the passed
+ // key value and returns a node handle owning that extracted data. If the
+ // `node_hash_map` does not contain an element with a matching key, this
+ // function returns an empty node handle.
+ using Base::extract;
+
+ // node_hash_map::merge()
+ //
+ // Extracts elements from a given `source` node hash map into this
+ // `node_hash_map`. If the destination `node_hash_map` already contains an
+ // element with an equivalent key, that element is not extracted.
+ using Base::merge;
+
+ // node_hash_map::swap(node_hash_map& other)
+ //
+ // Exchanges the contents of this `node_hash_map` with those of the `other`
+ // node hash map, avoiding invocation of any move, copy, or swap operations on
+ // individual elements.
+ //
+ // All iterators and references on the `node_hash_map` remain valid, excepting
+ // for the past-the-end iterator, which is invalidated.
+ //
+ // `swap()` requires that the node hash map's hashing and key equivalence
+ // functions be Swappable, and are exchaged using unqualified calls to
+ // non-member `swap()`. If the map's allocator has
+ // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+ // set to `true`, the allocators are also exchanged using an unqualified call
+ // to non-member `swap()`; otherwise, the allocators are not swapped.
+ using Base::swap;
+
+ // node_hash_map::rehash(count)
+ //
+ // Rehashes the `node_hash_map`, setting the number of slots to be at least
+ // the passed value. If the new number of slots increases the load factor more
+ // than the current maximum load factor
+ // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+ // will be at least `size()` / `max_load_factor()`.
+ //
+ // To force a rehash, pass rehash(0).
+ using Base::rehash;
+
+ // node_hash_map::reserve(count)
+ //
+ // Sets the number of slots in the `node_hash_map` to the number needed to
+ // accommodate at least `count` total elements without exceeding the current
+ // maximum load factor, and may rehash the container if needed.
+ using Base::reserve;
+
+ // node_hash_map::at()
+ //
+ // Returns a reference to the mapped value of the element with key equivalent
+ // to the passed key.
+ using Base::at;
+
+ // node_hash_map::contains()
+ //
+ // Determines whether an element with a key comparing equal to the given `key`
+ // exists within the `node_hash_map`, returning `true` if so or `false`
+ // otherwise.
+ using Base::contains;
+
+ // node_hash_map::count(const Key& key) const
+ //
+ // Returns the number of elements with a key comparing equal to the given
+ // `key` within the `node_hash_map`. note that this function will return
+ // either `1` or `0` since duplicate keys are not allowed within a
+ // `node_hash_map`.
+ using Base::count;
+
+ // node_hash_map::equal_range()
+ //
+ // Returns a closed range [first, last], defined by a `std::pair` of two
+ // iterators, containing all elements with the passed key in the
+ // `node_hash_map`.
+ using Base::equal_range;
+
+ // node_hash_map::find()
+ //
+ // Finds an element with the passed `key` within the `node_hash_map`.
+ using Base::find;
+
+ // node_hash_map::operator[]()
+ //
+ // Returns a reference to the value mapped to the passed key within the
+ // `node_hash_map`, performing an `insert()` if the key does not already
+ // exist. If an insertion occurs and results in a rehashing of the container,
+ // all iterators are invalidated. Otherwise iterators are not affected and
+ // references are not invalidated. Overloads are listed below.
+ //
+ // T& operator[](const Key& key ):
+ //
+ // Inserts an init_type object constructed in-place if the element with the
+ // given key does not exist.
+ //
+ // T& operator[]( Key&& key ):
+ //
+ // Inserts an init_type object constructed in-place provided that an element
+ // with the given key does not exist.
+ using Base::operator[];
+
+ // node_hash_map::bucket_count()
+ //
+ // Returns the number of "buckets" within the `node_hash_map`.
+ using Base::bucket_count;
+
+ // node_hash_map::load_factor()
+ //
+ // Returns the current load factor of the `node_hash_map` (the average number
+ // of slots occupied with a value within the hash map).
+ using Base::load_factor;
+
+ // node_hash_map::max_load_factor()
+ //
+ // Manages the maximum load factor of the `node_hash_map`. Overloads are
+ // listed below.
+ //
+ // float node_hash_map::max_load_factor()
+ //
+ // Returns the current maximum load factor of the `node_hash_map`.
+ //
+ // void node_hash_map::max_load_factor(float ml)
+ //
+ // Sets the maximum load factor of the `node_hash_map` to the passed value.
+ //
+ // NOTE: This overload is provided only for API compatibility with the STL;
+ // `node_hash_map` will ignore any set load factor and manage its rehashing
+ // internally as an implementation detail.
+ using Base::max_load_factor;
+
+ // node_hash_map::get_allocator()
+ //
+ // Returns the allocator function associated with this `node_hash_map`.
+ using Base::get_allocator;
+
+ // node_hash_map::hash_function()
+ //
+ // Returns the hashing function used to hash the keys within this
+ // `node_hash_map`.
+ using Base::hash_function;
+
+ // node_hash_map::key_eq()
+ //
+ // Returns the function used for comparing keys equality.
+ using Base::key_eq;
+
+ ABSL_DEPRECATED("Call `hash_function()` instead.")
+ typename Base::hasher hash_funct() { return this->hash_function(); }
+
+ ABSL_DEPRECATED("Call `rehash()` instead.")
+ void resize(typename Base::size_type hint) { this->rehash(hint); }
+};
+
+namespace container_internal {
+
+template <class Key, class Value>
+class NodeHashMapPolicy
+ : public absl::container_internal::node_hash_policy<
+ std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
+ using value_type = std::pair<const Key, Value>;
+
+ public:
+ using key_type = Key;
+ using mapped_type = Value;
+ using init_type = std::pair</*non const*/ key_type, mapped_type>;
+
+ template <class Allocator, class... Args>
+ static value_type* new_element(Allocator* alloc, Args&&... args) {
+ using PairAlloc = typename absl::allocator_traits<
+ Allocator>::template rebind_alloc<value_type>;
+ PairAlloc pair_alloc(*alloc);
+ value_type* res =
+ absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
+ absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
+ std::forward<Args>(args)...);
+ return res;
+ }
+
+ template <class Allocator>
+ static void delete_element(Allocator* alloc, value_type* pair) {
+ using PairAlloc = typename absl::allocator_traits<
+ Allocator>::template rebind_alloc<value_type>;
+ PairAlloc pair_alloc(*alloc);
+ absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
+ absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
+ }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposePair(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposePair(std::forward<F>(f),
+ std::forward<Args>(args)...);
+ }
+
+ static size_t element_space_used(const value_type*) {
+ return sizeof(value_type);
+ }
+
+ static Value& value(value_type* elem) { return elem->second; }
+ static const Value& value(const value_type* elem) { return elem->second; }
+};
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
diff --git a/absl/container/node_hash_map_test.cc b/absl/container/node_hash_map_test.cc
new file mode 100644
index 0000000..bd78964
--- /dev/null
+++ b/absl/container/node_hash_map_test.cc
@@ -0,0 +1,218 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/node_hash_map.h"
+
+#include "absl/container/internal/tracked.h"
+#include "absl/container/internal/unordered_map_constructor_test.h"
+#include "absl/container/internal/unordered_map_lookup_test.h"
+#include "absl/container/internal/unordered_map_modifiers_test.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::testing::Field;
+using ::testing::Pair;
+using ::testing::UnorderedElementsAre;
+
+using MapTypes = ::testing::Types<
+ absl::node_hash_map<int, int, StatefulTestingHash, StatefulTestingEqual,
+ Alloc<std::pair<const int, int>>>,
+ absl::node_hash_map<std::string, std::string, StatefulTestingHash,
+ StatefulTestingEqual,
+ Alloc<std::pair<const std::string, std::string>>>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ConstructorTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, LookupTest, MapTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashMap, ModifiersTest, MapTypes);
+
+using M = absl::node_hash_map<std::string, Tracked<int>>;
+
+TEST(NodeHashMap, Emplace) {
+ M m;
+ Tracked<int> t(53);
+ m.emplace("a", t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(1, t.num_copies());
+
+ m.emplace(std::string("a"), t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(1, t.num_copies());
+
+ std::string a("a");
+ m.emplace(a, t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(1, t.num_copies());
+
+ const std::string ca("a");
+ m.emplace(a, t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(1, t.num_copies());
+
+ m.emplace(std::make_pair("a", t));
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(2, t.num_copies());
+
+ m.emplace(std::make_pair(std::string("a"), t));
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(3, t.num_copies());
+
+ std::pair<std::string, Tracked<int>> p("a", t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(4, t.num_copies());
+ m.emplace(p);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(4, t.num_copies());
+
+ const std::pair<std::string, Tracked<int>> cp("a", t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(5, t.num_copies());
+ m.emplace(cp);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(5, t.num_copies());
+
+ std::pair<const std::string, Tracked<int>> pc("a", t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(6, t.num_copies());
+ m.emplace(pc);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(6, t.num_copies());
+
+ const std::pair<const std::string, Tracked<int>> cpc("a", t);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(7, t.num_copies());
+ m.emplace(cpc);
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(7, t.num_copies());
+
+ m.emplace(std::piecewise_construct, std::forward_as_tuple("a"),
+ std::forward_as_tuple(t));
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(7, t.num_copies());
+
+ m.emplace(std::piecewise_construct, std::forward_as_tuple(std::string("a")),
+ std::forward_as_tuple(t));
+ ASSERT_EQ(0, t.num_moves());
+ ASSERT_EQ(7, t.num_copies());
+}
+
+TEST(NodeHashMap, AssignRecursive) {
+ struct Tree {
+ // Verify that unordered_map<K, IncompleteType> can be instantiated.
+ absl::node_hash_map<int, Tree> children;
+ };
+ Tree root;
+ const Tree& child = root.children.emplace().first->second;
+ // Verify that `lhs = rhs` doesn't read rhs after clearing lhs.
+ root = child;
+}
+
+TEST(FlatHashMap, MoveOnlyKey) {
+ struct Key {
+ Key() = default;
+ Key(Key&&) = default;
+ Key& operator=(Key&&) = default;
+ };
+ struct Eq {
+ bool operator()(const Key&, const Key&) const { return true; }
+ };
+ struct Hash {
+ size_t operator()(const Key&) const { return 0; }
+ };
+ absl::node_hash_map<Key, int, Hash, Eq> m;
+ m[Key()];
+}
+
+struct NonMovableKey {
+ explicit NonMovableKey(int i) : i(i) {}
+ NonMovableKey(NonMovableKey&&) = delete;
+ int i;
+};
+struct NonMovableKeyHash {
+ using is_transparent = void;
+ size_t operator()(const NonMovableKey& k) const { return k.i; }
+ size_t operator()(int k) const { return k; }
+};
+struct NonMovableKeyEq {
+ using is_transparent = void;
+ bool operator()(const NonMovableKey& a, const NonMovableKey& b) const {
+ return a.i == b.i;
+ }
+ bool operator()(const NonMovableKey& a, int b) const { return a.i == b; }
+};
+
+TEST(NodeHashMap, MergeExtractInsert) {
+ absl::node_hash_map<NonMovableKey, int, NonMovableKeyHash, NonMovableKeyEq>
+ set1, set2;
+ set1.emplace(std::piecewise_construct, std::make_tuple(7),
+ std::make_tuple(-7));
+ set1.emplace(std::piecewise_construct, std::make_tuple(17),
+ std::make_tuple(-17));
+
+ set2.emplace(std::piecewise_construct, std::make_tuple(7),
+ std::make_tuple(-70));
+ set2.emplace(std::piecewise_construct, std::make_tuple(19),
+ std::make_tuple(-190));
+
+ auto Elem = [](int key, int value) {
+ return Pair(Field(&NonMovableKey::i, key), value);
+ };
+
+ EXPECT_THAT(set1, UnorderedElementsAre(Elem(7, -7), Elem(17, -17)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(19, -190)));
+
+ // NonMovableKey is neither copyable nor movable. We should still be able to
+ // move nodes around.
+ static_assert(!std::is_move_constructible<NonMovableKey>::value, "");
+ set1.merge(set2);
+
+ EXPECT_THAT(set1,
+ UnorderedElementsAre(Elem(7, -7), Elem(17, -17), Elem(19, -190)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
+
+ auto node = set1.extract(7);
+ EXPECT_TRUE(node);
+ EXPECT_EQ(node.key().i, 7);
+ EXPECT_EQ(node.mapped(), -7);
+ EXPECT_THAT(set1, UnorderedElementsAre(Elem(17, -17), Elem(19, -190)));
+
+ auto insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_FALSE(insert_result.inserted);
+ EXPECT_TRUE(insert_result.node);
+ EXPECT_EQ(insert_result.node.key().i, 7);
+ EXPECT_EQ(insert_result.node.mapped(), -7);
+ EXPECT_THAT(*insert_result.position, Elem(7, -70));
+ EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70)));
+
+ node = set1.extract(17);
+ EXPECT_TRUE(node);
+ EXPECT_EQ(node.key().i, 17);
+ EXPECT_EQ(node.mapped(), -17);
+ EXPECT_THAT(set1, UnorderedElementsAre(Elem(19, -190)));
+
+ node.mapped() = 23;
+
+ insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_TRUE(insert_result.inserted);
+ EXPECT_FALSE(insert_result.node);
+ EXPECT_THAT(*insert_result.position, Elem(17, 23));
+ EXPECT_THAT(set2, UnorderedElementsAre(Elem(7, -70), Elem(17, 23)));
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/container/node_hash_set.h b/absl/container/node_hash_set.h
new file mode 100644
index 0000000..927a454
--- /dev/null
+++ b/absl/container/node_hash_set.h
@@ -0,0 +1,439 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: node_hash_set.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::node_hash_set<T>` is an unordered associative container designed to
+// be a more efficient replacement for `std::unordered_set`. Like
+// `unordered_set`, search, insertion, and deletion of map elements can be done
+// as an `O(1)` operation. However, `node_hash_set` (and other unordered
+// associative containers known as the collection of Abseil "Swiss tables")
+// contain other optimizations that result in both memory and computation
+// advantages.
+//
+// In most cases, your default choice for a hash table should be a map of type
+// `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
+// pointer stability, a `node_hash_set` should be your preferred choice. As
+// well, if you are migrating your code from using `std::unordered_set`, a
+// `node_hash_set` should be an easy migration. Consider migrating to
+// `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
+// upon further review.
+
+#ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
+#define ABSL_CONTAINER_NODE_HASH_SET_H_
+
+#include <type_traits>
+
+#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
+#include "absl/container/internal/node_hash_policy.h"
+#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
+namespace container_internal {
+template <typename T>
+struct NodeHashSetPolicy;
+} // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::node_hash_set
+// -----------------------------------------------------------------------------
+//
+// An `absl::node_hash_set<T>` is an unordered associative container which
+// has been optimized for both speed and memory footprint in most common use
+// cases. Its interface is similar to that of `std::unordered_set<T>` with the
+// following notable differences:
+//
+// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
+// `insert()`, provided that the map is provided a compatible heterogeneous
+// hashing function and equality operator.
+// * Contains a `capacity()` member function indicating the number of element
+// slots (open, deleted, and empty) within the hash set.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `node_hash_set` uses the `absl::Hash` hashing framework.
+// All fundamental and Abseil types that support the `absl::Hash` framework have
+// a compatible equality operator for comparing insertions into `node_hash_set`.
+// If your type is not yet supported by the `asbl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// Example:
+//
+// // Create a node hash set of three strings
+// absl::node_hash_map<std::string, std::string> ducks =
+// {"huey", "dewey"}, "louie"};
+//
+// // Insert a new element into the node hash map
+// ducks.insert("donald"};
+//
+// // Force a rehash of the node hash map
+// ducks.rehash(0);
+//
+// // See if "dewey" is present
+// if (ducks.contains("dewey")) {
+// std::cout << "We found dewey!" << std::endl;
+// }
+template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
+ class Eq = absl::container_internal::hash_default_eq<T>,
+ class Alloc = std::allocator<T>>
+class node_hash_set
+ : public absl::container_internal::raw_hash_set<
+ absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
+ using Base = typename node_hash_set::raw_hash_set;
+
+ public:
+ node_hash_set() {}
+ using Base::Base;
+
+ // node_hash_set::begin()
+ //
+ // Returns an iterator to the beginning of the `node_hash_set`.
+ using Base::begin;
+
+ // node_hash_set::cbegin()
+ //
+ // Returns a const iterator to the beginning of the `node_hash_set`.
+ using Base::cbegin;
+
+ // node_hash_set::cend()
+ //
+ // Returns a const iterator to the end of the `node_hash_set`.
+ using Base::cend;
+
+ // node_hash_set::end()
+ //
+ // Returns an iterator to the end of the `node_hash_set`.
+ using Base::end;
+
+ // node_hash_set::capacity()
+ //
+ // Returns the number of element slots (assigned, deleted, and empty)
+ // available within the `node_hash_set`.
+ //
+ // NOTE: this member function is particular to `absl::node_hash_set` and is
+ // not provided in the `std::unordered_map` API.
+ using Base::capacity;
+
+ // node_hash_set::empty()
+ //
+ // Returns whether or not the `node_hash_set` is empty.
+ using Base::empty;
+
+ // node_hash_set::max_size()
+ //
+ // Returns the largest theoretical possible number of elements within a
+ // `node_hash_set` under current memory constraints. This value can be thought
+ // of the largest value of `std::distance(begin(), end())` for a
+ // `node_hash_set<T>`.
+ using Base::max_size;
+
+ // node_hash_set::size()
+ //
+ // Returns the number of elements currently within the `node_hash_set`.
+ using Base::size;
+
+ // node_hash_set::clear()
+ //
+ // Removes all elements from the `node_hash_set`. Invalidates any references,
+ // pointers, or iterators referring to contained elements.
+ //
+ // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+ // the underlying buffer call `erase(begin(), end())`.
+ using Base::clear;
+
+ // node_hash_set::erase()
+ //
+ // Erases elements within the `node_hash_set`. Erasing does not trigger a
+ // rehash. Overloads are listed below.
+ //
+ // void erase(const_iterator pos):
+ //
+ // Erases the element at `position` of the `node_hash_set`, returning
+ // `void`.
+ //
+ // NOTE: this return behavior is different than that of STL containers in
+ // general and `std::unordered_map` in particular.
+ //
+ // iterator erase(const_iterator first, const_iterator last):
+ //
+ // Erases the elements in the open interval [`first`, `last`), returning an
+ // iterator pointing to `last`.
+ //
+ // size_type erase(const key_type& key):
+ //
+ // Erases the element with the matching key, if it exists.
+ using Base::erase;
+
+ // node_hash_set::insert()
+ //
+ // Inserts an element of the specified value into the `node_hash_set`,
+ // returning an iterator pointing to the newly inserted element, provided that
+ // an element with the given key does not already exist. If rehashing occurs
+ // due to the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator,bool> insert(const T& value):
+ //
+ // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
+ // iterator to the inserted element (or to the element that prevented the
+ // insertion) and a bool denoting whether the insertion took place.
+ //
+ // std::pair<iterator,bool> insert(T&& value):
+ //
+ // Inserts a moveable value into the `node_hash_set`. Returns a pair
+ // consisting of an iterator to the inserted element (or to the element that
+ // prevented the insertion) and a bool denoting whether the insertion took
+ // place.
+ //
+ // iterator insert(const_iterator hint, const T& value):
+ // iterator insert(const_iterator hint, T&& value):
+ //
+ // Inserts a value, using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search. Returns an iterator to the
+ // inserted element, or to the existing element that prevented the
+ // insertion.
+ //
+ // void insert(InputIterator first, InputIterator last ):
+ //
+ // Inserts a range of values [`first`, `last`).
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently, for `node_hash_set` we guarantee the
+ // first match is inserted.
+ //
+ // void insert(std::initializer_list<T> ilist ):
+ //
+ // Inserts the elements within the initializer list `ilist`.
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently within the initializer list, for
+ // `node_hash_set` we guarantee the first match is inserted.
+ using Base::insert;
+
+ // node_hash_set::emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `node_hash_set`, provided that no element with the given key
+ // already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace;
+
+ // node_hash_set::emplace_hint()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `node_hash_set`, using the position of `hint` as a non-binding
+ // suggestion for where to begin the insertion search, and only inserts
+ // provided that no element with the given key already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately. Prefer `try_emplace()` unless your key is not
+ // copyable or moveable.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace_hint;
+
+ // node_hash_set::extract()
+ //
+ // Extracts the indicated element, erasing it in the process, and returns it
+ // as a C++17-compatible node handle. Overloads are listed below.
+ //
+ // node_type extract(const_iterator position):
+ //
+ // Extracts the element at the indicated position and returns a node handle
+ // owning that extracted data.
+ //
+ // node_type extract(const key_type& x):
+ //
+ // Extracts the element with the key matching the passed key value and
+ // returns a node handle owning that extracted data. If the `node_hash_set`
+ // does not contain an element with a matching key, this function returns an
+ // empty node handle.
+ using Base::extract;
+
+ // node_hash_set::merge()
+ //
+ // Extracts elements from a given `source` flat hash map into this
+ // `node_hash_set`. If the destination `node_hash_set` already contains an
+ // element with an equivalent key, that element is not extracted.
+ using Base::merge;
+
+ // node_hash_set::swap(node_hash_set& other)
+ //
+ // Exchanges the contents of this `node_hash_set` with those of the `other`
+ // flat hash map, avoiding invocation of any move, copy, or swap operations on
+ // individual elements.
+ //
+ // All iterators and references on the `node_hash_set` remain valid, excepting
+ // for the past-the-end iterator, which is invalidated.
+ //
+ // `swap()` requires that the flat hash set's hashing and key equivalence
+ // functions be Swappable, and are exchaged using unqualified calls to
+ // non-member `swap()`. If the map's allocator has
+ // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+ // set to `true`, the allocators are also exchanged using an unqualified call
+ // to non-member `swap()`; otherwise, the allocators are not swapped.
+ using Base::swap;
+
+ // node_hash_set::rehash(count)
+ //
+ // Rehashes the `node_hash_set`, setting the number of slots to be at least
+ // the passed value. If the new number of slots increases the load factor more
+ // than the current maximum load factor
+ // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+ // will be at least `size()` / `max_load_factor()`.
+ //
+ // To force a rehash, pass rehash(0).
+ //
+ // NOTE: unlike behavior in `std::unordered_set`, references are also
+ // invalidated upon a `rehash()`.
+ using Base::rehash;
+
+ // node_hash_set::reserve(count)
+ //
+ // Sets the number of slots in the `node_hash_set` to the number needed to
+ // accommodate at least `count` total elements without exceeding the current
+ // maximum load factor, and may rehash the container if needed.
+ using Base::reserve;
+
+ // node_hash_set::contains()
+ //
+ // Determines whether an element comparing equal to the given `key` exists
+ // within the `node_hash_set`, returning `true` if so or `false` otherwise.
+ using Base::contains;
+
+ // node_hash_set::count(const Key& key) const
+ //
+ // Returns the number of elements comparing equal to the given `key` within
+ // the `node_hash_set`. note that this function will return either `1` or `0`
+ // since duplicate elements are not allowed within a `node_hash_set`.
+ using Base::count;
+
+ // node_hash_set::equal_range()
+ //
+ // Returns a closed range [first, last], defined by a `std::pair` of two
+ // iterators, containing all elements with the passed key in the
+ // `node_hash_set`.
+ using Base::equal_range;
+
+ // node_hash_set::find()
+ //
+ // Finds an element with the passed `key` within the `node_hash_set`.
+ using Base::find;
+
+ // node_hash_set::bucket_count()
+ //
+ // Returns the number of "buckets" within the `node_hash_set`. Note that
+ // because a flat hash map contains all elements within its internal storage,
+ // this value simply equals the current capacity of the `node_hash_set`.
+ using Base::bucket_count;
+
+ // node_hash_set::load_factor()
+ //
+ // Returns the current load factor of the `node_hash_set` (the average number
+ // of slots occupied with a value within the hash map).
+ using Base::load_factor;
+
+ // node_hash_set::max_load_factor()
+ //
+ // Manages the maximum load factor of the `node_hash_set`. Overloads are
+ // listed below.
+ //
+ // float node_hash_set::max_load_factor()
+ //
+ // Returns the current maximum load factor of the `node_hash_set`.
+ //
+ // void node_hash_set::max_load_factor(float ml)
+ //
+ // Sets the maximum load factor of the `node_hash_set` to the passed value.
+ //
+ // NOTE: This overload is provided only for API compatibility with the STL;
+ // `node_hash_set` will ignore any set load factor and manage its rehashing
+ // internally as an implementation detail.
+ using Base::max_load_factor;
+
+ // node_hash_set::get_allocator()
+ //
+ // Returns the allocator function associated with this `node_hash_set`.
+ using Base::get_allocator;
+
+ // node_hash_set::hash_function()
+ //
+ // Returns the hashing function used to hash the keys within this
+ // `node_hash_set`.
+ using Base::hash_function;
+
+ // node_hash_set::key_eq()
+ //
+ // Returns the function used for comparing keys equality.
+ using Base::key_eq;
+
+ ABSL_DEPRECATED("Call `hash_function()` instead.")
+ typename Base::hasher hash_funct() { return this->hash_function(); }
+
+ ABSL_DEPRECATED("Call `rehash()` instead.")
+ void resize(typename Base::size_type hint) { this->rehash(hint); }
+};
+
+namespace container_internal {
+
+template <class T>
+struct NodeHashSetPolicy
+ : absl::container_internal::node_hash_policy<T&, NodeHashSetPolicy<T>> {
+ using key_type = T;
+ using init_type = T;
+ using constant_iterators = std::true_type;
+
+ template <class Allocator, class... Args>
+ static T* new_element(Allocator* alloc, Args&&... args) {
+ using ValueAlloc =
+ typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
+ ValueAlloc value_alloc(*alloc);
+ T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
+ absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
+ std::forward<Args>(args)...);
+ return res;
+ }
+
+ template <class Allocator>
+ static void delete_element(Allocator* alloc, T* elem) {
+ using ValueAlloc =
+ typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
+ ValueAlloc value_alloc(*alloc);
+ absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
+ absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
+ }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposeValue(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposeValue(
+ std::forward<F>(f), std::forward<Args>(args)...);
+ }
+
+ static size_t element_space_used(const T*) { return sizeof(T); }
+};
+} // namespace container_internal
+} // namespace absl
+#endif // ABSL_CONTAINER_NODE_HASH_SET_H_
diff --git a/absl/container/node_hash_set_test.cc b/absl/container/node_hash_set_test.cc
new file mode 100644
index 0000000..7e498f0
--- /dev/null
+++ b/absl/container/node_hash_set_test.cc
@@ -0,0 +1,103 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/node_hash_set.h"
+
+#include "absl/container/internal/unordered_set_constructor_test.h"
+#include "absl/container/internal/unordered_set_lookup_test.h"
+#include "absl/container/internal/unordered_set_modifiers_test.h"
+
+namespace absl {
+namespace container_internal {
+namespace {
+using ::absl::container_internal::hash_internal::Enum;
+using ::absl::container_internal::hash_internal::EnumClass;
+using ::testing::Pointee;
+using ::testing::UnorderedElementsAre;
+
+using SetTypes = ::testing::Types<
+ node_hash_set<int, StatefulTestingHash, StatefulTestingEqual, Alloc<int>>,
+ node_hash_set<std::string, StatefulTestingHash, StatefulTestingEqual,
+ Alloc<int>>,
+ node_hash_set<Enum, StatefulTestingHash, StatefulTestingEqual, Alloc<Enum>>,
+ node_hash_set<EnumClass, StatefulTestingHash, StatefulTestingEqual,
+ Alloc<EnumClass>>>;
+
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ConstructorTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, LookupTest, SetTypes);
+INSTANTIATE_TYPED_TEST_CASE_P(NodeHashSet, ModifiersTest, SetTypes);
+
+TEST(NodeHashSet, MoveableNotCopyableCompiles) {
+ node_hash_set<std::unique_ptr<void*>> t;
+ node_hash_set<std::unique_ptr<void*>> u;
+ u = std::move(t);
+}
+
+TEST(NodeHashSet, MergeExtractInsert) {
+ struct Hash {
+ size_t operator()(const std::unique_ptr<int>& p) const { return *p; }
+ };
+ struct Eq {
+ bool operator()(const std::unique_ptr<int>& a,
+ const std::unique_ptr<int>& b) const {
+ return *a == *b;
+ }
+ };
+ absl::node_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2;
+ set1.insert(absl::make_unique<int>(7));
+ set1.insert(absl::make_unique<int>(17));
+
+ set2.insert(absl::make_unique<int>(7));
+ set2.insert(absl::make_unique<int>(19));
+
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19)));
+
+ set1.merge(set2);
+
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19)));
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
+
+ auto node = set1.extract(absl::make_unique<int>(7));
+ EXPECT_TRUE(node);
+ EXPECT_THAT(node.value(), Pointee(7));
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19)));
+
+ auto insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_FALSE(insert_result.inserted);
+ EXPECT_TRUE(insert_result.node);
+ EXPECT_THAT(insert_result.node.value(), Pointee(7));
+ EXPECT_EQ(**insert_result.position, 7);
+ EXPECT_NE(insert_result.position->get(), insert_result.node.value().get());
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7)));
+
+ node = set1.extract(absl::make_unique<int>(17));
+ EXPECT_TRUE(node);
+ EXPECT_THAT(node.value(), Pointee(17));
+ EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19)));
+
+ node.value() = absl::make_unique<int>(23);
+
+ insert_result = set2.insert(std::move(node));
+ EXPECT_FALSE(node);
+ EXPECT_TRUE(insert_result.inserted);
+ EXPECT_FALSE(insert_result.node);
+ EXPECT_EQ(**insert_result.position, 23);
+ EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23)));
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl
diff --git a/absl/copts.bzl b/absl/copts.bzl
index e4b425b..717f5a4 100644
--- a/absl/copts.bzl
+++ b/absl/copts.bzl
@@ -117,6 +117,7 @@ MSVC_FLAGS = [
"/W3",
"/wd4005", # macro-redefinition
"/wd4068", # unknown pragma
+ "/wd4180", # qualifier applied to function type has no meaning; ignored
"/wd4244", # conversion from 'type1' to 'type2', possible loss of data
"/wd4267", # conversion from 'size_t' to 'type', possible loss of data
"/wd4800", # forcing value to bool 'true' or 'false' (performance warning)
diff --git a/absl/hash/BUILD.bazel b/absl/hash/BUILD.bazel
new file mode 100644
index 0000000..50aa550
--- /dev/null
+++ b/absl/hash/BUILD.bazel
@@ -0,0 +1,114 @@
+#
+# Copyright 2018 The Abseil Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+load(
+ "//absl:copts.bzl",
+ "ABSL_DEFAULT_COPTS",
+ "ABSL_TEST_COPTS",
+)
+
+package(default_visibility = ["//visibility:public"])
+
+licenses(["notice"]) # Apache 2.0
+
+cc_library(
+ name = "hash",
+ srcs = [
+ "internal/hash.cc",
+ "internal/hash.h",
+ ],
+ hdrs = ["hash.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ ":city",
+ "//absl/base:core_headers",
+ "//absl/base:endian",
+ "//absl/container:fixed_array",
+ "//absl/meta:type_traits",
+ "//absl/numeric:int128",
+ "//absl/strings",
+ "//absl/types:optional",
+ "//absl/types:variant",
+ "//absl/utility",
+ ],
+)
+
+cc_library(
+ name = "hash_testing",
+ testonly = 1,
+ hdrs = ["hash_testing.h"],
+ deps = [
+ ":spy_hash_state",
+ "//absl/meta:type_traits",
+ "//absl/strings",
+ "//absl/types:variant",
+ "@com_google_googletest//:gtest",
+ ],
+)
+
+cc_test(
+ name = "hash_test",
+ srcs = ["hash_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":hash",
+ ":hash_testing",
+ "//absl/base:core_headers",
+ "//absl/container:flat_hash_set",
+ "//absl/hash:spy_hash_state",
+ "//absl/meta:type_traits",
+ "//absl/numeric:int128",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
+
+cc_library(
+ name = "spy_hash_state",
+ testonly = 1,
+ hdrs = ["internal/spy_hash_state.h"],
+ copts = ABSL_DEFAULT_COPTS,
+ visibility = ["//visibility:private"],
+ deps = [
+ ":hash",
+ "//absl/strings",
+ "//absl/strings:str_format",
+ ],
+)
+
+cc_library(
+ name = "city",
+ srcs = ["internal/city.cc"],
+ hdrs = [
+ "internal/city.h",
+ "internal/city_crc.h",
+ ],
+ copts = ABSL_DEFAULT_COPTS,
+ deps = [
+ "//absl/base:config",
+ "//absl/base:core_headers",
+ "//absl/base:endian",
+ ],
+)
+
+cc_test(
+ name = "city_test",
+ srcs = ["internal/city_test.cc"],
+ copts = ABSL_TEST_COPTS,
+ deps = [
+ ":city",
+ "@com_google_googletest//:gtest_main",
+ ],
+)
diff --git a/absl/hash/CMakeLists.txt b/absl/hash/CMakeLists.txt
new file mode 100644
index 0000000..35081e3
--- /dev/null
+++ b/absl/hash/CMakeLists.txt
@@ -0,0 +1,80 @@
+#
+# Copyright 2018 The Abseil Authors.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+list(APPEND HASH_PUBLIC_HEADERS
+ "hash.h"
+)
+
+list(APPEND HASH_INTERNAL_HEADERS
+ "internal/city.h"
+ "internal/city_crc.h"
+ "internal/hash.h"
+)
+
+# absl_hash library
+list(APPEND HASH_SRC
+ "internal/city.cc"
+ "internal/hash.cc"
+ ${HASH_PUBLIC_HEADERS}
+ ${HASH_INTERNAL_HEADERS}
+)
+
+set(HASH_PUBLIC_LIBRARIES absl::hash absl::container absl::strings absl::str_format absl::utility)
+
+absl_library(
+ TARGET
+ absl_hash
+ SOURCES
+ ${HASH_SRC}
+ PUBLIC_LIBRARIES
+ ${HASH_PUBLIC_LIBRARIES}
+ EXPORT_NAME
+ hash
+)
+
+#
+## TESTS
+#
+
+# testing support
+set(HASH_TEST_HEADERS hash_testing.h internal/spy_hash_state.h)
+set(HASH_TEST_PUBLIC_LIBRARIES absl::hash absl::container absl::numeric absl::strings absl::str_format)
+
+# hash_test
+set(HASH_TEST_SRC "hash_test.cc" ${HASH_TEST_HEADERS})
+
+absl_test(
+ TARGET
+ hash_test
+ SOURCES
+ ${HASH_TEST_SRC}
+ PUBLIC_LIBRARIES
+ ${HASH_TEST_PUBLIC_LIBRARIES}
+)
+
+# hash_test
+set(CITY_TEST_SRC "internal/city_test.cc")
+
+absl_test(
+ TARGET
+ city_test
+ SOURCES
+ ${CITY_TEST_SRC}
+ PUBLIC_LIBRARIES
+ ${HASH_TEST_PUBLIC_LIBRARIES}
+)
+
+
diff --git a/absl/hash/hash.h b/absl/hash/hash.h
new file mode 100644
index 0000000..c7ba4c2
--- /dev/null
+++ b/absl/hash/hash.h
@@ -0,0 +1,312 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: hash.h
+// -----------------------------------------------------------------------------
+//
+// This header file defines the Abseil `hash` library and the Abseil hashing
+// framework. This framework consists of the following:
+//
+// * The `absl::Hash` functor, which is used to invoke the hasher within the
+// Abseil hashing framework. `absl::Hash<T>` supports most basic types and
+// a number of Abseil types out of the box.
+// * `AbslHashValue`, an extension point that allows you to extend types to
+// support Abseil hashing without requiring you to define a hashing
+// algorithm.
+// * `HashState`, a type-erased class which implement the manipulation of the
+// hash state (H) itself. containing member functions `combine()` and
+// `combine_contiguous()`, which you can use to contribute to an existing
+// hash state when hashing your types.
+//
+// Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework
+// provides most of its utility by abstracting away the hash algorithm (and its
+// implementation) entirely. Instead, a type invokes the Abseil hashing
+// framework by simply combining its state with the state of known, hashable
+// types. Hashing of that combined state is separately done by `absl::Hash`.
+//
+// Example:
+//
+// // Suppose we have a class `Circle` for which we want to add hashing
+// class Circle {
+// public:
+// ...
+// private:
+// std::pair<int, int> center_;
+// int radius_;
+// };
+//
+// // To add hashing support to `Circle`, we simply need to add an ordinary
+// // function `AbslHashValue()`, and return the combined hash state of the
+// // existing hash state and the class state:
+//
+// template <typename H>
+// friend H AbslHashValue(H h, const Circle& c) {
+// return H::combine(std::move(h), c.center_, c.radius_);
+// }
+//
+// For more information, see Adding Type Support to `absl::Hash` below.
+//
+#ifndef ABSL_HASH_HASH_H_
+#define ABSL_HASH_HASH_H_
+
+#include "absl/hash/internal/hash.h"
+
+namespace absl {
+
+// -----------------------------------------------------------------------------
+// `absl::Hash`
+// -----------------------------------------------------------------------------
+//
+// `absl::Hash<T>` is a convenient general-purpose hash functor for a type `T`
+// satisfying any of the following conditions (in order):
+//
+// * T is an arithmetic or pointer type
+// * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary
+// hash state `H`.
+// - T defines a specialization of `HASH_NAMESPACE::hash<T>`
+// - T defines a specialization of `std::hash<T>`
+//
+// `absl::Hash` intrinsically supports the following types:
+//
+// * All integral types (including bool)
+// * All enum types
+// * All floating-point types (although hashing them is discouraged)
+// * All pointer types, including nullptr_t
+// * std::pair<T1, T2>, if T1 and T2 are hashable
+// * std::tuple<Ts...>, if all the Ts... are hashable
+// * std::unique_ptr and std::shared_ptr
+// * All string-like types including:
+// * std::string
+// * std::string_view (as well as any instance of std::basic_string that
+// uses char and std::char_traits)
+// * All the standard sequence containers (provided the elements are hashable)
+// * All the standard ordered associative containers (provided the elements are
+// hashable)
+// * absl types such as the following:
+// * absl::string_view
+// * absl::InlinedVector
+// * absl::FixedArray
+// * absl::unit128
+// * absl::Time, absl::Duration, and absl::TimeZone
+//
+// Note: the list above is not meant to be exhaustive. Additional type support
+// may be added, in which case the above list will be updated.
+//
+// -----------------------------------------------------------------------------
+// absl::Hash Invocation Evaluation
+// -----------------------------------------------------------------------------
+//
+// When invoked, `absl::Hash<T>` searches for supplied hash functions in the
+// following order:
+//
+// * Natively supported types out of the box (see above)
+// * Types for which an `AbslHashValue()` overload is provided (such as
+// user-defined types). See "Adding Type Support to `absl::Hash`" below.
+// * Types which define a `HASH_NAMESPACE::hash<T>` specialization (aka
+// `__gnu_cxx::hash<T>` for gcc/Clang or `stdext::hash<T>` for MSVC)
+// * Types which define a `std::hash<T>` specialization
+//
+// The fallback to legacy hash functions exists mainly for backwards
+// compatibility. If you have a choice, prefer defining an `AbslHashValue`
+// overload instead of specializing any legacy hash functors.
+//
+// -----------------------------------------------------------------------------
+// The Hash State Concept, and using `HashState` for Type Erasure
+// -----------------------------------------------------------------------------
+//
+// The `absl::Hash` framework relies on the Concept of a "hash state." Such a
+// hash state is used in several places:
+//
+// * Within existing implementations of `absl::Hash<T>` to store the hashed
+// state of an object. Note that it is up to the implementation how it stores
+// such state. A hash table, for example, may mix the state to produce an
+// integer value; a testing framework may simply hold a vector of that state.
+// * Within implementations of `AbslHashValue()` used to extend user-defined
+// types. (See "Adding Type Support to absl::Hash" below.)
+// * Inside a `HashState`, providing type erasure for the concept of a hash
+// state, which you can use to extend the `absl::Hash` framework for types
+// that are otherwise difficult to extend using `AbslHashValue()`. (See the
+// `HashState` class below.)
+//
+// The "hash state" concept contains two member functions for mixing hash state:
+//
+// * `H::combine()`
+//
+// Combines an arbitrary number of values into a hash state, returning the
+// updated state. Note that the existing hash state is move-only and must be
+// passed by value.
+//
+// Each of the value types T must be hashable by H.
+//
+// NOTE:
+//
+// state = H::combine(std::move(state), value1, value2, value3);
+//
+// must be guaranteed to produce the same hash expansion as
+//
+// state = H::combine(std::move(state), value1);
+// state = H::combine(std::move(state), value2);
+// state = H::combine(std::move(state), value3);
+//
+// * `H::combine_contiguous()`
+//
+// Combines a contiguous array of `size` elements into a hash state,
+// returning the updated state. Note that the existing hash state is
+// move-only and must be passed by value.
+//
+// NOTE:
+//
+// state = H::combine_contiguous(std::move(state), data, size);
+//
+// need NOT be guaranteed to produce the same hash expansion as a loop
+// (it may perform internal optimizations). If you need this guarantee, use a
+// loop instead.
+//
+// -----------------------------------------------------------------------------
+// Adding Type Support to `absl::Hash`
+// -----------------------------------------------------------------------------
+//
+// To add support for your user-defined type, add a proper `AbslHashValue()`
+// overload as a free (non-member) function. The overload will take an
+// existing hash state and should combine that state with state from the type.
+//
+// Example:
+//
+// template <typename H>
+// H AbslHashValue(H state, const MyType& v) {
+// return H::combine(std::move(state), v.field1, ..., v.fieldN);
+// }
+//
+// where `(field1, ..., fieldN)` are the members you would use on your
+// `operator==` to define equality.
+//
+// Notice that `AbslHashValue` is not a class member, but an ordinary function.
+// An `AbslHashValue` overload for a type should only be declared in the same
+// file and namespace as said type. The proper `AbslHashValue` implementation
+// for a given type will be discovered via ADL.
+//
+// Note: unlike `std::hash', `absl::Hash` should never be specialized. It must
+// only be extended by adding `AbslHashValue()` overloads.
+//
+template <typename T>
+using Hash = absl::hash_internal::Hash<T>;
+
+// HashState
+//
+// A type erased version of the hash state concept, for use in user-defined
+// `AbslHashValue` implementations that can't use templates (such as PImpl
+// classes, virtual functions, etc.). The type erasure adds overhead so it
+// should be avoided unless necessary.
+//
+// Note: This wrapper will only erase calls to:
+// combine_contiguous(H, const unsigned char*, size_t)
+//
+// All other calls will be handled internally and will not invoke overloads
+// provided by the wrapped class.
+//
+// Users of this class should still define a template `AbslHashValue` function,
+// but can use `absl::HashState::Create(&state)` to erase the type of the hash
+// state and dispatch to their private hashing logic.
+//
+// This state can be used like any other hash state. In particular, you can call
+// `HashState::combine()` and `HashState::combine_contiguous()` on it.
+//
+// Example:
+//
+// class Interface {
+// public:
+// template <typename H>
+// friend H AbslHashValue(H state, const Interface& value) {
+// state = H::combine(std::move(state), std::type_index(typeid(*this)));
+// value.HashValue(absl::HashState::Create(&state));
+// return state;
+// }
+// private:
+// virtual void HashValue(absl::HashState state) const = 0;
+// };
+//
+// class Impl : Interface {
+// private:
+// void HashValue(absl::HashState state) const override {
+// absl::HashState::combine(std::move(state), v1_, v2_);
+// }
+// int v1_;
+// string v2_;
+// };
+class HashState : public hash_internal::HashStateBase<HashState> {
+ public:
+ // HashState::Create()
+ //
+ // Create a new `HashState` instance that wraps `state`. All calls to
+ // `combine()` and `combine_contiguous()` on the new instance will be
+ // redirected to the original `state` object. The `state` object must outlive
+ // the `HashState` instance.
+ template <typename T>
+ static HashState Create(T* state) {
+ HashState s;
+ s.Init(state);
+ return s;
+ }
+
+ HashState(const HashState&) = delete;
+ HashState& operator=(const HashState&) = delete;
+ HashState(HashState&&) = default;
+ HashState& operator=(HashState&&) = default;
+
+ // HashState::combine()
+ //
+ // Combines an arbitrary number of values into a hash state, returning the
+ // updated state.
+ using HashState::HashStateBase::combine;
+
+ // HashState::combine_contiguous()
+ //
+ // Combines a contiguous array of `size` elements into a hash state, returning
+ // the updated state.
+ static HashState combine_contiguous(HashState hash_state,
+ const unsigned char* first, size_t size) {
+ hash_state.combine_contiguous_(hash_state.state_, first, size);
+ return hash_state;
+ }
+ using HashState::HashStateBase::combine_contiguous;
+
+ private:
+ HashState() = default;
+
+ template <typename T>
+ static void CombineContiguousImpl(void* p, const unsigned char* first,
+ size_t size) {
+ T& state = *static_cast<T*>(p);
+ state = T::combine_contiguous(std::move(state), first, size);
+ }
+
+ template <typename T>
+ void Init(T* state) {
+ state_ = state;
+ combine_contiguous_ = &CombineContiguousImpl<T>;
+ }
+
+ // Do not erase an already erased state.
+ void Init(HashState* state) {
+ state_ = state->state_;
+ combine_contiguous_ = state->combine_contiguous_;
+ }
+
+ void* state_;
+ void (*combine_contiguous_)(void*, const unsigned char*, size_t);
+};
+
+} // namespace absl
+#endif // ABSL_HASH_HASH_H_
diff --git a/absl/hash/hash_test.cc b/absl/hash/hash_test.cc
new file mode 100644
index 0000000..7b6fb2e
--- /dev/null
+++ b/absl/hash/hash_test.cc
@@ -0,0 +1,425 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/hash/hash.h"
+
+#include <array>
+#include <cstring>
+#include <deque>
+#include <forward_list>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <list>
+#include <map>
+#include <memory>
+#include <numeric>
+#include <random>
+#include <set>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/container/flat_hash_set.h"
+#include "absl/hash/hash_testing.h"
+#include "absl/hash/internal/spy_hash_state.h"
+#include "absl/meta/type_traits.h"
+#include "absl/numeric/int128.h"
+
+namespace {
+
+using absl::Hash;
+using absl::hash_internal::SpyHashState;
+
+template <typename T>
+class HashValueIntTest : public testing::Test {
+};
+TYPED_TEST_CASE_P(HashValueIntTest);
+
+template <typename T>
+SpyHashState SpyHash(const T& value) {
+ return SpyHashState::combine(SpyHashState(), value);
+}
+
+// Helper trait to verify if T is hashable. We use absl::Hash's poison status to
+// detect it.
+template <typename T>
+using is_hashable = std::is_default_constructible<absl::Hash<T>>;
+
+TYPED_TEST_P(HashValueIntTest, BasicUsage) {
+ EXPECT_TRUE((is_hashable<TypeParam>::value));
+
+ TypeParam n = 42;
+ EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42}));
+ EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0}));
+ EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()),
+ SpyHash(std::numeric_limits<TypeParam>::min()));
+}
+
+TYPED_TEST_P(HashValueIntTest, FastPath) {
+ // Test the fast-path to make sure the values are the same.
+ TypeParam n = 42;
+ EXPECT_EQ(absl::Hash<TypeParam>{}(n),
+ absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n)));
+}
+
+REGISTER_TYPED_TEST_CASE_P(HashValueIntTest, BasicUsage, FastPath);
+using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
+ uint64_t, size_t>;
+INSTANTIATE_TYPED_TEST_CASE_P(My, HashValueIntTest, IntTypes);
+
+template <typename T, typename = void>
+struct IsHashCallble : std::false_type {};
+
+template <typename T>
+struct IsHashCallble<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()(
+ std::declval<const T&>()))>> : std::true_type {};
+
+template <typename T, typename = void>
+struct IsAggregateInitializable : std::false_type {};
+
+template <typename T>
+struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>>
+ : std::true_type {};
+
+TEST(IsHashableTest, ValidHash) {
+ EXPECT_TRUE((is_hashable<int>::value));
+ EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value);
+ EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value);
+ EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value);
+ EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value);
+ EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value);
+ EXPECT_TRUE(IsHashCallble<int>::value);
+ EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value);
+}
+#if ABSL_HASH_INTERNAL_CAN_POISON_ && !defined(__APPLE__)
+TEST(IsHashableTest, PoisonHash) {
+ struct X {};
+ EXPECT_FALSE((is_hashable<X>::value));
+ EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value);
+ EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value);
+ EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value);
+ EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value);
+ EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value);
+ EXPECT_FALSE(IsHashCallble<X>::value);
+ EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value);
+}
+#endif // ABSL_HASH_INTERNAL_CAN_POISON_
+
+// Hashable types
+//
+// These types exist simply to exercise various AbslHashValue behaviors, so
+// they are named by what their AbslHashValue overload does.
+struct NoOp {
+ template <typename HashCode>
+ friend HashCode AbslHashValue(HashCode h, NoOp n) {
+ return std::move(h);
+ }
+};
+
+struct EmptyCombine {
+ template <typename HashCode>
+ friend HashCode AbslHashValue(HashCode h, EmptyCombine e) {
+ return HashCode::combine(std::move(h));
+ }
+};
+
+template <typename Int>
+struct CombineIterative {
+ template <typename HashCode>
+ friend HashCode AbslHashValue(HashCode h, CombineIterative c) {
+ for (int i = 0; i < 5; ++i) {
+ h = HashCode::combine(std::move(h), Int(i));
+ }
+ return h;
+ }
+};
+
+template <typename Int>
+struct CombineVariadic {
+ template <typename HashCode>
+ friend HashCode AbslHashValue(HashCode h, CombineVariadic c) {
+ return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3),
+ Int(4));
+ }
+};
+
+using InvokeTag = absl::hash_internal::InvokeHashTag;
+template <InvokeTag T>
+using InvokeTagConstant = std::integral_constant<InvokeTag, T>;
+
+template <InvokeTag... Tags>
+struct MinTag;
+
+template <InvokeTag a, InvokeTag b, InvokeTag... Tags>
+struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {};
+
+template <InvokeTag a>
+struct MinTag<a> : InvokeTagConstant<a> {};
+
+template <InvokeTag... Tags>
+struct CustomHashType {
+ size_t value;
+};
+
+template <InvokeTag allowed, InvokeTag... tags>
+struct EnableIfContained
+ : std::enable_if<absl::disjunction<
+ std::integral_constant<bool, allowed == tags>...>::value> {};
+
+template <
+ typename H, InvokeTag... Tags,
+ typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type>
+H AbslHashValue(H state, CustomHashType<Tags...> t) {
+ static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, "");
+ return H::combine(std::move(state),
+ t.value + static_cast<int>(InvokeTag::kHashValue));
+}
+
+} // namespace
+
+namespace absl {
+namespace hash_internal {
+template <InvokeTag... Tags>
+struct is_uniquely_represented<
+ CustomHashType<Tags...>,
+ typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type>
+ : std::true_type {};
+} // namespace hash_internal
+} // namespace absl
+
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE {
+template <InvokeTag... Tags>
+struct hash<CustomHashType<Tags...>> {
+ template <InvokeTag... TagsIn, typename = typename EnableIfContained<
+ InvokeTag::kLegacyHash, TagsIn...>::type>
+ size_t operator()(CustomHashType<TagsIn...> t) const {
+ static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, "");
+ return t.value + static_cast<int>(InvokeTag::kLegacyHash);
+ }
+};
+} // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+
+namespace std {
+template <InvokeTag... Tags> // NOLINT
+struct hash<CustomHashType<Tags...>> {
+ template <InvokeTag... TagsIn, typename = typename EnableIfContained<
+ InvokeTag::kStdHash, TagsIn...>::type>
+ size_t operator()(CustomHashType<TagsIn...> t) const {
+ static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, "");
+ return t.value + static_cast<int>(InvokeTag::kStdHash);
+ }
+};
+} // namespace std
+
+namespace {
+
+template <typename... T>
+void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) {
+ using type = CustomHashType<T::value...>;
+ SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...}));
+ EXPECT_TRUE(is_hashable<type>());
+ EXPECT_TRUE(is_hashable<const type>());
+ EXPECT_TRUE(is_hashable<const type&>());
+
+ const size_t offset = static_cast<int>(std::min({T::value...}));
+ EXPECT_EQ(SpyHash(type{7}), SpyHash(size_t{7 + offset}));
+}
+
+void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) {
+#if ABSL_HASH_INTERNAL_CAN_POISON_
+ // is_hashable is false if we don't support any of the hooks.
+ using type = CustomHashType<>;
+ EXPECT_FALSE(is_hashable<type>());
+ EXPECT_FALSE(is_hashable<const type>());
+ EXPECT_FALSE(is_hashable<const type&>());
+#endif // ABSL_HASH_INTERNAL_CAN_POISON_
+}
+
+template <InvokeTag Tag, typename... T>
+void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) {
+ constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1);
+ TestCustomHashType(InvokeTagConstant<next>(), tag, t...);
+ TestCustomHashType(InvokeTagConstant<next>(), t...);
+}
+
+TEST(HashTest, CustomHashType) {
+ TestCustomHashType(InvokeTagConstant<InvokeTag{}>());
+}
+
+TEST(HashTest, NoOpsAreEquivalent) {
+ EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({}));
+ EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({}));
+}
+
+template <typename T>
+class HashIntTest : public testing::Test {
+};
+TYPED_TEST_CASE_P(HashIntTest);
+
+TYPED_TEST_P(HashIntTest, BasicUsage) {
+ EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0));
+ EXPECT_NE(Hash<NoOp>()({}),
+ Hash<TypeParam>()(std::numeric_limits<TypeParam>::max()));
+ if (std::numeric_limits<TypeParam>::min() != 0) {
+ EXPECT_NE(Hash<NoOp>()({}),
+ Hash<TypeParam>()(std::numeric_limits<TypeParam>::min()));
+ }
+
+ EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}),
+ Hash<CombineVariadic<TypeParam>>()({}));
+}
+
+REGISTER_TYPED_TEST_CASE_P(HashIntTest, BasicUsage);
+using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, uint32_t,
+ uint64_t, size_t>;
+INSTANTIATE_TYPED_TEST_CASE_P(My, HashIntTest, IntTypes);
+
+struct StructWithPadding {
+ char c;
+ int i;
+
+ template <typename H>
+ friend H AbslHashValue(H hash_state, const StructWithPadding& s) {
+ return H::combine(std::move(hash_state), s.c, s.i);
+ }
+};
+
+static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int),
+ "StructWithPadding doesn't have padding");
+static_assert(std::is_standard_layout<StructWithPadding>::value, "");
+
+// This check has to be disabled because libstdc++ doesn't support it.
+// static_assert(std::is_trivially_constructible<StructWithPadding>::value, "");
+
+template <typename T>
+struct ArraySlice {
+ T* begin;
+ T* end;
+
+ template <typename H>
+ friend H AbslHashValue(H hash_state, const ArraySlice& slice) {
+ for (auto t = slice.begin; t != slice.end; ++t) {
+ hash_state = H::combine(std::move(hash_state), *t);
+ }
+ return hash_state;
+ }
+};
+
+TEST(HashTest, HashNonUniquelyRepresentedType) {
+ // Create equal StructWithPadding objects that are known to have non-equal
+ // padding bytes.
+ static const size_t kNumStructs = 10;
+ unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)];
+ std::memset(buffer1, 0, sizeof(buffer1));
+ auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1);
+
+ unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)];
+ std::memset(buffer2, 255, sizeof(buffer2));
+ auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2);
+ for (int i = 0; i < kNumStructs; ++i) {
+ SCOPED_TRACE(i);
+ s1[i].c = s2[i].c = '0' + i;
+ s1[i].i = s2[i].i = i;
+ ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding),
+ buffer2 + i * sizeof(StructWithPadding),
+ sizeof(StructWithPadding)) == 0)
+ << "Bug in test code: objects do not have unequal"
+ << " object representations";
+ }
+
+ EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0]));
+ EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}),
+ Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs}));
+}
+
+TEST(HashTest, StandardHashContainerUsage) {
+ std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"}, { 42, "bar" }};
+
+ EXPECT_NE(map.find(0), map.end());
+ EXPECT_EQ(map.find(1), map.end());
+ EXPECT_NE(map.find(0u), map.end());
+}
+
+struct ConvertibleFromNoOp {
+ ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit)
+
+ template <typename H>
+ friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) {
+ return H::combine(std::move(hash_state), 1);
+ }
+};
+
+TEST(HashTest, HeterogeneousCall) {
+ EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()),
+ Hash<NoOp>()(NoOp()));
+}
+
+TEST(IsUniquelyRepresentedTest, SanityTest) {
+ using absl::hash_internal::is_uniquely_represented;
+
+ EXPECT_TRUE(is_uniquely_represented<unsigned char>::value);
+ EXPECT_TRUE(is_uniquely_represented<int>::value);
+ EXPECT_FALSE(is_uniquely_represented<bool>::value);
+ EXPECT_FALSE(is_uniquely_represented<int*>::value);
+}
+
+struct IntAndString {
+ int i;
+ std::string s;
+
+ template <typename H>
+ friend H AbslHashValue(H hash_state, IntAndString int_and_string) {
+ return H::combine(std::move(hash_state), int_and_string.s,
+ int_and_string.i);
+ }
+};
+
+TEST(HashTest, SmallValueOn64ByteBoundary) {
+ Hash<IntAndString>()(IntAndString{0, std::string(63, '0')});
+}
+
+struct TypeErased {
+ size_t n;
+
+ template <typename H>
+ friend H AbslHashValue(H hash_state, const TypeErased& v) {
+ v.HashValue(absl::HashState::Create(&hash_state));
+ return hash_state;
+ }
+
+ void HashValue(absl::HashState state) const {
+ absl::HashState::combine(std::move(state), n);
+ }
+};
+
+TEST(HashTest, TypeErased) {
+ EXPECT_TRUE((is_hashable<TypeErased>::value));
+ EXPECT_TRUE((is_hashable<std::pair<TypeErased, int>>::value));
+
+ EXPECT_EQ(SpyHash(TypeErased{7}), SpyHash(size_t{7}));
+ EXPECT_NE(SpyHash(TypeErased{7}), SpyHash(size_t{13}));
+
+ EXPECT_EQ(SpyHash(std::make_pair(TypeErased{7}, 17)),
+ SpyHash(std::make_pair(size_t{7}, 17)));
+}
+
+} // namespace
diff --git a/absl/hash/hash_testing.h b/absl/hash/hash_testing.h
new file mode 100644
index 0000000..1e3cda6
--- /dev/null
+++ b/absl/hash/hash_testing.h
@@ -0,0 +1,372 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_HASH_HASH_TESTING_H_
+#define ABSL_HASH_HASH_TESTING_H_
+
+#include <initializer_list>
+#include <tuple>
+#include <type_traits>
+#include <vector>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/hash/internal/spy_hash_state.h"
+#include "absl/meta/type_traits.h"
+#include "absl/strings/str_cat.h"
+#include "absl/types/variant.h"
+
+namespace absl {
+
+// Run the absl::Hash algorithm over all the elements passed in and verify that
+// their hash expansion is congruent with their `==` operator.
+//
+// It is used in conjunction with EXPECT_TRUE. Failures will output information
+// on what requirement failed and on which objects.
+//
+// Users should pass a collection of types as either an initializer list or a
+// container of cases.
+//
+// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
+// {v1, v2, ..., vN}));
+//
+// std::vector<MyType> cases;
+// // Fill cases...
+// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases));
+//
+// Users can pass a variety of types for testing heterogeneous lookup with
+// `std::make_tuple`:
+//
+// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
+// std::make_tuple(v1, v2, ..., vN)));
+//
+//
+// Ideally, the values passed should provide enough coverage of the `==`
+// operator and the AbslHashValue implementations.
+// For dynamically sized types, the empty state should usually be included in
+// the values.
+//
+// The function accepts an optional comparator function, in case that `==` is
+// not enough for the values provided.
+//
+// Usage:
+//
+// EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(
+// std::make_tuple(v1, v2, ..., vN), MyCustomEq{}));
+//
+// It checks the following requirements:
+// 1. The expansion for a value is deterministic.
+// 2. For any two objects `a` and `b` in the sequence, if `a == b` evaluates
+// to true, then their hash expansion must be equal.
+// 3. If `a == b` evaluates to false their hash expansion must be unequal.
+// 4. If `a == b` evaluates to false neither hash expansion can be a
+// suffix of the other.
+// 5. AbslHashValue overloads should not be called by the user. They are only
+// meant to be called by the framework. Users should call H::combine() and
+// H::combine_contiguous().
+// 6. No moved-from instance of the hash state is used in the implementation
+// of AbslHashValue.
+//
+// The values do not have to have the same type. This can be useful for
+// equivalent types that support heterogeneous lookup.
+//
+// A possible reason for breaking (2) is combining state in the hash expansion
+// that was not used in `==`.
+// For example:
+//
+// struct Bad2 {
+// int a, b;
+// template <typename H>
+// friend H AbslHashValue(H state, Bad2 x) {
+// // Uses a and b.
+// return H::combine(x.a, x.b);
+// }
+// friend bool operator==(Bad2 x, Bad2 y) {
+// // Only uses a.
+// return x.a == y.a;
+// }
+// };
+//
+// As for (3), breaking this usually means that there is state being passed to
+// the `==` operator that is not used in the hash expansion.
+// For example:
+//
+// struct Bad3 {
+// int a, b;
+// template <typename H>
+// friend H AbslHashValue(H state, Bad3 x) {
+// // Only uses a.
+// return H::combine(x.a);
+// }
+// friend bool operator==(Bad3 x, Bad3 y) {
+// // Uses a and b.
+// return x.a == y.a && x.b == y.b;
+// }
+// };
+//
+// Finally, a common way to break 4 is by combining dynamic ranges without
+// combining the size of the range.
+// For example:
+//
+// struct Bad4 {
+// int *p, size;
+// template <typename H>
+// friend H AbslHashValue(H state, Bad4 x) {
+// return H::combine_range(x.p, x.p + x.size);
+// }
+// friend bool operator==(Bad4 x, Bad4 y) {
+// return std::equal(x.p, x.p + x.size, y.p, y.p + y.size);
+// }
+// };
+//
+// An easy solution to this is to combine the size after combining the range,
+// like so:
+// template <typename H>
+// friend H AbslHashValue(H state, Bad4 x) {
+// return H::combine(H::combine_range(x.p, x.p + x.size), x.size);
+// }
+//
+template <int&... ExplicitBarrier, typename Container>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(const Container& values);
+
+template <int&... ExplicitBarrier, typename Container, typename Eq>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals);
+
+template <int&..., typename T>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values);
+
+template <int&..., typename T, typename Eq>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values,
+ Eq equals);
+
+namespace hash_internal {
+
+struct PrintVisitor {
+ size_t index;
+ template <typename T>
+ std::string operator()(const T* value) const {
+ return absl::StrCat("#", index, "(", testing::PrintToString(*value), ")");
+ }
+};
+
+template <typename Eq>
+struct EqVisitor {
+ Eq eq;
+ template <typename T, typename U>
+ bool operator()(const T* t, const U* u) const {
+ return eq(*t, *u);
+ }
+};
+
+struct ExpandVisitor {
+ template <typename T>
+ SpyHashState operator()(const T* value) const {
+ return SpyHashState::combine(SpyHashState(), *value);
+ }
+};
+
+template <typename Container, typename Eq>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals) {
+ using V = typename Container::value_type;
+
+ struct Info {
+ const V& value;
+ size_t index;
+ std::string ToString() const { return absl::visit(PrintVisitor{index}, value); }
+ SpyHashState expand() const { return absl::visit(ExpandVisitor{}, value); }
+ };
+
+ using EqClass = std::vector<Info>;
+ std::vector<EqClass> classes;
+
+ // Gather the values in equivalence classes.
+ size_t i = 0;
+ for (const auto& value : values) {
+ EqClass* c = nullptr;
+ for (auto& eqclass : classes) {
+ if (absl::visit(EqVisitor<Eq>{equals}, value, eqclass[0].value)) {
+ c = &eqclass;
+ break;
+ }
+ }
+ if (c == nullptr) {
+ classes.emplace_back();
+ c = &classes.back();
+ }
+ c->push_back({value, i});
+ ++i;
+
+ // Verify potential errors captured by SpyHashState.
+ if (auto error = c->back().expand().error()) {
+ return testing::AssertionFailure() << *error;
+ }
+ }
+
+ if (classes.size() < 2) {
+ return testing::AssertionFailure()
+ << "At least two equivalence classes are expected.";
+ }
+
+ // We assume that equality is correctly implemented.
+ // Now we verify that AbslHashValue is also correctly implemented.
+
+ for (const auto& c : classes) {
+ // All elements of the equivalence class must have the same hash expansion.
+ const SpyHashState expected = c[0].expand();
+ for (const Info& v : c) {
+ if (v.expand() != v.expand()) {
+ return testing::AssertionFailure()
+ << "Hash expansion for " << v.ToString()
+ << " is non-deterministic.";
+ }
+ if (v.expand() != expected) {
+ return testing::AssertionFailure()
+ << "Values " << c[0].ToString() << " and " << v.ToString()
+ << " evaluate as equal but have an unequal hash expansion.";
+ }
+ }
+
+ // Elements from other classes must have different hash expansion.
+ for (const auto& c2 : classes) {
+ if (&c == &c2) continue;
+ const SpyHashState c2_hash = c2[0].expand();
+ switch (SpyHashState::Compare(expected, c2_hash)) {
+ case SpyHashState::CompareResult::kEqual:
+ return testing::AssertionFailure()
+ << "Values " << c[0].ToString() << " and " << c2[0].ToString()
+ << " evaluate as unequal but have an equal hash expansion.";
+ case SpyHashState::CompareResult::kBSuffixA:
+ return testing::AssertionFailure()
+ << "Hash expansion of " << c2[0].ToString()
+ << " is a suffix of the hash expansion of " << c[0].ToString()
+ << ".";
+ case SpyHashState::CompareResult::kASuffixB:
+ return testing::AssertionFailure()
+ << "Hash expansion of " << c[0].ToString()
+ << " is a suffix of the hash expansion of " << c2[0].ToString()
+ << ".";
+ case SpyHashState::CompareResult::kUnequal:
+ break;
+ }
+ }
+ }
+ return testing::AssertionSuccess();
+}
+
+template <typename... T>
+struct TypeSet {
+ template <typename U, bool = disjunction<std::is_same<T, U>...>::value>
+ struct Insert {
+ using type = TypeSet<U, T...>;
+ };
+ template <typename U>
+ struct Insert<U, true> {
+ using type = TypeSet;
+ };
+
+ template <template <typename...> class C>
+ using apply = C<T...>;
+};
+
+template <typename... T>
+struct MakeTypeSet : TypeSet<>{};
+template <typename T, typename... Ts>
+struct MakeTypeSet<T, Ts...> : MakeTypeSet<Ts...>::template Insert<T>::type {};
+
+template <typename... T>
+using VariantForTypes = typename MakeTypeSet<
+ const typename std::decay<T>::type*...>::template apply<absl::variant>;
+
+template <typename Container>
+struct ContainerAsVector {
+ using V = absl::variant<const typename Container::value_type*>;
+ using Out = std::vector<V>;
+
+ static Out Do(const Container& values) {
+ Out out;
+ for (const auto& v : values) out.push_back(&v);
+ return out;
+ }
+};
+
+template <typename... T>
+struct ContainerAsVector<std::tuple<T...>> {
+ using V = VariantForTypes<T...>;
+ using Out = std::vector<V>;
+
+ template <size_t... I>
+ static Out DoImpl(const std::tuple<T...>& tuple, absl::index_sequence<I...>) {
+ return Out{&std::get<I>(tuple)...};
+ }
+
+ static Out Do(const std::tuple<T...>& values) {
+ return DoImpl(values, absl::index_sequence_for<T...>());
+ }
+};
+
+template <>
+struct ContainerAsVector<std::tuple<>> {
+ static std::vector<VariantForTypes<int>> Do(std::tuple<>) { return {}; }
+};
+
+struct DefaultEquals {
+ template <typename T, typename U>
+ bool operator()(const T& t, const U& u) const {
+ return t == u;
+ }
+};
+
+} // namespace hash_internal
+
+template <int&..., typename Container>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(const Container& values) {
+ return hash_internal::VerifyTypeImplementsAbslHashCorrectly(
+ hash_internal::ContainerAsVector<Container>::Do(values),
+ hash_internal::DefaultEquals{});
+}
+
+template <int&..., typename Container, typename Eq>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(const Container& values, Eq equals) {
+ return hash_internal::VerifyTypeImplementsAbslHashCorrectly(
+ hash_internal::ContainerAsVector<Container>::Do(values),
+ equals);
+}
+
+template <int&..., typename T>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values) {
+ return hash_internal::VerifyTypeImplementsAbslHashCorrectly(
+ hash_internal::ContainerAsVector<std::initializer_list<T>>::Do(values),
+ hash_internal::DefaultEquals{});
+}
+
+template <int&..., typename T, typename Eq>
+ABSL_MUST_USE_RESULT testing::AssertionResult
+VerifyTypeImplementsAbslHashCorrectly(std::initializer_list<T> values,
+ Eq equals) {
+ return hash_internal::VerifyTypeImplementsAbslHashCorrectly(
+ hash_internal::ContainerAsVector<std::initializer_list<T>>::Do(values),
+ equals);
+}
+
+} // namespace absl
+
+#endif // ABSL_HASH_HASH_TESTING_H_
diff --git a/absl/hash/internal/city.cc b/absl/hash/internal/city.cc
new file mode 100644
index 0000000..591017a
--- /dev/null
+++ b/absl/hash/internal/city.cc
@@ -0,0 +1,589 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// This file provides CityHash64() and related functions.
+//
+// It's probably possible to create even faster hash functions by
+// writing a program that systematically explores some of the space of
+// possible hash functions, by using SIMD instructions, or by
+// compromising on hash quality.
+
+#include "absl/hash/internal/city.h"
+
+#include <string.h> // for memcpy and memset
+#include <algorithm>
+
+#include "absl/base/config.h"
+#include "absl/base/internal/endian.h"
+#include "absl/base/internal/unaligned_access.h"
+#include "absl/base/optimization.h"
+
+namespace absl {
+namespace hash_internal {
+
+#ifdef ABSL_IS_BIG_ENDIAN
+#define uint32_in_expected_order(x) (absl::gbswap_32(x))
+#define uint64_in_expected_order(x) (absl::gbswap_64(x))
+#else
+#define uint32_in_expected_order(x) (x)
+#define uint64_in_expected_order(x) (x)
+#endif
+
+static uint64_t Fetch64(const char *p) {
+ return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
+}
+
+static uint32_t Fetch32(const char *p) {
+ return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
+}
+
+// Some primes between 2^63 and 2^64 for various uses.
+static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
+static const uint64_t k1 = 0xb492b66fbe98f273ULL;
+static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
+
+// Magic numbers for 32-bit hashing. Copied from Murmur3.
+static const uint32_t c1 = 0xcc9e2d51;
+static const uint32_t c2 = 0x1b873593;
+
+// A 32-bit to 32-bit integer hash copied from Murmur3.
+static uint32_t fmix(uint32_t h) {
+ h ^= h >> 16;
+ h *= 0x85ebca6b;
+ h ^= h >> 13;
+ h *= 0xc2b2ae35;
+ h ^= h >> 16;
+ return h;
+}
+
+static uint32_t Rotate32(uint32_t val, int shift) {
+ // Avoid shifting by 32: doing so yields an undefined result.
+ return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
+}
+
+#undef PERMUTE3
+#define PERMUTE3(a, b, c) \
+ do { \
+ std::swap(a, b); \
+ std::swap(a, c); \
+ } while (0)
+
+static uint32_t Mur(uint32_t a, uint32_t h) {
+ // Helper from Murmur3 for combining two 32-bit values.
+ a *= c1;
+ a = Rotate32(a, 17);
+ a *= c2;
+ h ^= a;
+ h = Rotate32(h, 19);
+ return h * 5 + 0xe6546b64;
+}
+
+static uint32_t Hash32Len13to24(const char *s, size_t len) {
+ uint32_t a = Fetch32(s - 4 + (len >> 1));
+ uint32_t b = Fetch32(s + 4);
+ uint32_t c = Fetch32(s + len - 8);
+ uint32_t d = Fetch32(s + (len >> 1));
+ uint32_t e = Fetch32(s);
+ uint32_t f = Fetch32(s + len - 4);
+ uint32_t h = len;
+
+ return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
+}
+
+static uint32_t Hash32Len0to4(const char *s, size_t len) {
+ uint32_t b = 0;
+ uint32_t c = 9;
+ for (size_t i = 0; i < len; i++) {
+ signed char v = s[i];
+ b = b * c1 + v;
+ c ^= b;
+ }
+ return fmix(Mur(b, Mur(len, c)));
+}
+
+static uint32_t Hash32Len5to12(const char *s, size_t len) {
+ uint32_t a = len, b = len * 5, c = 9, d = b;
+ a += Fetch32(s);
+ b += Fetch32(s + len - 4);
+ c += Fetch32(s + ((len >> 1) & 4));
+ return fmix(Mur(c, Mur(b, Mur(a, d))));
+}
+
+uint32_t CityHash32(const char *s, size_t len) {
+ if (len <= 24) {
+ return len <= 12
+ ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
+ : Hash32Len13to24(s, len);
+ }
+
+ // len > 24
+ uint32_t h = len, g = c1 * len, f = g;
+ uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
+ uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
+ uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
+ uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
+ uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
+ h ^= a0;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ h ^= a2;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ g ^= a1;
+ g = Rotate32(g, 19);
+ g = g * 5 + 0xe6546b64;
+ g ^= a3;
+ g = Rotate32(g, 19);
+ g = g * 5 + 0xe6546b64;
+ f += a4;
+ f = Rotate32(f, 19);
+ f = f * 5 + 0xe6546b64;
+ size_t iters = (len - 1) / 20;
+ do {
+ uint32_t a0 = Rotate32(Fetch32(s) * c1, 17) * c2;
+ uint32_t a1 = Fetch32(s + 4);
+ uint32_t a2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
+ uint32_t a3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
+ uint32_t a4 = Fetch32(s + 16);
+ h ^= a0;
+ h = Rotate32(h, 18);
+ h = h * 5 + 0xe6546b64;
+ f += a1;
+ f = Rotate32(f, 19);
+ f = f * c1;
+ g += a2;
+ g = Rotate32(g, 18);
+ g = g * 5 + 0xe6546b64;
+ h ^= a3 + a1;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ g ^= a4;
+ g = absl::gbswap_32(g) * 5;
+ h += a4 * 5;
+ h = absl::gbswap_32(h);
+ f += a0;
+ PERMUTE3(f, h, g);
+ s += 20;
+ } while (--iters != 0);
+ g = Rotate32(g, 11) * c1;
+ g = Rotate32(g, 17) * c1;
+ f = Rotate32(f, 11) * c1;
+ f = Rotate32(f, 17) * c1;
+ h = Rotate32(h + g, 19);
+ h = h * 5 + 0xe6546b64;
+ h = Rotate32(h, 17) * c1;
+ h = Rotate32(h + f, 19);
+ h = h * 5 + 0xe6546b64;
+ h = Rotate32(h, 17) * c1;
+ return h;
+}
+
+// Bitwise right rotate. Normally this will compile to a single
+// instruction, especially if the shift is a manifest constant.
+static uint64_t Rotate(uint64_t val, int shift) {
+ // Avoid shifting by 64: doing so yields an undefined result.
+ return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
+}
+
+static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
+
+static uint64_t HashLen16(uint64_t u, uint64_t v) {
+ return Hash128to64(uint128(u, v));
+}
+
+static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
+ // Murmur-inspired hashing.
+ uint64_t a = (u ^ v) * mul;
+ a ^= (a >> 47);
+ uint64_t b = (v ^ a) * mul;
+ b ^= (b >> 47);
+ b *= mul;
+ return b;
+}
+
+static uint64_t HashLen0to16(const char *s, size_t len) {
+ if (len >= 8) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) + k2;
+ uint64_t b = Fetch64(s + len - 8);
+ uint64_t c = Rotate(b, 37) * mul + a;
+ uint64_t d = (Rotate(a, 25) + b) * mul;
+ return HashLen16(c, d, mul);
+ }
+ if (len >= 4) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch32(s);
+ return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
+ }
+ if (len > 0) {
+ uint8_t a = s[0];
+ uint8_t b = s[len >> 1];
+ uint8_t c = s[len - 1];
+ uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
+ uint32_t z = len + (static_cast<uint32_t>(c) << 2);
+ return ShiftMix(y * k2 ^ z * k0) * k2;
+ }
+ return k2;
+}
+
+// This probably works well for 16-byte strings as well, but it may be overkill
+// in that case.
+static uint64_t HashLen17to32(const char *s, size_t len) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) * k1;
+ uint64_t b = Fetch64(s + 8);
+ uint64_t c = Fetch64(s + len - 8) * mul;
+ uint64_t d = Fetch64(s + len - 16) * k2;
+ return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
+ a + Rotate(b + k2, 18) + c, mul);
+}
+
+// Return a 16-byte hash for 48 bytes. Quick and dirty.
+// Callers do best to use "random-looking" values for a and b.
+static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(uint64_t w, uint64_t x,
+ uint64_t y, uint64_t z,
+ uint64_t a, uint64_t b) {
+ a += w;
+ b = Rotate(b + a + z, 21);
+ uint64_t c = a;
+ a += x;
+ a += y;
+ b += Rotate(a, 44);
+ return std::make_pair(a + z, b + c);
+}
+
+// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
+static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s, uint64_t a,
+ uint64_t b) {
+ return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
+ Fetch64(s + 24), a, b);
+}
+
+// Return an 8-byte hash for 33 to 64 bytes.
+static uint64_t HashLen33to64(const char *s, size_t len) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) * k2;
+ uint64_t b = Fetch64(s + 8);
+ uint64_t c = Fetch64(s + len - 24);
+ uint64_t d = Fetch64(s + len - 32);
+ uint64_t e = Fetch64(s + 16) * k2;
+ uint64_t f = Fetch64(s + 24) * 9;
+ uint64_t g = Fetch64(s + len - 8);
+ uint64_t h = Fetch64(s + len - 16) * mul;
+ uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
+ uint64_t v = ((a + g) ^ d) + f + 1;
+ uint64_t w = absl::gbswap_64((u + v) * mul) + h;
+ uint64_t x = Rotate(e + f, 42) + c;
+ uint64_t y = (absl::gbswap_64((v + w) * mul) + g) * mul;
+ uint64_t z = e + f + c;
+ a = absl::gbswap_64((x + z) * mul + y) + b;
+ b = ShiftMix((z + a) * mul + d + h) * mul;
+ return b + x;
+}
+
+uint64_t CityHash64(const char *s, size_t len) {
+ if (len <= 32) {
+ if (len <= 16) {
+ return HashLen0to16(s, len);
+ } else {
+ return HashLen17to32(s, len);
+ }
+ } else if (len <= 64) {
+ return HashLen33to64(s, len);
+ }
+
+ // For strings over 64 bytes we hash the end first, and then as we
+ // loop we keep 56 bytes of state: v, w, x, y, and z.
+ uint64_t x = Fetch64(s + len - 40);
+ uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
+ uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
+ std::pair<uint64_t, uint64_t> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
+ std::pair<uint64_t, uint64_t> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
+ x = x * k1 + Fetch64(s);
+
+ // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
+ len = (len - 1) & ~static_cast<size_t>(63);
+ do {
+ x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
+ y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
+ x ^= w.second;
+ y += v.first + Fetch64(s + 40);
+ z = Rotate(z + w.first, 33) * k1;
+ v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
+ w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
+ std::swap(z, x);
+ s += 64;
+ len -= 64;
+ } while (len != 0);
+ return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
+ HashLen16(v.second, w.second) + x);
+}
+
+uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
+ return CityHash64WithSeeds(s, len, k2, seed);
+}
+
+uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
+ uint64_t seed1) {
+ return HashLen16(CityHash64(s, len) - seed0, seed1);
+}
+
+// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings
+// of any length representable in signed long. Based on City and Murmur.
+static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
+ uint64_t a = Uint128Low64(seed);
+ uint64_t b = Uint128High64(seed);
+ uint64_t c = 0;
+ uint64_t d = 0;
+ int64_t l = len - 16;
+ if (l <= 0) { // len <= 16
+ a = ShiftMix(a * k1) * k1;
+ c = b * k1 + HashLen0to16(s, len);
+ d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c));
+ } else { // len > 16
+ c = HashLen16(Fetch64(s + len - 8) + k1, a);
+ d = HashLen16(b + len, c + Fetch64(s + len - 16));
+ a += d;
+ do {
+ a ^= ShiftMix(Fetch64(s) * k1) * k1;
+ a *= k1;
+ b ^= a;
+ c ^= ShiftMix(Fetch64(s + 8) * k1) * k1;
+ c *= k1;
+ d ^= c;
+ s += 16;
+ l -= 16;
+ } while (l > 0);
+ }
+ a = HashLen16(a, c);
+ b = HashLen16(d, b);
+ return uint128(a ^ b, HashLen16(b, a));
+}
+
+uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
+ if (len < 128) {
+ return CityMurmur(s, len, seed);
+ }
+
+ // We expect len >= 128 to be the common case. Keep 56 bytes of state:
+ // v, w, x, y, and z.
+ std::pair<uint64_t, uint64_t> v, w;
+ uint64_t x = Uint128Low64(seed);
+ uint64_t y = Uint128High64(seed);
+ uint64_t z = len * k1;
+ v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s);
+ v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8);
+ w.first = Rotate(y + z, 35) * k1 + x;
+ w.second = Rotate(x + Fetch64(s + 88), 53) * k1;
+
+ // This is the same inner loop as CityHash64(), manually unrolled.
+ do {
+ x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
+ y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
+ x ^= w.second;
+ y += v.first + Fetch64(s + 40);
+ z = Rotate(z + w.first, 33) * k1;
+ v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
+ w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
+ std::swap(z, x);
+ s += 64;
+ x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
+ y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
+ x ^= w.second;
+ y += v.first + Fetch64(s + 40);
+ z = Rotate(z + w.first, 33) * k1;
+ v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
+ w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
+ std::swap(z, x);
+ s += 64;
+ len -= 128;
+ } while (ABSL_PREDICT_TRUE(len >= 128));
+ x += Rotate(v.first + z, 49) * k0;
+ y = y * k0 + Rotate(w.second, 37);
+ z = z * k0 + Rotate(w.first, 27);
+ w.first *= 9;
+ v.first *= k0;
+ // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
+ for (size_t tail_done = 0; tail_done < len;) {
+ tail_done += 32;
+ y = Rotate(x + y, 42) * k0 + v.second;
+ w.first += Fetch64(s + len - tail_done + 16);
+ x = x * k0 + w.first;
+ z += w.second + Fetch64(s + len - tail_done);
+ w.second += v.first;
+ v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second);
+ v.first *= k0;
+ }
+ // At this point our 56 bytes of state should contain more than
+ // enough information for a strong 128-bit hash. We use two
+ // different 56-byte-to-8-byte hashes to get a 16-byte final result.
+ x = HashLen16(x, v.first);
+ y = HashLen16(y + z, w.first);
+ return uint128(HashLen16(x + v.second, w.second) + y,
+ HashLen16(x + w.second, y + v.second));
+}
+
+uint128 CityHash128(const char *s, size_t len) {
+ return len >= 16
+ ? CityHash128WithSeed(s + 16, len - 16,
+ uint128(Fetch64(s), Fetch64(s + 8) + k0))
+ : CityHash128WithSeed(s, len, uint128(k0, k1));
+}
+} // namespace hash_internal
+} // namespace absl
+
+#ifdef __SSE4_2__
+#include <nmmintrin.h>
+#include "absl/hash/internal/city_crc.h"
+
+namespace absl {
+namespace hash_internal {
+
+// Requires len >= 240.
+static void CityHashCrc256Long(const char *s, size_t len, uint32_t seed,
+ uint64_t *result) {
+ uint64_t a = Fetch64(s + 56) + k0;
+ uint64_t b = Fetch64(s + 96) + k0;
+ uint64_t c = result[0] = HashLen16(b, len);
+ uint64_t d = result[1] = Fetch64(s + 120) * k0 + len;
+ uint64_t e = Fetch64(s + 184) + seed;
+ uint64_t f = 0;
+ uint64_t g = 0;
+ uint64_t h = c + d;
+ uint64_t x = seed;
+ uint64_t y = 0;
+ uint64_t z = 0;
+
+ // 240 bytes of input per iter.
+ size_t iters = len / 240;
+ len -= iters * 240;
+ do {
+#undef CHUNK
+#define CHUNK(r) \
+ PERMUTE3(x, z, y); \
+ b += Fetch64(s); \
+ c += Fetch64(s + 8); \
+ d += Fetch64(s + 16); \
+ e += Fetch64(s + 24); \
+ f += Fetch64(s + 32); \
+ a += b; \
+ h += f; \
+ b += c; \
+ f += d; \
+ g += e; \
+ e += z; \
+ g += x; \
+ z = _mm_crc32_u64(z, b + g); \
+ y = _mm_crc32_u64(y, e + h); \
+ x = _mm_crc32_u64(x, f + a); \
+ e = Rotate(e, r); \
+ c += e; \
+ s += 40
+
+ CHUNK(0);
+ PERMUTE3(a, h, c);
+ CHUNK(33);
+ PERMUTE3(a, h, f);
+ CHUNK(0);
+ PERMUTE3(b, h, f);
+ CHUNK(42);
+ PERMUTE3(b, h, d);
+ CHUNK(0);
+ PERMUTE3(b, h, e);
+ CHUNK(33);
+ PERMUTE3(a, h, e);
+ } while (--iters > 0);
+
+ while (len >= 40) {
+ CHUNK(29);
+ e ^= Rotate(a, 20);
+ h += Rotate(b, 30);
+ g ^= Rotate(c, 40);
+ f += Rotate(d, 34);
+ PERMUTE3(c, h, g);
+ len -= 40;
+ }
+ if (len > 0) {
+ s = s + len - 40;
+ CHUNK(33);
+ e ^= Rotate(a, 43);
+ h += Rotate(b, 42);
+ g ^= Rotate(c, 41);
+ f += Rotate(d, 40);
+ }
+ result[0] ^= h;
+ result[1] ^= g;
+ g += h;
+ a = HashLen16(a, g + z);
+ x += y << 32;
+ b += x;
+ c = HashLen16(c, z) + h;
+ d = HashLen16(d, e + result[0]);
+ g += e;
+ h += HashLen16(x, f);
+ e = HashLen16(a, d) + g;
+ z = HashLen16(b, c) + a;
+ y = HashLen16(g, h) + c;
+ result[0] = e + z + y + x;
+ a = ShiftMix((a + y) * k0) * k0 + b;
+ result[1] += a + result[0];
+ a = ShiftMix(a * k0) * k0 + c;
+ result[2] = a + result[1];
+ a = ShiftMix((a + e) * k0) * k0;
+ result[3] = a + result[2];
+}
+
+// Requires len < 240.
+static void CityHashCrc256Short(const char *s, size_t len, uint64_t *result) {
+ char buf[240];
+ memcpy(buf, s, len);
+ memset(buf + len, 0, 240 - len);
+ CityHashCrc256Long(buf, 240, ~static_cast<uint32_t>(len), result);
+}
+
+void CityHashCrc256(const char *s, size_t len, uint64_t *result) {
+ if (ABSL_PREDICT_TRUE(len >= 240)) {
+ CityHashCrc256Long(s, len, 0, result);
+ } else {
+ CityHashCrc256Short(s, len, result);
+ }
+}
+
+uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed) {
+ if (len <= 900) {
+ return CityHash128WithSeed(s, len, seed);
+ } else {
+ uint64_t result[4];
+ CityHashCrc256(s, len, result);
+ uint64_t u = Uint128High64(seed) + result[0];
+ uint64_t v = Uint128Low64(seed) + result[1];
+ return uint128(HashLen16(u, v + result[2]),
+ HashLen16(Rotate(v, 32), u * k0 + result[3]));
+ }
+}
+
+uint128 CityHashCrc128(const char *s, size_t len) {
+ if (len <= 900) {
+ return CityHash128(s, len);
+ } else {
+ uint64_t result[4];
+ CityHashCrc256(s, len, result);
+ return uint128(result[2], result[3]);
+ }
+}
+
+} // namespace hash_internal
+} // namespace absl
+
+#endif
diff --git a/absl/hash/internal/city.h b/absl/hash/internal/city.h
new file mode 100644
index 0000000..55b37b8
--- /dev/null
+++ b/absl/hash/internal/city.h
@@ -0,0 +1,108 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// http://code.google.com/p/cityhash/
+//
+// This file provides a few functions for hashing strings. All of them are
+// high-quality functions in the sense that they pass standard tests such
+// as Austin Appleby's SMHasher. They are also fast.
+//
+// For 64-bit x86 code, on short strings, we don't know of anything faster than
+// CityHash64 that is of comparable quality. We believe our nearest competitor
+// is Murmur3. For 64-bit x86 code, CityHash64 is an excellent choice for hash
+// tables and most other hashing (excluding cryptography).
+//
+// For 64-bit x86 code, on long strings, the picture is more complicated.
+// On many recent Intel CPUs, such as Nehalem, Westmere, Sandy Bridge, etc.,
+// CityHashCrc128 appears to be faster than all competitors of comparable
+// quality. CityHash128 is also good but not quite as fast. We believe our
+// nearest competitor is Bob Jenkins' Spooky. We don't have great data for
+// other 64-bit CPUs, but for long strings we know that Spooky is slightly
+// faster than CityHash on some relatively recent AMD x86-64 CPUs, for example.
+// Note that CityHashCrc128 is declared in citycrc.h.
+//
+// For 32-bit x86 code, we don't know of anything faster than CityHash32 that
+// is of comparable quality. We believe our nearest competitor is Murmur3A.
+// (On 64-bit CPUs, it is typically faster to use the other CityHash variants.)
+//
+// Functions in the CityHash family are not suitable for cryptography.
+//
+// Please see CityHash's README file for more details on our performance
+// measurements and so on.
+//
+// WARNING: This code has been only lightly tested on big-endian platforms!
+// It is known to work well on little-endian platforms that have a small penalty
+// for unaligned reads, such as current Intel and AMD moderate-to-high-end CPUs.
+// It should work on all 32-bit and 64-bit platforms that allow unaligned reads;
+// bug reports are welcome.
+//
+// By the way, for some hash functions, given strings a and b, the hash
+// of a+b is easily derived from the hashes of a and b. This property
+// doesn't hold for any hash functions in this file.
+
+#ifndef ABSL_HASH_INTERNAL_CITY_H_
+#define ABSL_HASH_INTERNAL_CITY_H_
+
+#include <stdint.h>
+#include <stdlib.h> // for size_t.
+#include <utility>
+
+
+namespace absl {
+namespace hash_internal {
+
+typedef std::pair<uint64_t, uint64_t> uint128;
+
+inline uint64_t Uint128Low64(const uint128 &x) { return x.first; }
+inline uint64_t Uint128High64(const uint128 &x) { return x.second; }
+
+// Hash function for a byte array.
+uint64_t CityHash64(const char *s, size_t len);
+
+// Hash function for a byte array. For convenience, a 64-bit seed is also
+// hashed into the result.
+uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed);
+
+// Hash function for a byte array. For convenience, two seeds are also
+// hashed into the result.
+uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
+ uint64_t seed1);
+
+// Hash function for a byte array.
+uint128 CityHash128(const char *s, size_t len);
+
+// Hash function for a byte array. For convenience, a 128-bit seed is also
+// hashed into the result.
+uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed);
+
+// Hash function for a byte array. Most useful in 32-bit binaries.
+uint32_t CityHash32(const char *s, size_t len);
+
+// Hash 128 input bits down to 64 bits of output.
+// This is intended to be a reasonably good hash function.
+inline uint64_t Hash128to64(const uint128 &x) {
+ // Murmur-inspired hashing.
+ const uint64_t kMul = 0x9ddfea08eb382d69ULL;
+ uint64_t a = (Uint128Low64(x) ^ Uint128High64(x)) * kMul;
+ a ^= (a >> 47);
+ uint64_t b = (Uint128High64(x) ^ a) * kMul;
+ b ^= (b >> 47);
+ b *= kMul;
+ return b;
+}
+
+} // namespace hash_internal
+} // namespace absl
+
+#endif // ABSL_HASH_INTERNAL_CITY_H_
diff --git a/absl/hash/internal/city_crc.h b/absl/hash/internal/city_crc.h
new file mode 100644
index 0000000..6be6557
--- /dev/null
+++ b/absl/hash/internal/city_crc.h
@@ -0,0 +1,41 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// This file declares the subset of the CityHash functions that require
+// _mm_crc32_u64(). See the CityHash README for details.
+//
+// Functions in the CityHash family are not suitable for cryptography.
+
+#ifndef ABSL_HASH_INTERNAL_CITY_CRC_H_
+#define ABSL_HASH_INTERNAL_CITY_CRC_H_
+
+#include "absl/hash/internal/city.h"
+
+namespace absl {
+namespace hash_internal {
+
+// Hash function for a byte array.
+uint128 CityHashCrc128(const char *s, size_t len);
+
+// Hash function for a byte array. For convenience, a 128-bit seed is also
+// hashed into the result.
+uint128 CityHashCrc128WithSeed(const char *s, size_t len, uint128 seed);
+
+// Hash function for a byte array. Sets result[0] ... result[3].
+void CityHashCrc256(const char *s, size_t len, uint64_t *result);
+
+} // namespace hash_internal
+} // namespace absl
+
+#endif // ABSL_HASH_INTERNAL_CITY_CRC_H_
diff --git a/absl/hash/internal/city_test.cc b/absl/hash/internal/city_test.cc
new file mode 100644
index 0000000..678da53
--- /dev/null
+++ b/absl/hash/internal/city_test.cc
@@ -0,0 +1,1812 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/hash/internal/city.h"
+
+#include <string.h>
+#include <cstdio>
+#include <iostream>
+#include "gtest/gtest.h"
+#ifdef __SSE4_2__
+#include "absl/hash/internal/city_crc.h"
+#endif
+
+namespace absl {
+namespace hash_internal {
+
+static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
+static const uint64_t kSeed0 = 1234567;
+static const uint64_t kSeed1 = k0;
+static const uint128 kSeed128(kSeed0, kSeed1);
+static const int kDataSize = 1 << 20;
+static const int kTestSize = 300;
+
+static char data[kDataSize];
+
+// Initialize data to pseudorandom values.
+void setup() {
+ uint64_t a = 9;
+ uint64_t b = 777;
+ for (int i = 0; i < kDataSize; i++) {
+ a += b;
+ b += a;
+ a = (a ^ (a >> 41)) * k0;
+ b = (b ^ (b >> 41)) * k0 + i;
+ uint8_t u = b >> 37;
+ memcpy(data + i, &u, 1); // uint8_t -> char
+ }
+}
+
+#define C(x) 0x##x##ULL
+static const uint64_t testdata[kTestSize][16] = {
+ {C(9ae16a3b2f90404f), C(75106db890237a4a), C(3feac5f636039766),
+ C(3df09dfc64c09a2b), C(3cb540c392e51e29), C(6b56343feac0663),
+ C(5b7bc50fd8e8ad92), C(3df09dfc64c09a2b), C(3cb540c392e51e29),
+ C(6b56343feac0663), C(5b7bc50fd8e8ad92), C(95162f24e6a5f930),
+ C(6808bdf4f1eb06e0), C(b3b1f3a67b624d82), C(c9a62f12bd4cd80b),
+ C(dc56d17a)},
+ {C(541150e87f415e96), C(1aef0d24b3148a1a), C(bacc300e1e82345a),
+ C(c3cdc41e1df33513), C(2c138ff2596d42f6), C(f58e9082aed3055f),
+ C(162e192b2957163d), C(c3cdc41e1df33513), C(2c138ff2596d42f6),
+ C(f58e9082aed3055f), C(162e192b2957163d), C(fb99e85e0d16f90c),
+ C(608462c15bdf27e8), C(e7d2c5c943572b62), C(1baaa9327642798c),
+ C(99929334)},
+ {C(f3786a4b25827c1), C(34ee1a2bf767bd1c), C(2f15ca2ebfb631f2),
+ C(3149ba1dac77270d), C(70e2e076e30703c), C(59bcc9659bc5296),
+ C(9ecbc8132ae2f1d7), C(3149ba1dac77270d), C(70e2e076e30703c),
+ C(59bcc9659bc5296), C(9ecbc8132ae2f1d7), C(a01d30789bad7cf2),
+ C(ae03fe371981a0e0), C(127e3883b8788934), C(d0ac3d4c0a6fca32),
+ C(4252edb7)},
+ {C(ef923a7a1af78eab), C(79163b1e1e9a9b18), C(df3b2aca6e1e4a30),
+ C(2193fb7620cbf23b), C(8b6a8ff06cda8302), C(1a44469afd3e091f),
+ C(8b0449376612506), C(2193fb7620cbf23b), C(8b6a8ff06cda8302),
+ C(1a44469afd3e091f), C(8b0449376612506), C(e9d9d41c32ad91d1),
+ C(b44ab09f58e3c608), C(19e9175f9fcf784), C(839b3c9581b4a480), C(ebc34f3c)},
+ {C(11df592596f41d88), C(843ec0bce9042f9c), C(cce2ea1e08b1eb30),
+ C(4d09e42f09cc3495), C(666236631b9f253b), C(d28b3763cd02b6a3),
+ C(43b249e57c4d0c1b), C(4d09e42f09cc3495), C(666236631b9f253b),
+ C(d28b3763cd02b6a3), C(43b249e57c4d0c1b), C(3887101c8adea101),
+ C(8a9355d4efc91df0), C(3e610944cc9fecfd), C(5bf9eb60b08ac0ce),
+ C(26f2b463)},
+ {C(831f448bdc5600b3), C(62a24be3120a6919), C(1b44098a41e010da),
+ C(dc07df53b949c6b), C(d2b11b2081aeb002), C(d212b02c1b13f772),
+ C(c0bed297b4be1912), C(dc07df53b949c6b), C(d2b11b2081aeb002),
+ C(d212b02c1b13f772), C(c0bed297b4be1912), C(682d3d2ad304e4af),
+ C(40e9112a655437a1), C(268b09f7ee09843f), C(6b9698d43859ca47),
+ C(b042c047)},
+ {C(3eca803e70304894), C(d80de767e4a920a), C(a51cfbb292efd53d),
+ C(d183dcda5f73edfa), C(3a93cbf40f30128c), C(1a92544d0b41dbda),
+ C(aec2c4bee81975e1), C(d183dcda5f73edfa), C(3a93cbf40f30128c),
+ C(1a92544d0b41dbda), C(aec2c4bee81975e1), C(5f91814d1126ba4b),
+ C(f8ac57eee87fcf1f), C(c55c644a5d0023cd), C(adb761e827825ff2),
+ C(e73bb0a8)},
+ {C(1b5a063fb4c7f9f1), C(318dbc24af66dee9), C(10ef7b32d5c719af),
+ C(b140a02ef5c97712), C(b7d00ef065b51b33), C(635121d532897d98),
+ C(532daf21b312a6d6), C(b140a02ef5c97712), C(b7d00ef065b51b33),
+ C(635121d532897d98), C(532daf21b312a6d6), C(c0b09b75d943910),
+ C(8c84dfb5ef2a8e96), C(e5c06034b0353433), C(3170faf1c33a45dd),
+ C(91dfdd75)},
+ {C(a0f10149a0e538d6), C(69d008c20f87419f), C(41b36376185b3e9e),
+ C(26b6689960ccf81d), C(55f23b27bb9efd94), C(3a17f6166dd765db),
+ C(c891a8a62931e782), C(26b6689960ccf81d), C(55f23b27bb9efd94),
+ C(3a17f6166dd765db), C(c891a8a62931e782), C(23852dc37ddd2607),
+ C(8b7f1b1ec897829e), C(d1d69452a54eed8a), C(56431f2bd766ec24),
+ C(c87f95de)},
+ {C(fb8d9c70660b910b), C(a45b0cc3476bff1b), C(b28d1996144f0207),
+ C(98ec31113e5e35d2), C(5e4aeb853f1b9aa7), C(bcf5c8fe4465b7c8),
+ C(b1ea3a8243996f15), C(98ec31113e5e35d2), C(5e4aeb853f1b9aa7),
+ C(bcf5c8fe4465b7c8), C(b1ea3a8243996f15), C(cabbccedb6407571),
+ C(d1e40a84c445ec3a), C(33302aa908cf4039), C(9f15f79211b5cdf8),
+ C(3f5538ef)},
+ {C(236827beae282a46), C(e43970221139c946), C(4f3ac6faa837a3aa),
+ C(71fec0f972248915), C(2170ec2061f24574), C(9eb346b6caa36e82),
+ C(2908f0fdbca48e73), C(71fec0f972248915), C(2170ec2061f24574),
+ C(9eb346b6caa36e82), C(2908f0fdbca48e73), C(8101c99f07c64abb),
+ C(b9f4b02b1b6a96a7), C(583a2b10cd222f88), C(199dae4cf9db24c), C(70eb1a1f)},
+ {C(c385e435136ecf7c), C(d9d17368ff6c4a08), C(1b31eed4e5251a67),
+ C(df01a322c43a6200), C(298b65a1714b5a7e), C(933b83f0aedf23c),
+ C(157bcb44d63f765a), C(df01a322c43a6200), C(298b65a1714b5a7e),
+ C(933b83f0aedf23c), C(157bcb44d63f765a), C(d6e9fc7a272d8b51),
+ C(3ee5073ef1a9b777), C(63149e31fac02c59), C(2f7979ff636ba1d8),
+ C(cfd63b83)},
+ {C(e3f6828b6017086d), C(21b4d1900554b3b0), C(bef38be1809e24f1),
+ C(d93251758985ee6c), C(32a9e9f82ba2a932), C(3822aacaa95f3329),
+ C(db349b2f90a490d8), C(d93251758985ee6c), C(32a9e9f82ba2a932),
+ C(3822aacaa95f3329), C(db349b2f90a490d8), C(8d49194a894a19ca),
+ C(79a78b06e42738e6), C(7e0f1eda3d390c66), C(1c291d7e641100a5),
+ C(894a52ef)},
+ {C(851fff285561dca0), C(4d1277d73cdf416f), C(28ccffa61010ebe2),
+ C(77a4ccacd131d9ee), C(e1d08eeb2f0e29aa), C(70b9e3051383fa45),
+ C(582d0120425caba), C(77a4ccacd131d9ee), C(e1d08eeb2f0e29aa),
+ C(70b9e3051383fa45), C(582d0120425caba), C(a740eef1846e4564),
+ C(572dddb74ac3ae00), C(fdb5ca9579163bbd), C(a649b9b799c615d2),
+ C(9cde6a54)},
+ {C(61152a63595a96d9), C(d1a3a91ef3a7ba45), C(443b6bb4a493ad0c),
+ C(a154296d11362d06), C(d0f0bf1f1cb02fc1), C(ccb87e09309f90d1),
+ C(b24a8e4881911101), C(a154296d11362d06), C(d0f0bf1f1cb02fc1),
+ C(ccb87e09309f90d1), C(b24a8e4881911101), C(1a481b4528559f58),
+ C(bf837a3150896995), C(4989ef6b941a3757), C(2e725ab72d0b2948),
+ C(6c4898d5)},
+ {C(44473e03be306c88), C(30097761f872472a), C(9fd1b669bfad82d7),
+ C(3bab18b164396783), C(47e385ff9d4c06f), C(18062081bf558df),
+ C(63416eb68f104a36), C(3bab18b164396783), C(47e385ff9d4c06f),
+ C(18062081bf558df), C(63416eb68f104a36), C(4abda1560c47ac80),
+ C(1ea0e63dc6587aee), C(33ec79d92ebc1de), C(94f9dccef771e048), C(13e1978e)},
+ {C(3ead5f21d344056), C(fb6420393cfb05c3), C(407932394cbbd303),
+ C(ac059617f5906673), C(94d50d3dcd3069a7), C(2b26c3b92dea0f0),
+ C(99b7374cc78fc3fb), C(ac059617f5906673), C(94d50d3dcd3069a7),
+ C(2b26c3b92dea0f0), C(99b7374cc78fc3fb), C(1a8e3c73cdd40ee8),
+ C(cbb5fca06747f45b), C(ceec44238b291841), C(28bf35cce9c90a25), C(51b4ba8)},
+ {C(6abbfde37ee03b5b), C(83febf188d2cc113), C(cda7b62d94d5b8ee),
+ C(a4375590b8ae7c82), C(168fd42f9ecae4ff), C(23bbde43de2cb214),
+ C(a8c333112a243c8c), C(a4375590b8ae7c82), C(168fd42f9ecae4ff),
+ C(23bbde43de2cb214), C(a8c333112a243c8c), C(10ac012e8c518b49),
+ C(64a44605d8b29458), C(a67e701d2a679075), C(3a3a20f43ec92303),
+ C(b6b06e40)},
+ {C(943e7ed63b3c080), C(1ef207e9444ef7f8), C(ef4a9f9f8c6f9b4a),
+ C(6b54fc38d6a84108), C(32f4212a47a4665), C(6b5a9a8f64ee1da6),
+ C(9f74e86c6da69421), C(6b54fc38d6a84108), C(32f4212a47a4665),
+ C(6b5a9a8f64ee1da6), C(9f74e86c6da69421), C(946dd0cb30c1a08e),
+ C(fdf376956907eaaa), C(a59074c6eec03028), C(b1a3abcf283f34ac), C(240a2f2)},
+ {C(d72ce05171ef8a1a), C(c6bd6bd869203894), C(c760e6396455d23a),
+ C(f86af0b40dcce7b), C(8d3c15d613394d3c), C(491e400491cd4ece),
+ C(7c19d3530ea3547f), C(f86af0b40dcce7b), C(8d3c15d613394d3c),
+ C(491e400491cd4ece), C(7c19d3530ea3547f), C(1362963a1dc32af9),
+ C(fb9bc11762e1385c), C(9e164ef1f5376083), C(6c15819b5e828a7e),
+ C(5dcefc30)},
+ {C(4182832b52d63735), C(337097e123eea414), C(b5a72ca0456df910),
+ C(7ebc034235bc122f), C(d9a7783d4edd8049), C(5f8b04a15ae42361),
+ C(fc193363336453dd), C(7ebc034235bc122f), C(d9a7783d4edd8049),
+ C(5f8b04a15ae42361), C(fc193363336453dd), C(9b6c50224ef8c4f8),
+ C(ba225c7942d16c3f), C(6f6d55226a73c412), C(abca061fe072152a),
+ C(7a48b105)},
+ {C(d6cdae892584a2cb), C(58de0fa4eca17dcd), C(43df30b8f5f1cb00),
+ C(9e4ea5a4941e097d), C(547e048d5a9daaba), C(eb6ecbb0b831d185),
+ C(e0168df5fad0c670), C(9e4ea5a4941e097d), C(547e048d5a9daaba),
+ C(eb6ecbb0b831d185), C(e0168df5fad0c670), C(afa9705f98c2c96a),
+ C(749436f48137a96b), C(759c041fc21df486), C(b23bf400107aa2ec),
+ C(fd55007b)},
+ {C(5c8e90bc267c5ee4), C(e9ae044075d992d9), C(f234cbfd1f0a1e59),
+ C(ce2744521944f14c), C(104f8032f99dc152), C(4e7f425bfac67ca7),
+ C(9461b911a1c6d589), C(ce2744521944f14c), C(104f8032f99dc152),
+ C(4e7f425bfac67ca7), C(9461b911a1c6d589), C(5e5ecc726db8b60d),
+ C(cce68b0586083b51), C(8a7f8e54a9cba0fc), C(42f010181d16f049),
+ C(6b95894c)},
+ {C(bbd7f30ac310a6f3), C(b23b570d2666685f), C(fb13fb08c9814fe7),
+ C(4ee107042e512374), C(1e2c8c0d16097e13), C(210c7500995aa0e6),
+ C(6c13190557106457), C(4ee107042e512374), C(1e2c8c0d16097e13),
+ C(210c7500995aa0e6), C(6c13190557106457), C(a99b31c96777f381),
+ C(8312ae8301d386c0), C(ed5042b2a4fa96a3), C(d71d1bb23907fe97),
+ C(3360e827)},
+ {C(36a097aa49519d97), C(8204380a73c4065), C(77c2004bdd9e276a),
+ C(6ee1f817ce0b7aee), C(e9dcb3507f0596ca), C(6bc63c666b5100e2),
+ C(e0b056f1821752af), C(6ee1f817ce0b7aee), C(e9dcb3507f0596ca),
+ C(6bc63c666b5100e2), C(e0b056f1821752af), C(8ea1114e60292678),
+ C(904b80b46becc77), C(46cd9bb6e9dff52f), C(4c91e3b698355540), C(45177e0b)},
+ {C(dc78cb032c49217), C(112464083f83e03a), C(96ae53e28170c0f5),
+ C(d367ff54952a958), C(cdad930657371147), C(aa24dc2a9573d5fe),
+ C(eb136daa89da5110), C(d367ff54952a958), C(cdad930657371147),
+ C(aa24dc2a9573d5fe), C(eb136daa89da5110), C(de623005f6d46057),
+ C(b50c0c92b95e9b7f), C(a8aa54050b81c978), C(573fb5c7895af9b5),
+ C(7c6fffe4)},
+ {C(441593e0da922dfe), C(936ef46061469b32), C(204a1921197ddd87),
+ C(50d8a70e7a8d8f56), C(256d150ae75dab76), C(e81f4c4a1989036a),
+ C(d0f8db365f9d7e00), C(50d8a70e7a8d8f56), C(256d150ae75dab76),
+ C(e81f4c4a1989036a), C(d0f8db365f9d7e00), C(753d686677b14522),
+ C(9f76e0cb6f2d0a66), C(ab14f95988ec0d39), C(97621d9da9c9812f),
+ C(bbc78da4)},
+ {C(2ba3883d71cc2133), C(72f2bbb32bed1a3c), C(27e1bd96d4843251),
+ C(a90f761e8db1543a), C(c339e23c09703cd8), C(f0c6624c4b098fd3),
+ C(1bae2053e41fa4d9), C(a90f761e8db1543a), C(c339e23c09703cd8),
+ C(f0c6624c4b098fd3), C(1bae2053e41fa4d9), C(3589e273c22ba059),
+ C(63798246e5911a0b), C(18e710ec268fc5dc), C(714a122de1d074f3),
+ C(c5c25d39)},
+ {C(f2b6d2adf8423600), C(7514e2f016a48722), C(43045743a50396ba),
+ C(23dacb811652ad4f), C(c982da480e0d4c7d), C(3a9c8ed5a399d0a9),
+ C(951b8d084691d4e4), C(23dacb811652ad4f), C(c982da480e0d4c7d),
+ C(3a9c8ed5a399d0a9), C(951b8d084691d4e4), C(d9f87b4988cff2f7),
+ C(217a191d986aa3bc), C(6ad23c56b480350), C(dd78673938ceb2e7), C(b6e5d06e)},
+ {C(38fffe7f3680d63c), C(d513325255a7a6d1), C(31ed47790f6ca62f),
+ C(c801faaa0a2e331f), C(491dbc58279c7f88), C(9c0178848321c97a),
+ C(9d934f814f4d6a3c), C(c801faaa0a2e331f), C(491dbc58279c7f88),
+ C(9c0178848321c97a), C(9d934f814f4d6a3c), C(606a3e4fc8763192),
+ C(bc15cb36a677ee84), C(52d5904157e1fe71), C(1588dd8b1145b79b),
+ C(6178504e)},
+ {C(b7477bf0b9ce37c6), C(63b1c580a7fd02a4), C(f6433b9f10a5dac),
+ C(68dd76db9d64eca7), C(36297682b64b67), C(42b192d71f414b7a),
+ C(79692cef44fa0206), C(68dd76db9d64eca7), C(36297682b64b67),
+ C(42b192d71f414b7a), C(79692cef44fa0206), C(f0979252f4776d07),
+ C(4b87cd4f1c9bbf52), C(51b84bbc6312c710), C(150720fbf85428a7),
+ C(bd4c3637)},
+ {C(55bdb0e71e3edebd), C(c7ab562bcf0568bc), C(43166332f9ee684f),
+ C(b2e25964cd409117), C(a010599d6287c412), C(fa5d6461e768dda2),
+ C(cb3ce74e8ec4f906), C(b2e25964cd409117), C(a010599d6287c412),
+ C(fa5d6461e768dda2), C(cb3ce74e8ec4f906), C(6120abfd541a2610),
+ C(aa88b148cc95794d), C(2686ca35df6590e3), C(c6b02d18616ce94d),
+ C(6e7ac474)},
+ {C(782fa1b08b475e7), C(fb7138951c61b23b), C(9829105e234fb11e),
+ C(9a8c431f500ef06e), C(d848581a580b6c12), C(fecfe11e13a2bdb4),
+ C(6c4fa0273d7db08c), C(9a8c431f500ef06e), C(d848581a580b6c12),
+ C(fecfe11e13a2bdb4), C(6c4fa0273d7db08c), C(482f43bf5ae59fcb),
+ C(f651fbca105d79e6), C(f09f78695d865817), C(7a99d0092085cf47),
+ C(1fb4b518)},
+ {C(c5dc19b876d37a80), C(15ffcff666cfd710), C(e8c30c72003103e2),
+ C(7870765b470b2c5d), C(78a9103ff960d82), C(7bb50ffc9fac74b3),
+ C(477e70ab2b347db2), C(7870765b470b2c5d), C(78a9103ff960d82),
+ C(7bb50ffc9fac74b3), C(477e70ab2b347db2), C(a625238bdf7c07cf),
+ C(1128d515174809f5), C(b0f1647e82f45873), C(17792d1c4f222c39),
+ C(31d13d6d)},
+ {C(5e1141711d2d6706), C(b537f6dee8de6933), C(3af0a1fbbe027c54),
+ C(ea349dbc16c2e441), C(38a7455b6a877547), C(5f97b9750e365411),
+ C(e8cde7f93af49a3), C(ea349dbc16c2e441), C(38a7455b6a877547),
+ C(5f97b9750e365411), C(e8cde7f93af49a3), C(ba101925ec1f7e26),
+ C(d5e84cab8192c71e), C(e256427726fdd633), C(a4f38e2c6116890d),
+ C(26fa72e3)},
+ {C(782edf6da001234f), C(f48cbd5c66c48f3), C(808754d1e64e2a32),
+ C(5d9dde77353b1a6d), C(11f58c54581fa8b1), C(da90fa7c28c37478),
+ C(5e9a2eafc670a88a), C(5d9dde77353b1a6d), C(11f58c54581fa8b1),
+ C(da90fa7c28c37478), C(5e9a2eafc670a88a), C(e35e1bc172e011ef),
+ C(bf9255a4450ae7fe), C(55f85194e26bc55f), C(4f327873e14d0e54),
+ C(6a7433bf)},
+ {C(d26285842ff04d44), C(8f38d71341eacca9), C(5ca436f4db7a883c),
+ C(bf41e5376b9f0eec), C(2252d21eb7e1c0e9), C(f4b70a971855e732),
+ C(40c7695aa3662afd), C(bf41e5376b9f0eec), C(2252d21eb7e1c0e9),
+ C(f4b70a971855e732), C(40c7695aa3662afd), C(770fe19e16ab73bb),
+ C(d603ebda6393d749), C(e58c62439aa50dbd), C(96d51e5a02d2d7cf),
+ C(4e6df758)},
+ {C(c6ab830865a6bae6), C(6aa8e8dd4b98815c), C(efe3846713c371e5),
+ C(a1924cbf0b5f9222), C(7f4872369c2b4258), C(cd6da30530f3ea89),
+ C(b7f8b9a704e6cea1), C(a1924cbf0b5f9222), C(7f4872369c2b4258),
+ C(cd6da30530f3ea89), C(b7f8b9a704e6cea1), C(fa06ff40433fd535),
+ C(fb1c36fe8f0737f1), C(bb7050561171f80), C(b1bc23235935d897), C(d57f63ea)},
+ {C(44b3a1929232892), C(61dca0e914fc217), C(a607cc142096b964),
+ C(f7dbc8433c89b274), C(2f5f70581c9b7d32), C(39bf5e5fec82dcca),
+ C(8ade56388901a619), C(f7dbc8433c89b274), C(2f5f70581c9b7d32),
+ C(39bf5e5fec82dcca), C(8ade56388901a619), C(c1c6a725caab3ea9),
+ C(c1c7906c2f80b898), C(9c3871a04cc884e6), C(df01813cbbdf217f),
+ C(52ef73b3)},
+ {C(4b603d7932a8de4f), C(fae64c464b8a8f45), C(8fafab75661d602a),
+ C(8ffe870ef4adc087), C(65bea2be41f55b54), C(82f3503f636aef1),
+ C(5f78a282378b6bb0), C(8ffe870ef4adc087), C(65bea2be41f55b54),
+ C(82f3503f636aef1), C(5f78a282378b6bb0), C(7bf2422c0beceddb),
+ C(9d238d4780114bd), C(7ad198311906597f), C(ec8f892c0422aca3), C(3cb36c3)},
+ {C(4ec0b54cf1566aff), C(30d2c7269b206bf4), C(77c22e82295e1061),
+ C(3df9b04434771542), C(feddce785ccb661f), C(a644aff716928297),
+ C(dd46aee73824b4ed), C(3df9b04434771542), C(feddce785ccb661f),
+ C(a644aff716928297), C(dd46aee73824b4ed), C(bf8d71879da29b02),
+ C(fc82dccbfc8022a0), C(31bfcd0d9f48d1d3), C(c64ee24d0e7b5f8b),
+ C(72c39bea)},
+ {C(ed8b7a4b34954ff7), C(56432de31f4ee757), C(85bd3abaa572b155),
+ C(7d2c38a926dc1b88), C(5245b9eb4cd6791d), C(fb53ab03b9ad0855),
+ C(3664026c8fc669d7), C(7d2c38a926dc1b88), C(5245b9eb4cd6791d),
+ C(fb53ab03b9ad0855), C(3664026c8fc669d7), C(45024d5080bc196),
+ C(b236ebec2cc2740), C(27231ad0e3443be4), C(145780b63f809250), C(a65aa25c)},
+ {C(5d28b43694176c26), C(714cc8bc12d060ae), C(3437726273a83fe6),
+ C(864b1b28ec16ea86), C(6a78a5a4039ec2b9), C(8e959533e35a766),
+ C(347b7c22b75ae65f), C(864b1b28ec16ea86), C(6a78a5a4039ec2b9),
+ C(8e959533e35a766), C(347b7c22b75ae65f), C(5005892bb61e647c),
+ C(fe646519b4a1894d), C(cd801026f74a8a53), C(8713463e9a1ab9ce),
+ C(74740539)},
+ {C(6a1ef3639e1d202e), C(919bc1bd145ad928), C(30f3f7e48c28a773),
+ C(2e8c49d7c7aaa527), C(5e2328fc8701db7c), C(89ef1afca81f7de8),
+ C(b1857db11985d296), C(2e8c49d7c7aaa527), C(5e2328fc8701db7c),
+ C(89ef1afca81f7de8), C(b1857db11985d296), C(17763d695f616115),
+ C(b8f7bf1fcdc8322c), C(cf0c61938ab07a27), C(1122d3e6edb4e866),
+ C(c3ae3c26)},
+ {C(159f4d9e0307b111), C(3e17914a5675a0c), C(af849bd425047b51),
+ C(3b69edadf357432b), C(3a2e311c121e6bf2), C(380fad1e288d57e5),
+ C(bf7c7e8ef0e3b83a), C(3b69edadf357432b), C(3a2e311c121e6bf2),
+ C(380fad1e288d57e5), C(bf7c7e8ef0e3b83a), C(92966d5f4356ae9b),
+ C(2a03fc66c4d6c036), C(2516d8bddb0d5259), C(b3ffe9737ff5090), C(f29db8a2)},
+ {C(cc0a840725a7e25b), C(57c69454396e193a), C(976eaf7eee0b4540),
+ C(cd7a46850b95e901), C(c57f7d060dda246f), C(6b9406ead64079bf),
+ C(11b28e20a573b7bd), C(cd7a46850b95e901), C(c57f7d060dda246f),
+ C(6b9406ead64079bf), C(11b28e20a573b7bd), C(2d6db356e9369ace),
+ C(dc0afe10fba193), C(5cdb10885dbbfce), C(5c700e205782e35a), C(1ef4cbf4)},
+ {C(a2b27ee22f63c3f1), C(9ebde0ce1b3976b2), C(2fe6a92a257af308),
+ C(8c1df927a930af59), C(a462f4423c9e384e), C(236542255b2ad8d9),
+ C(595d201a2c19d5bc), C(8c1df927a930af59), C(a462f4423c9e384e),
+ C(236542255b2ad8d9), C(595d201a2c19d5bc), C(22c87d4604a67f3),
+ C(585a06eb4bc44c4f), C(b4175a7ac7eabcd8), C(a457d3eeba14ab8c),
+ C(a9be6c41)},
+ {C(d8f2f234899bcab3), C(b10b037297c3a168), C(debea2c510ceda7f),
+ C(9498fefb890287ce), C(ae68c2be5b1a69a6), C(6189dfba34ed656c),
+ C(91658f95836e5206), C(9498fefb890287ce), C(ae68c2be5b1a69a6),
+ C(6189dfba34ed656c), C(91658f95836e5206), C(c0bb4fff32aecd4d),
+ C(94125f505a50eef9), C(6ac406e7cfbce5bb), C(344a4b1dcdb7f5d8), C(fa31801)},
+ {C(584f28543864844f), C(d7cee9fc2d46f20d), C(a38dca5657387205),
+ C(7a0b6dbab9a14e69), C(c6d0a9d6b0e31ac4), C(a674d85812c7cf6),
+ C(63538c0351049940), C(7a0b6dbab9a14e69), C(c6d0a9d6b0e31ac4),
+ C(a674d85812c7cf6), C(63538c0351049940), C(9710e5f0bc93d1d),
+ C(c2bea5bd7c54ddd4), C(48739af2bed0d32d), C(ba2c4e09e21fba85),
+ C(8331c5d8)},
+ {C(a94be46dd9aa41af), C(a57e5b7723d3f9bd), C(34bf845a52fd2f),
+ C(843b58463c8df0ae), C(74b258324e916045), C(bdd7353230eb2b38),
+ C(fad31fced7abade5), C(843b58463c8df0ae), C(74b258324e916045),
+ C(bdd7353230eb2b38), C(fad31fced7abade5), C(2436aeafb0046f85),
+ C(65bc9af9e5e33161), C(92733b1b3ae90628), C(f48143eaf78a7a89),
+ C(e9876db8)},
+ {C(9a87bea227491d20), C(a468657e2b9c43e7), C(af9ba60db8d89ef7),
+ C(cc76f429ea7a12bb), C(5f30eaf2bb14870a), C(434e824cb3e0cd11),
+ C(431a4d382e39d16e), C(cc76f429ea7a12bb), C(5f30eaf2bb14870a),
+ C(434e824cb3e0cd11), C(431a4d382e39d16e), C(9e51f913c4773a8),
+ C(32ab1925823d0add), C(99c61b54c1d8f69d), C(38cfb80f02b43b1f),
+ C(27b0604e)},
+ {C(27688c24958d1a5c), C(e3b4a1c9429cf253), C(48a95811f70d64bc),
+ C(328063229db22884), C(67e9c95f8ba96028), C(7c6bf01c60436075),
+ C(fa55161e7d9030b2), C(328063229db22884), C(67e9c95f8ba96028),
+ C(7c6bf01c60436075), C(fa55161e7d9030b2), C(dadbc2f0dab91681),
+ C(da39d7a4934ca11), C(162e845d24c1b45c), C(eb5b9dcd8c6ed31b), C(dcec07f2)},
+ {C(5d1d37790a1873ad), C(ed9cd4bcc5fa1090), C(ce51cde05d8cd96a),
+ C(f72c26e624407e66), C(a0eb541bdbc6d409), C(c3f40a2f40b3b213),
+ C(6a784de68794492d), C(f72c26e624407e66), C(a0eb541bdbc6d409),
+ C(c3f40a2f40b3b213), C(6a784de68794492d), C(10a38a23dbef7937),
+ C(6a5560f853252278), C(c3387bbf3c7b82ba), C(fbee7c12eb072805),
+ C(cff0a82a)},
+ {C(1f03fd18b711eea9), C(566d89b1946d381a), C(6e96e83fc92563ab),
+ C(405f66cf8cae1a32), C(d7261740d8f18ce6), C(fea3af64a413d0b2),
+ C(d64d1810e83520fe), C(405f66cf8cae1a32), C(d7261740d8f18ce6),
+ C(fea3af64a413d0b2), C(d64d1810e83520fe), C(e1334a00a580c6e8),
+ C(454049e1b52c15f), C(8895d823d9778247), C(efa7f2e88b826618), C(fec83621)},
+ {C(f0316f286cf527b6), C(f84c29538de1aa5a), C(7612ed3c923d4a71),
+ C(d4eccebe9393ee8a), C(2eb7867c2318cc59), C(1ce621fd700fe396),
+ C(686450d7a346878a), C(d4eccebe9393ee8a), C(2eb7867c2318cc59),
+ C(1ce621fd700fe396), C(686450d7a346878a), C(75a5f37579f8b4cb),
+ C(500cc16eb6541dc7), C(b7b02317b539d9a6), C(3519ddff5bc20a29), C(743d8dc)},
+ {C(297008bcb3e3401d), C(61a8e407f82b0c69), C(a4a35bff0524fa0e),
+ C(7a61d8f552a53442), C(821d1d8d8cfacf35), C(7cc06361b86d0559),
+ C(119b617a8c2be199), C(7a61d8f552a53442), C(821d1d8d8cfacf35),
+ C(7cc06361b86d0559), C(119b617a8c2be199), C(2996487da6721759),
+ C(61a901376070b91d), C(d88dee12ae9c9b3c), C(5665491be1fa53a7),
+ C(64d41d26)},
+ {C(43c6252411ee3be), C(b4ca1b8077777168), C(2746dc3f7da1737f),
+ C(2247a4b2058d1c50), C(1b3fa184b1d7bcc0), C(deb85613995c06ed),
+ C(cbe1d957485a3ccd), C(2247a4b2058d1c50), C(1b3fa184b1d7bcc0),
+ C(deb85613995c06ed), C(cbe1d957485a3ccd), C(dfe241f8f33c96b6),
+ C(6597eb05019c2109), C(da344b2a63a219cf), C(79b8e3887612378a),
+ C(acd90c81)},
+ {C(ce38a9a54fad6599), C(6d6f4a90b9e8755e), C(c3ecc79ff105de3f),
+ C(e8b9ee96efa2d0e), C(90122905c4ab5358), C(84f80c832d71979c),
+ C(229310f3ffbbf4c6), C(e8b9ee96efa2d0e), C(90122905c4ab5358),
+ C(84f80c832d71979c), C(229310f3ffbbf4c6), C(cc9eb42100cd63a7),
+ C(7a283f2f3da7b9f), C(359b061d314e7a72), C(d0d959720028862), C(7c746a4b)},
+ {C(270a9305fef70cf), C(600193999d884f3a), C(f4d49eae09ed8a1),
+ C(2e091b85660f1298), C(bfe37fae1cdd64c9), C(8dddfbab930f6494),
+ C(2ccf4b08f5d417a), C(2e091b85660f1298), C(bfe37fae1cdd64c9),
+ C(8dddfbab930f6494), C(2ccf4b08f5d417a), C(365c2ee85582fe6),
+ C(dee027bcd36db62a), C(b150994d3c7e5838), C(fdfd1a0e692e436d),
+ C(b1047e99)},
+ {C(e71be7c28e84d119), C(eb6ace59932736e6), C(70c4397807ba12c5),
+ C(7a9d77781ac53509), C(4489c3ccfda3b39c), C(fa722d4f243b4964),
+ C(25f15800bffdd122), C(7a9d77781ac53509), C(4489c3ccfda3b39c),
+ C(fa722d4f243b4964), C(25f15800bffdd122), C(ed85e4157fbd3297),
+ C(aab1967227d59efd), C(2199631212eb3839), C(3e4c19359aae1cc2),
+ C(d1fd1068)},
+ {C(b5b58c24b53aaa19), C(d2a6ab0773dd897f), C(ef762fe01ecb5b97),
+ C(9deefbcfa4cab1f1), C(b58f5943cd2492ba), C(a96dcc4d1f4782a7),
+ C(102b62a82309dde5), C(9deefbcfa4cab1f1), C(b58f5943cd2492ba),
+ C(a96dcc4d1f4782a7), C(102b62a82309dde5), C(35fe52684763b338),
+ C(afe2616651eaad1f), C(43e38715bdfa05e7), C(83c9ba83b5ec4a40),
+ C(56486077)},
+ {C(44dd59bd301995cf), C(3ccabd76493ada1a), C(540db4c87d55ef23),
+ C(cfc6d7adda35797), C(14c7d1f32332cf03), C(2d553ffbff3be99d),
+ C(c91c4ee0cb563182), C(cfc6d7adda35797), C(14c7d1f32332cf03),
+ C(2d553ffbff3be99d), C(c91c4ee0cb563182), C(9aa5e507f49136f0),
+ C(760c5dd1a82c4888), C(beea7e974a1cfb5c), C(640b247774fe4bf7),
+ C(6069be80)},
+ {C(b4d4789eb6f2630b), C(bf6973263ce8ef0e), C(d1c75c50844b9d3),
+ C(bce905900c1ec6ea), C(c30f304f4045487d), C(a5c550166b3a142b),
+ C(2f482b4e35327287), C(bce905900c1ec6ea), C(c30f304f4045487d),
+ C(a5c550166b3a142b), C(2f482b4e35327287), C(15b21ddddf355438),
+ C(496471fa3006bab), C(2a8fd458d06c1a32), C(db91e8ae812f0b8d), C(2078359b)},
+ {C(12807833c463737c), C(58e927ea3b3776b4), C(72dd20ef1c2f8ad0),
+ C(910b610de7a967bf), C(801bc862120f6bf5), C(9653efeed5897681),
+ C(f5367ff83e9ebbb3), C(910b610de7a967bf), C(801bc862120f6bf5),
+ C(9653efeed5897681), C(f5367ff83e9ebbb3), C(cf56d489afd1b0bf),
+ C(c7c793715cae3de8), C(631f91d64abae47c), C(5f1f42fb14a444a2),
+ C(9ea21004)},
+ {C(e88419922b87176f), C(bcf32f41a7ddbf6f), C(d6ebefd8085c1a0f),
+ C(d1d44fe99451ef72), C(ec951ba8e51e3545), C(c0ca86b360746e96),
+ C(aa679cc066a8040b), C(d1d44fe99451ef72), C(ec951ba8e51e3545),
+ C(c0ca86b360746e96), C(aa679cc066a8040b), C(51065861ece6ffc1),
+ C(76777368a2997e11), C(87f278f46731100c), C(bbaa4140bdba4527),
+ C(9c9cfe88)},
+ {C(105191e0ec8f7f60), C(5918dbfcca971e79), C(6b285c8a944767b9),
+ C(d3e86ac4f5eccfa4), C(e5399df2b106ca1), C(814aadfacd217f1d),
+ C(2754e3def1c405a9), C(d3e86ac4f5eccfa4), C(e5399df2b106ca1),
+ C(814aadfacd217f1d), C(2754e3def1c405a9), C(99290323b9f06e74),
+ C(a9782e043f271461), C(13c8b3b8c275a860), C(6038d620e581e9e7),
+ C(b70a6ddd)},
+ {C(a5b88bf7399a9f07), C(fca3ddfd96461cc4), C(ebe738fdc0282fc6),
+ C(69afbc800606d0fb), C(6104b97a9db12df7), C(fcc09198bb90bf9f),
+ C(c5e077e41a65ba91), C(69afbc800606d0fb), C(6104b97a9db12df7),
+ C(fcc09198bb90bf9f), C(c5e077e41a65ba91), C(db261835ee8aa08e),
+ C(db0ee662e5796dc9), C(fc1880ecec499e5f), C(648866fbe1502034),
+ C(dea37298)},
+ {C(d08c3f5747d84f50), C(4e708b27d1b6f8ac), C(70f70fd734888606),
+ C(909ae019d761d019), C(368bf4aab1b86ef9), C(308bd616d5460239),
+ C(4fd33269f76783ea), C(909ae019d761d019), C(368bf4aab1b86ef9),
+ C(308bd616d5460239), C(4fd33269f76783ea), C(7d53b37c19713eab),
+ C(6bba6eabda58a897), C(91abb50efc116047), C(4e902f347e0e0e35),
+ C(8f480819)},
+ {C(2f72d12a40044b4b), C(889689352fec53de), C(f03e6ad87eb2f36),
+ C(ef79f28d874b9e2d), C(b512089e8e63b76c), C(24dc06833bf193a9),
+ C(3c23308ba8e99d7e), C(ef79f28d874b9e2d), C(b512089e8e63b76c),
+ C(24dc06833bf193a9), C(3c23308ba8e99d7e), C(5ceff7b85cacefb7),
+ C(ef390338898cd73), C(b12967d7d2254f54), C(de874cbd8aef7b75), C(30b3b16)},
+ {C(aa1f61fdc5c2e11e), C(c2c56cd11277ab27), C(a1e73069fdf1f94f),
+ C(8184bab36bb79df0), C(c81929ce8655b940), C(301b11bf8a4d8ce8),
+ C(73126fd45ab75de9), C(8184bab36bb79df0), C(c81929ce8655b940),
+ C(301b11bf8a4d8ce8), C(73126fd45ab75de9), C(4bd6f76e4888229a),
+ C(9aae355b54a756d5), C(ca3de9726f6e99d5), C(83f80cac5bc36852),
+ C(f31bc4e8)},
+ {C(9489b36fe2246244), C(3355367033be74b8), C(5f57c2277cbce516),
+ C(bc61414f9802ecaf), C(8edd1e7a50562924), C(48f4ab74a35e95f2),
+ C(cc1afcfd99a180e7), C(bc61414f9802ecaf), C(8edd1e7a50562924),
+ C(48f4ab74a35e95f2), C(cc1afcfd99a180e7), C(517dd5e3acf66110),
+ C(7dd3ad9e8978b30d), C(1f6d5dfc70de812b), C(947daaba6441aaf3),
+ C(419f953b)},
+ {C(358d7c0476a044cd), C(e0b7b47bcbd8854f), C(ffb42ec696705519),
+ C(d45e44c263e95c38), C(df61db53923ae3b1), C(f2bc948cc4fc027c),
+ C(8a8000c6066772a3), C(d45e44c263e95c38), C(df61db53923ae3b1),
+ C(f2bc948cc4fc027c), C(8a8000c6066772a3), C(9fd93c942d31fa17),
+ C(d7651ecebe09cbd3), C(68682cefb6a6f165), C(541eb99a2dcee40e),
+ C(20e9e76d)},
+ {C(b0c48df14275265a), C(9da4448975905efa), C(d716618e414ceb6d),
+ C(30e888af70df1e56), C(4bee54bd47274f69), C(178b4059e1a0afe5),
+ C(6e2c96b7f58e5178), C(30e888af70df1e56), C(4bee54bd47274f69),
+ C(178b4059e1a0afe5), C(6e2c96b7f58e5178), C(bb429d3b9275e9bc),
+ C(c198013f09cafdc6), C(ec0a6ee4fb5de348), C(744e1e8ed2eb1eb0),
+ C(646f0ff8)},
+ {C(daa70bb300956588), C(410ea6883a240c6d), C(f5c8239fb5673eb3),
+ C(8b1d7bb4903c105f), C(cfb1c322b73891d4), C(5f3b792b22f07297),
+ C(fd64061f8be86811), C(8b1d7bb4903c105f), C(cfb1c322b73891d4),
+ C(5f3b792b22f07297), C(fd64061f8be86811), C(1d2db712921cfc2b),
+ C(cd1b2b2f2cee18ae), C(6b6f8790dc7feb09), C(46c179efa3f0f518),
+ C(eeb7eca8)},
+ {C(4ec97a20b6c4c7c2), C(5913b1cd454f29fd), C(a9629f9daf06d685),
+ C(852c9499156a8f3), C(3a180a6abfb79016), C(9fc3c4764037c3c9),
+ C(2890c42fc0d972cf), C(852c9499156a8f3), C(3a180a6abfb79016),
+ C(9fc3c4764037c3c9), C(2890c42fc0d972cf), C(1f92231d4e537651),
+ C(fab8bb07aa54b7b9), C(e05d2d771c485ed4), C(d50b34bf808ca731), C(8112bb9)},
+ {C(5c3323628435a2e8), C(1bea45ce9e72a6e3), C(904f0a7027ddb52e),
+ C(939f31de14dcdc7b), C(a68fdf4379df068), C(f169e1f0b835279d),
+ C(7498e432f9619b27), C(939f31de14dcdc7b), C(a68fdf4379df068),
+ C(f169e1f0b835279d), C(7498e432f9619b27), C(1aa2a1f11088e785),
+ C(d6ad72f45729de78), C(9a63814157c80267), C(55538e35c648e435),
+ C(85a6d477)},
+ {C(c1ef26bea260abdb), C(6ee423f2137f9280), C(df2118b946ed0b43),
+ C(11b87fb1b900cc39), C(e33e59b90dd815b1), C(aa6cb5c4bafae741),
+ C(739699951ca8c713), C(11b87fb1b900cc39), C(e33e59b90dd815b1),
+ C(aa6cb5c4bafae741), C(739699951ca8c713), C(2b4389a967310077),
+ C(1d5382568a31c2c9), C(55d1e787fbe68991), C(277c254bc31301e7),
+ C(56f76c84)},
+ {C(6be7381b115d653a), C(ed046190758ea511), C(de6a45ffc3ed1159),
+ C(a64760e4041447d0), C(e3eac49f3e0c5109), C(dd86c4d4cb6258e2),
+ C(efa9857afd046c7f), C(a64760e4041447d0), C(e3eac49f3e0c5109),
+ C(dd86c4d4cb6258e2), C(efa9857afd046c7f), C(fab793dae8246f16),
+ C(c9e3b121b31d094c), C(a2a0f55858465226), C(dba6f0ff39436344),
+ C(9af45d55)},
+ {C(ae3eece1711b2105), C(14fd3f4027f81a4a), C(abb7e45177d151db),
+ C(501f3e9b18861e44), C(465201170074e7d8), C(96d5c91970f2cb12),
+ C(40fd28c43506c95d), C(501f3e9b18861e44), C(465201170074e7d8),
+ C(96d5c91970f2cb12), C(40fd28c43506c95d), C(e86c4b07802aaff3),
+ C(f317d14112372a70), C(641b13e587711650), C(4915421ab1090eaa),
+ C(d1c33760)},
+ {C(376c28588b8fb389), C(6b045e84d8491ed2), C(4e857effb7d4e7dc),
+ C(154dd79fd2f984b4), C(f11171775622c1c3), C(1fbe30982e78e6f0),
+ C(a460a15dcf327e44), C(154dd79fd2f984b4), C(f11171775622c1c3),
+ C(1fbe30982e78e6f0), C(a460a15dcf327e44), C(f359e0900cc3d582),
+ C(7e11070447976d00), C(324e6daf276ea4b5), C(7aa6e2df0cc94fa2),
+ C(c56bbf69)},
+ {C(58d943503bb6748f), C(419c6c8e88ac70f6), C(586760cbf3d3d368),
+ C(b7e164979d5ccfc1), C(12cb4230d26bf286), C(f1bf910d44bd84cb),
+ C(b32c24c6a40272), C(b7e164979d5ccfc1), C(12cb4230d26bf286),
+ C(f1bf910d44bd84cb), C(b32c24c6a40272), C(11ed12e34c48c039),
+ C(b0c2538e51d0a6ac), C(4269bb773e1d553a), C(e35a9dbabd34867), C(abecfb9b)},
+ {C(dfff5989f5cfd9a1), C(bcee2e7ea3a96f83), C(681c7874adb29017),
+ C(3ff6c8ac7c36b63a), C(48bc8831d849e326), C(30b078e76b0214e2),
+ C(42954e6ad721b920), C(3ff6c8ac7c36b63a), C(48bc8831d849e326),
+ C(30b078e76b0214e2), C(42954e6ad721b920), C(f9aeb33d164b4472),
+ C(7b353b110831dbdc), C(16f64c82f44ae17b), C(b71244cc164b3b2b),
+ C(8de13255)},
+ {C(7fb19eb1a496e8f5), C(d49e5dfdb5c0833f), C(c0d5d7b2f7c48dc7),
+ C(1a57313a32f22dde), C(30af46e49850bf8b), C(aa0fe8d12f808f83),
+ C(443e31d70873bb6b), C(1a57313a32f22dde), C(30af46e49850bf8b),
+ C(aa0fe8d12f808f83), C(443e31d70873bb6b), C(bbeb67c49c9fdc13),
+ C(18f1e2a88f59f9d5), C(fb1b05038e5def11), C(d0450b5ce4c39c52),
+ C(a98ee299)},
+ {C(5dba5b0dadccdbaa), C(4ba8da8ded87fcdc), C(f693fdd25badf2f0),
+ C(e9029e6364286587), C(ae69f49ecb46726c), C(18e002679217c405),
+ C(bd6d66e85332ae9f), C(e9029e6364286587), C(ae69f49ecb46726c),
+ C(18e002679217c405), C(bd6d66e85332ae9f), C(6bf330b1c353dd2a),
+ C(74e9f2e71e3a4152), C(3f85560b50f6c413), C(d33a52a47eaed2b4),
+ C(3015f556)},
+ {C(688bef4b135a6829), C(8d31d82abcd54e8e), C(f95f8a30d55036d7),
+ C(3d8c90e27aa2e147), C(2ec937ce0aa236b4), C(89b563996d3a0b78),
+ C(39b02413b23c3f08), C(3d8c90e27aa2e147), C(2ec937ce0aa236b4),
+ C(89b563996d3a0b78), C(39b02413b23c3f08), C(8d475a2e64faf2d2),
+ C(48567f7dca46ecaf), C(254cda08d5f87a6d), C(ec6ae9f729c47039),
+ C(5a430e29)},
+ {C(d8323be05433a412), C(8d48fa2b2b76141d), C(3d346f23978336a5),
+ C(4d50c7537562033f), C(57dc7625b61dfe89), C(9723a9f4c08ad93a),
+ C(5309596f48ab456b), C(4d50c7537562033f), C(57dc7625b61dfe89),
+ C(9723a9f4c08ad93a), C(5309596f48ab456b), C(7e453088019d220f),
+ C(8776067ba6ab9714), C(67e1d06bd195de39), C(74a1a32f8994b918),
+ C(2797add0)},
+ {C(3b5404278a55a7fc), C(23ca0b327c2d0a81), C(a6d65329571c892c),
+ C(45504801e0e6066b), C(86e6c6d6152a3d04), C(4f3db1c53eca2952),
+ C(d24d69b3e9ef10f3), C(45504801e0e6066b), C(86e6c6d6152a3d04),
+ C(4f3db1c53eca2952), C(d24d69b3e9ef10f3), C(93a0de2219e66a70),
+ C(8932c7115ccb1f8a), C(5ef503fdf2841a8c), C(38064dd9efa80a41),
+ C(27d55016)},
+ {C(2a96a3f96c5e9bbc), C(8caf8566e212dda8), C(904de559ca16e45e),
+ C(f13bc2d9c2fe222e), C(be4ccec9a6cdccfd), C(37b2cbdd973a3ac9),
+ C(7b3223cd9c9497be), C(f13bc2d9c2fe222e), C(be4ccec9a6cdccfd),
+ C(37b2cbdd973a3ac9), C(7b3223cd9c9497be), C(d5904440f376f889),
+ C(62b13187699c473c), C(4751b89251f26726), C(9500d84fa3a61ba8),
+ C(84945a82)},
+ {C(22bebfdcc26d18ff), C(4b4d8dcb10807ba1), C(40265eee30c6b896),
+ C(3752b423073b119a), C(377dc5eb7c662bdb), C(2b9f07f93a6c25b9),
+ C(96f24ede2bdc0718), C(3752b423073b119a), C(377dc5eb7c662bdb),
+ C(2b9f07f93a6c25b9), C(96f24ede2bdc0718), C(f7699b12c31417bd),
+ C(17b366f401c58b2), C(bf60188d5f437b37), C(484436e56df17f04), C(3ef7e224)},
+ {C(627a2249ec6bbcc2), C(c0578b462a46735a), C(4974b8ee1c2d4f1f),
+ C(ebdbb918eb6d837f), C(8fb5f218dd84147c), C(c77dd1f881df2c54),
+ C(62eac298ec226dc3), C(ebdbb918eb6d837f), C(8fb5f218dd84147c),
+ C(c77dd1f881df2c54), C(62eac298ec226dc3), C(43eded83c4b60bd0),
+ C(9a0a403b5487503b), C(25f305d9147f0bda), C(3ad417f511bc1e64),
+ C(35ed8dc8)},
+ {C(3abaf1667ba2f3e0), C(ee78476b5eeadc1), C(7e56ac0a6ca4f3f4),
+ C(f1b9b413df9d79ed), C(a7621b6fd02db503), C(d92f7ba9928a4ffe),
+ C(53f56babdcae96a6), C(f1b9b413df9d79ed), C(a7621b6fd02db503),
+ C(d92f7ba9928a4ffe), C(53f56babdcae96a6), C(5302b89fc48713ab),
+ C(d03e3b04dbe7a2f2), C(fa74ef8af6d376a7), C(103c8cdea1050ef2),
+ C(6a75e43d)},
+ {C(3931ac68c5f1b2c9), C(efe3892363ab0fb0), C(40b707268337cd36),
+ C(a53a6b64b1ac85c9), C(d50e7f86ee1b832b), C(7bab08fdd26ba0a4),
+ C(7587743c18fe2475), C(a53a6b64b1ac85c9), C(d50e7f86ee1b832b),
+ C(7bab08fdd26ba0a4), C(7587743c18fe2475), C(e3b5d5d490cf5761),
+ C(dfc053f7d065edd5), C(42ffd8d5fb70129f), C(599ca38677cccdc3),
+ C(235d9805)},
+ {C(b98fb0606f416754), C(46a6e5547ba99c1e), C(c909d82112a8ed2),
+ C(dbfaae9642b3205a), C(f676a1339402bcb9), C(f4f12a5b1ac11f29),
+ C(7db8bad81249dee4), C(dbfaae9642b3205a), C(f676a1339402bcb9),
+ C(f4f12a5b1ac11f29), C(7db8bad81249dee4), C(b26e46f2da95922e),
+ C(2aaedd5e12e3c611), C(a0e2d9082966074), C(c64da8a167add63d), C(f7d69572)},
+ {C(7f7729a33e58fcc4), C(2e4bc1e7a023ead4), C(e707008ea7ca6222),
+ C(47418a71800334a0), C(d10395d8fc64d8a4), C(8257a30062cb66f),
+ C(6786f9b2dc1ff18a), C(47418a71800334a0), C(d10395d8fc64d8a4),
+ C(8257a30062cb66f), C(6786f9b2dc1ff18a), C(5633f437bb2f180f),
+ C(e5a3a405737d22d6), C(ca0ff1ef6f7f0b74), C(d0ae600684b16df8),
+ C(bacd0199)},
+ {C(42a0aa9ce82848b3), C(57232730e6bee175), C(f89bb3f370782031),
+ C(caa33cf9b4f6619c), C(b2c8648ad49c209f), C(9e89ece0712db1c0),
+ C(101d8274a711a54b), C(caa33cf9b4f6619c), C(b2c8648ad49c209f),
+ C(9e89ece0712db1c0), C(101d8274a711a54b), C(538e79f1e70135cd),
+ C(e1f5a76f983c844e), C(653c082fd66088fc), C(1b9c9b464b654958),
+ C(e428f50e)},
+ {C(6b2c6d38408a4889), C(de3ef6f68fb25885), C(20754f456c203361),
+ C(941f5023c0c943f9), C(dfdeb9564fd66f24), C(2140cec706b9d406),
+ C(7b22429b131e9c72), C(941f5023c0c943f9), C(dfdeb9564fd66f24),
+ C(2140cec706b9d406), C(7b22429b131e9c72), C(94215c22eb940f45),
+ C(d28b9ed474f7249a), C(6f25e88f2fbf9f56), C(b6718f9e605b38ac),
+ C(81eaaad3)},
+ {C(930380a3741e862a), C(348d28638dc71658), C(89dedcfd1654ea0d),
+ C(7e7f61684080106), C(837ace9794582976), C(5ac8ca76a357eb1b),
+ C(32b58308625661fb), C(7e7f61684080106), C(837ace9794582976),
+ C(5ac8ca76a357eb1b), C(32b58308625661fb), C(c09705c4572025d9),
+ C(f9187f6af0291303), C(1c0edd8ee4b02538), C(e6cb105daa0578a), C(addbd3e3)},
+ {C(94808b5d2aa25f9a), C(cec72968128195e0), C(d9f4da2bdc1e130f),
+ C(272d8dd74f3006cc), C(ec6c2ad1ec03f554), C(4ad276b249a5d5dd),
+ C(549a22a17c0cde12), C(272d8dd74f3006cc), C(ec6c2ad1ec03f554),
+ C(4ad276b249a5d5dd), C(549a22a17c0cde12), C(602119cb824d7cde),
+ C(f4d3cef240ef35fa), C(e889895e01911bc7), C(785a7e5ac20e852b),
+ C(e66dbca0)},
+ {C(b31abb08ae6e3d38), C(9eb9a95cbd9e8223), C(8019e79b7ee94ea9),
+ C(7b2271a7a3248e22), C(3b4f700e5a0ba523), C(8ebc520c227206fe),
+ C(da3f861490f5d291), C(7b2271a7a3248e22), C(3b4f700e5a0ba523),
+ C(8ebc520c227206fe), C(da3f861490f5d291), C(d08a689f9f3aa60e),
+ C(547c1b97a068661f), C(4b15a67fa29172f0), C(eaf40c085191d80f),
+ C(afe11fd5)},
+ {C(dccb5534a893ea1a), C(ce71c398708c6131), C(fe2396315457c164),
+ C(3f1229f4d0fd96fb), C(33130aa5fa9d43f2), C(e42693d5b34e63ab),
+ C(2f4ef2be67f62104), C(3f1229f4d0fd96fb), C(33130aa5fa9d43f2),
+ C(e42693d5b34e63ab), C(2f4ef2be67f62104), C(372e5153516e37b9),
+ C(af9ec142ab12cc86), C(777920c09345e359), C(e7c4a383bef8adc6),
+ C(a71a406f)},
+ {C(6369163565814de6), C(8feb86fb38d08c2f), C(4976933485cc9a20),
+ C(7d3e82d5ba29a90d), C(d5983cc93a9d126a), C(37e9dfd950e7b692),
+ C(80673be6a7888b87), C(7d3e82d5ba29a90d), C(d5983cc93a9d126a),
+ C(37e9dfd950e7b692), C(80673be6a7888b87), C(57f732dc600808bc),
+ C(59477199802cc78b), C(f824810eb8f2c2de), C(c4a3437f05b3b61c),
+ C(9d90eaf5)},
+ {C(edee4ff253d9f9b3), C(96ef76fb279ef0ad), C(a4d204d179db2460),
+ C(1f3dcdfa513512d6), C(4dc7ec07283117e4), C(4438bae88ae28bf9),
+ C(aa7eae72c9244a0d), C(1f3dcdfa513512d6), C(4dc7ec07283117e4),
+ C(4438bae88ae28bf9), C(aa7eae72c9244a0d), C(b9aedc8d3ecc72df),
+ C(b75a8eb090a77d62), C(6b15677f9cd91507), C(51d8282cb3a9ddbf),
+ C(6665db10)},
+ {C(941993df6e633214), C(929bc1beca5b72c6), C(141fc52b8d55572d),
+ C(b3b782ad308f21ed), C(4f2676485041dee0), C(bfe279aed5cb4bc8),
+ C(2a62508a467a22ff), C(b3b782ad308f21ed), C(4f2676485041dee0),
+ C(bfe279aed5cb4bc8), C(2a62508a467a22ff), C(e74d29eab742385d),
+ C(56b05cd90ecfc293), C(c603728ea73f8844), C(8638fcd21bc692c4),
+ C(9c977cbf)},
+ {C(859838293f64cd4c), C(484403b39d44ad79), C(bf674e64d64b9339),
+ C(44d68afda9568f08), C(478568ed51ca1d65), C(679c204ad3d9e766),
+ C(b28e788878488dc1), C(44d68afda9568f08), C(478568ed51ca1d65),
+ C(679c204ad3d9e766), C(b28e788878488dc1), C(d001a84d3a84fae6),
+ C(d376958fe4cb913e), C(17435277e36c86f0), C(23657b263c347aa6),
+ C(ee83ddd4)},
+ {C(c19b5648e0d9f555), C(328e47b2b7562993), C(e756b92ba4bd6a51),
+ C(c3314e362764ddb8), C(6481c084ee9ec6b5), C(ede23fb9a251771),
+ C(bd617f2643324590), C(c3314e362764ddb8), C(6481c084ee9ec6b5),
+ C(ede23fb9a251771), C(bd617f2643324590), C(d2d30c9b95e030f5),
+ C(8a517312ffc5795e), C(8b1f325033bd535e), C(3ee6e867e03f2892), C(26519cc)},
+ {C(f963b63b9006c248), C(9e9bf727ffaa00bc), C(c73bacc75b917e3a),
+ C(2c6aa706129cc54c), C(17a706f59a49f086), C(c7c1eec455217145),
+ C(6adfdc6e07602d42), C(2c6aa706129cc54c), C(17a706f59a49f086),
+ C(c7c1eec455217145), C(6adfdc6e07602d42), C(fb75fca30d848dd2),
+ C(5228c9ed14653ed4), C(953958910153b1a2), C(a430103a24f42a5d),
+ C(a485a53f)},
+ {C(6a8aa0852a8c1f3b), C(c8f1e5e206a21016), C(2aa554aed1ebb524),
+ C(fc3e3c322cd5d89b), C(b7e3911dc2bd4ebb), C(fcd6da5e5fae833a),
+ C(51ed3c41f87f9118), C(fc3e3c322cd5d89b), C(b7e3911dc2bd4ebb),
+ C(fcd6da5e5fae833a), C(51ed3c41f87f9118), C(f31750cbc19c420a),
+ C(186dab1abada1d86), C(ca7f88cb894b3cd7), C(2859eeb1c373790c),
+ C(f62bc412)},
+ {C(740428b4d45e5fb8), C(4c95a4ce922cb0a5), C(e99c3ba78feae796),
+ C(914f1ea2fdcebf5c), C(9566453c07cd0601), C(9841bf66d0462cd),
+ C(79140c1c18536aeb), C(914f1ea2fdcebf5c), C(9566453c07cd0601),
+ C(9841bf66d0462cd), C(79140c1c18536aeb), C(a963b930b05820c2),
+ C(6a7d9fa0c8c45153), C(64214c40d07cf39b), C(7057daf1d806c014),
+ C(8975a436)},
+ {C(658b883b3a872b86), C(2f0e303f0f64827a), C(975337e23dc45e1),
+ C(99468a917986162b), C(7b31434aac6e0af0), C(f6915c1562c7d82f),
+ C(e4071d82a6dd71db), C(99468a917986162b), C(7b31434aac6e0af0),
+ C(f6915c1562c7d82f), C(e4071d82a6dd71db), C(5f5331f077b5d996),
+ C(7b314ba21b747a4f), C(5a73cb9521da17f5), C(12ed435fae286d86),
+ C(94ff7f41)},
+ {C(6df0a977da5d27d4), C(891dd0e7cb19508), C(fd65434a0b71e680),
+ C(8799e4740e573c50), C(9e739b52d0f341e8), C(cdfd34ba7d7b03eb),
+ C(5061812ce6c88499), C(8799e4740e573c50), C(9e739b52d0f341e8),
+ C(cdfd34ba7d7b03eb), C(5061812ce6c88499), C(612b8d8f2411dc5c),
+ C(878bd883d29c7787), C(47a846727182bb), C(ec4949508c8b3b9a), C(760aa031)},
+ {C(a900275464ae07ef), C(11f2cfda34beb4a3), C(9abf91e5a1c38e4),
+ C(8063d80ab26f3d6d), C(4177b4b9b4f0393f), C(6de42ba8672b9640),
+ C(d0bccdb72c51c18), C(8063d80ab26f3d6d), C(4177b4b9b4f0393f),
+ C(6de42ba8672b9640), C(d0bccdb72c51c18), C(af3f611b7f22cf12),
+ C(3863c41492645755), C(928c7a616a8f14f9), C(a82c78eb2eadc58b),
+ C(3bda76df)},
+ {C(810bc8aa0c40bcb0), C(448a019568d01441), C(f60ec52f60d3aeae),
+ C(52c44837aa6dfc77), C(15d8d8fccdd6dc5b), C(345b793ccfa93055),
+ C(932160fe802ca975), C(52c44837aa6dfc77), C(15d8d8fccdd6dc5b),
+ C(345b793ccfa93055), C(932160fe802ca975), C(a624b0dd93fc18cd),
+ C(d955b254c2037f1e), C(e540533d370a664c), C(2ba4ec12514e9d7), C(498e2e65)},
+ {C(22036327deb59ed7), C(adc05ceb97026a02), C(48bff0654262672b),
+ C(c791b313aba3f258), C(443c7757a4727bee), C(e30e4b2372171bdf),
+ C(f3db986c4156f3cb), C(c791b313aba3f258), C(443c7757a4727bee),
+ C(e30e4b2372171bdf), C(f3db986c4156f3cb), C(a939aefab97c6e15),
+ C(dbeb8acf1d5b0e6c), C(1e0eab667a795bba), C(80dd539902df4d50),
+ C(d38deb48)},
+ {C(7d14dfa9772b00c8), C(595735efc7eeaed7), C(29872854f94c3507),
+ C(bc241579d8348401), C(16dc832804d728f0), C(e9cc71ae64e3f09e),
+ C(bef634bc978bac31), C(bc241579d8348401), C(16dc832804d728f0),
+ C(e9cc71ae64e3f09e), C(bef634bc978bac31), C(7f64b1fa2a9129e),
+ C(71d831bd530ac7f3), C(c7ad0a8a6d5be6f1), C(82a7d3a815c7aaab),
+ C(82b3fb6b)},
+ {C(2d777cddb912675d), C(278d7b10722a13f9), C(f5c02bfb7cc078af),
+ C(4283001239888836), C(f44ca39a6f79db89), C(ed186122d71bcc9f),
+ C(8620017ab5f3ba3b), C(4283001239888836), C(f44ca39a6f79db89),
+ C(ed186122d71bcc9f), C(8620017ab5f3ba3b), C(e787472187f176c),
+ C(267e64c4728cf181), C(f1ba4b3007c15e30), C(8e3a75d5b02ecfc0),
+ C(e500e25f)},
+ {C(f2ec98824e8aa613), C(5eb7e3fb53fe3bed), C(12c22860466e1dd4),
+ C(374dd4288e0b72e5), C(ff8916db706c0df4), C(cb1a9e85de5e4b8d),
+ C(d4d12afb67a27659), C(374dd4288e0b72e5), C(ff8916db706c0df4),
+ C(cb1a9e85de5e4b8d), C(d4d12afb67a27659), C(feb69095d1ba175a),
+ C(e2003aab23a47fad), C(8163a3ecab894b49), C(46d356674ce041f6),
+ C(bd2bb07c)},
+ {C(5e763988e21f487f), C(24189de8065d8dc5), C(d1519d2403b62aa0),
+ C(9136456740119815), C(4d8ff7733b27eb83), C(ea3040bc0c717ef8),
+ C(7617ab400dfadbc), C(9136456740119815), C(4d8ff7733b27eb83),
+ C(ea3040bc0c717ef8), C(7617ab400dfadbc), C(fb336770c10b17a1),
+ C(6123b68b5b31f151), C(1e147d5f295eccf2), C(9ecbb1333556f977),
+ C(3a2b431d)},
+ {C(48949dc327bb96ad), C(e1fd21636c5c50b4), C(3f6eb7f13a8712b4),
+ C(14cf7f02dab0eee8), C(6d01750605e89445), C(4f1cf4006e613b78),
+ C(57c40c4db32bec3b), C(14cf7f02dab0eee8), C(6d01750605e89445),
+ C(4f1cf4006e613b78), C(57c40c4db32bec3b), C(1fde5a347f4a326e),
+ C(cb5a54308adb0e3f), C(14994b2ba447a23c), C(7067d0abb4257b68),
+ C(7322a83d)},
+ {C(b7c4209fb24a85c5), C(b35feb319c79ce10), C(f0d3de191833b922),
+ C(570d62758ddf6397), C(5e0204fb68a7b800), C(4383a9236f8b5a2b),
+ C(7bc1a64641d803a4), C(570d62758ddf6397), C(5e0204fb68a7b800),
+ C(4383a9236f8b5a2b), C(7bc1a64641d803a4), C(5434d61285099f7a),
+ C(d49449aacdd5dd67), C(97855ba0e9a7d75d), C(da67328062f3a62f),
+ C(a645ca1c)},
+ {C(9c9e5be0943d4b05), C(b73dc69e45201cbb), C(aab17180bfe5083d),
+ C(c738a77a9a55f0e2), C(705221addedd81df), C(fd9bd8d397abcfa3),
+ C(8ccf0004aa86b795), C(c738a77a9a55f0e2), C(705221addedd81df),
+ C(fd9bd8d397abcfa3), C(8ccf0004aa86b795), C(2bb5db2280068206),
+ C(8c22d29f307a01d), C(274a22de02f473c8), C(b8791870f4268182), C(8909a45a)},
+ {C(3898bca4dfd6638d), C(f911ff35efef0167), C(24bdf69e5091fc88),
+ C(9b82567ab6560796), C(891b69462b41c224), C(8eccc7e4f3af3b51),
+ C(381e54c3c8f1c7d0), C(9b82567ab6560796), C(891b69462b41c224),
+ C(8eccc7e4f3af3b51), C(381e54c3c8f1c7d0), C(c80fbc489a558a55),
+ C(1ba88e062a663af7), C(af7b1ef1c0116303), C(bd20e1a5a6b1a0cd),
+ C(bd30074c)},
+ {C(5b5d2557400e68e7), C(98d610033574cee), C(dfd08772ce385deb),
+ C(3c13e894365dc6c2), C(26fc7bbcda3f0ef), C(dbb71106cdbfea36),
+ C(785239a742c6d26d), C(3c13e894365dc6c2), C(26fc7bbcda3f0ef),
+ C(dbb71106cdbfea36), C(785239a742c6d26d), C(f810c415ae05b2f4),
+ C(bb9b9e7398526088), C(70128f1bf830a32b), C(bcc73f82b6410899),
+ C(c17cf001)},
+ {C(a927ed8b2bf09bb6), C(606e52f10ae94eca), C(71c2203feb35a9ee),
+ C(6e65ec14a8fb565), C(34bff6f2ee5a7f79), C(2e329a5be2c011b),
+ C(73161c93331b14f9), C(6e65ec14a8fb565), C(34bff6f2ee5a7f79),
+ C(2e329a5be2c011b), C(73161c93331b14f9), C(15d13f2408aecf88),
+ C(9f5b61b8a4b55b31), C(8fe25a43b296dba6), C(bdad03b7300f284e),
+ C(26ffd25a)},
+ {C(8d25746414aedf28), C(34b1629d28b33d3a), C(4d5394aea5f82d7b),
+ C(379f76458a3c8957), C(79dd080f9843af77), C(c46f0a7847f60c1d),
+ C(af1579c5797703cc), C(379f76458a3c8957), C(79dd080f9843af77),
+ C(c46f0a7847f60c1d), C(af1579c5797703cc), C(8b7d31f338755c14),
+ C(2eff97679512aaa8), C(df07d68e075179ed), C(c8fa6c7a729e7f1f),
+ C(f1d8ce3c)},
+ {C(b5bbdb73458712f2), C(1ff887b3c2a35137), C(7f7231f702d0ace9),
+ C(1e6f0910c3d25bd8), C(ad9e250862102467), C(1c842a07abab30cd),
+ C(cd8124176bac01ac), C(1e6f0910c3d25bd8), C(ad9e250862102467),
+ C(1c842a07abab30cd), C(cd8124176bac01ac), C(ea6ebe7a79b67edc),
+ C(73f598ac9db26713), C(4f4e72d7460b8fc), C(365dc4b9fdf13f21), C(3ee8fb17)},
+ {C(3d32a26e3ab9d254), C(fc4070574dc30d3a), C(f02629579c2b27c9),
+ C(b1cf09b0184a4834), C(5c03db48eb6cc159), C(f18c7fcf34d1df47),
+ C(dfb043419ecf1fa9), C(b1cf09b0184a4834), C(5c03db48eb6cc159),
+ C(f18c7fcf34d1df47), C(dfb043419ecf1fa9), C(dcd78d13f9ca658f),
+ C(4355d408ffe8e49f), C(81eefee908b593b4), C(590c213c20e981a3),
+ C(a77acc2a)},
+ {C(9371d3c35fa5e9a5), C(42967cf4d01f30), C(652d1eeae704145c),
+ C(ceaf1a0d15234f15), C(1450a54e45ba9b9), C(65e9c1fd885aa932),
+ C(354d4bc034ba8cbe), C(ceaf1a0d15234f15), C(1450a54e45ba9b9),
+ C(65e9c1fd885aa932), C(354d4bc034ba8cbe), C(8fd4ff484c08fb4b),
+ C(bf46749866f69ba0), C(cf1c21ede82c9477), C(4217548c43da109), C(f4556dee)},
+ {C(cbaa3cb8f64f54e0), C(76c3b48ee5c08417), C(9f7d24e87e61ce9),
+ C(85b8e53f22e19507), C(bb57137739ca486b), C(c77f131cca38f761),
+ C(c56ac3cf275be121), C(85b8e53f22e19507), C(bb57137739ca486b),
+ C(c77f131cca38f761), C(c56ac3cf275be121), C(9ec1a6c9109d2685),
+ C(3dad0922e76afdb0), C(fd58cbf952958103), C(7b04c908e78639a1),
+ C(de287a64)},
+ {C(b2e23e8116c2ba9f), C(7e4d9c0060101151), C(3310da5e5028f367),
+ C(adc52dddb76f6e5e), C(4aad4e925a962b68), C(204b79b7f7168e64),
+ C(df29ed6671c36952), C(adc52dddb76f6e5e), C(4aad4e925a962b68),
+ C(204b79b7f7168e64), C(df29ed6671c36952), C(e02927cac396d210),
+ C(5d500e71742b638a), C(5c9998af7f27b124), C(3fba9a2573dc2f7), C(878e55b9)},
+ {C(8aa77f52d7868eb9), C(4d55bd587584e6e2), C(d2db37041f495f5),
+ C(ce030d15b5fe2f4), C(86b4a7a0780c2431), C(ee070a9ae5b51db7),
+ C(edc293d9595be5d8), C(ce030d15b5fe2f4), C(86b4a7a0780c2431),
+ C(ee070a9ae5b51db7), C(edc293d9595be5d8), C(3dfc5ec108260a2b),
+ C(8afe28c7123bf4e2), C(da82ef38023a7a5f), C(3e1f77b0174b77c3), C(7648486)},
+ {C(858fea922c7fe0c3), C(cfe8326bf733bc6f), C(4e5e2018cf8f7dfc),
+ C(64fd1bc011e5bab7), C(5c9e858728015568), C(97ac42c2b00b29b1),
+ C(7f89caf08c109aee), C(64fd1bc011e5bab7), C(5c9e858728015568),
+ C(97ac42c2b00b29b1), C(7f89caf08c109aee), C(9a8af34fd0e9dacf),
+ C(bbc54161aa1507e0), C(7cda723ccbbfe5ee), C(2c289d839fb93f58),
+ C(57ac0fb1)},
+ {C(46ef25fdec8392b1), C(e48d7b6d42a5cd35), C(56a6fe1c175299ca),
+ C(fdfa836b41dcef62), C(2f8db8030e847e1b), C(5ba0a49ac4f9b0f8),
+ C(dae897ed3e3fce44), C(fdfa836b41dcef62), C(2f8db8030e847e1b),
+ C(5ba0a49ac4f9b0f8), C(dae897ed3e3fce44), C(9c432e31aef626e7),
+ C(9a36e1c6cd6e3dd), C(5095a167c34d19d), C(a70005cfa6babbea), C(d01967ca)},
+ {C(8d078f726b2df464), C(b50ee71cdcabb299), C(f4af300106f9c7ba),
+ C(7d222caae025158a), C(cc028d5fd40241b9), C(dd42515b639e6f97),
+ C(e08e86531a58f87f), C(7d222caae025158a), C(cc028d5fd40241b9),
+ C(dd42515b639e6f97), C(e08e86531a58f87f), C(d93612c835b37d7b),
+ C(91dd61729b2fa7f4), C(ba765a1bdda09db7), C(55258b451b2b1297),
+ C(96ecdf74)},
+ {C(35ea86e6960ca950), C(34fe1fe234fc5c76), C(a00207a3dc2a72b7),
+ C(80395e48739e1a67), C(74a67d8f7f43c3d7), C(dd2bdd1d62246c6e),
+ C(a1f44298ba80acf6), C(80395e48739e1a67), C(74a67d8f7f43c3d7),
+ C(dd2bdd1d62246c6e), C(a1f44298ba80acf6), C(ad86d86c187bf38),
+ C(26feea1f2eee240d), C(ed7f1fd066b23897), C(a768cf1e0fbb502), C(779f5506)},
+ {C(8aee9edbc15dd011), C(51f5839dc8462695), C(b2213e17c37dca2d),
+ C(133b299a939745c5), C(796e2aac053f52b3), C(e8d9fe1521a4a222),
+ C(819a8863e5d1c290), C(133b299a939745c5), C(796e2aac053f52b3),
+ C(e8d9fe1521a4a222), C(819a8863e5d1c290), C(c0737f0fe34d36ad),
+ C(e6d6d4a267a5cc31), C(98300a7911674c23), C(bef189661c257098),
+ C(3c94c2de)},
+ {C(c3e142ba98432dda), C(911d060cab126188), C(b753fbfa8365b844),
+ C(fd1a9ba5e71b08a2), C(7ac0dc2ed7778533), C(b543161ff177188a),
+ C(492fc08a6186f3f4), C(fd1a9ba5e71b08a2), C(7ac0dc2ed7778533),
+ C(b543161ff177188a), C(492fc08a6186f3f4), C(fc4745f516afd3b6),
+ C(88c30370a53080e), C(65a1bb34abc465e2), C(abbd14662911c8b3), C(39f98faf)},
+ {C(123ba6b99c8cd8db), C(448e582672ee07c4), C(cebe379292db9e65),
+ C(938f5bbab544d3d6), C(d2a95f9f2d376d73), C(68b2f16149e81aa3),
+ C(ad7e32f82d86c79d), C(938f5bbab544d3d6), C(d2a95f9f2d376d73),
+ C(68b2f16149e81aa3), C(ad7e32f82d86c79d), C(4574015ae8626ce2),
+ C(455aa6137386a582), C(658ad2542e8ec20), C(e31d7be2ca35d00), C(7af31199)},
+ {C(ba87acef79d14f53), C(b3e0fcae63a11558), C(d5ac313a593a9f45),
+ C(eea5f5a9f74af591), C(578710bcc36fbea2), C(7a8393432188931d),
+ C(705cfc5ec7cc172), C(eea5f5a9f74af591), C(578710bcc36fbea2),
+ C(7a8393432188931d), C(705cfc5ec7cc172), C(da85ebe5fc427976),
+ C(bfa5c7a454df54c8), C(4632b72a81bf66d2), C(5dd72877db539ee2),
+ C(e341a9d6)},
+ {C(bcd3957d5717dc3), C(2da746741b03a007), C(873816f4b1ece472),
+ C(2b826f1a2c08c289), C(da50f56863b55e74), C(b18712f6b3eed83b),
+ C(bdc7cc05ab4c685f), C(2b826f1a2c08c289), C(da50f56863b55e74),
+ C(b18712f6b3eed83b), C(bdc7cc05ab4c685f), C(9e45fb833d1b0af),
+ C(d7213081db29d82e), C(d2a6b6c6a09ed55e), C(98a7686cba323ca9),
+ C(ca24aeeb)},
+ {C(61442ff55609168e), C(6447c5fc76e8c9cf), C(6a846de83ae15728),
+ C(effc2663cffc777f), C(93214f8f463afbed), C(a156ef06066f4e4e),
+ C(a407b6ed8769d51e), C(effc2663cffc777f), C(93214f8f463afbed),
+ C(a156ef06066f4e4e), C(a407b6ed8769d51e), C(bb2f9ed29745c02a),
+ C(981eecd435b36ad9), C(461a5a05fb9cdff4), C(bd6cb2a87b9f910c),
+ C(b2252b57)},
+ {C(dbe4b1b2d174757f), C(506512da18712656), C(6857f3e0b8dd95f),
+ C(5a4fc2728a9bb671), C(ebb971522ec38759), C(1a5a093e6cf1f72b),
+ C(729b057fe784f504), C(5a4fc2728a9bb671), C(ebb971522ec38759),
+ C(1a5a093e6cf1f72b), C(729b057fe784f504), C(71fcbf42a767f9cf),
+ C(114cfe772da6cdd), C(60cdf9cb629d9d7a), C(e270d10ad088b24e), C(72c81da1)},
+ {C(531e8e77b363161c), C(eece0b43e2dae030), C(8294b82c78f34ed1),
+ C(e777b1fd580582f2), C(7b880f58da112699), C(562c6b189a6333f4),
+ C(139d64f88a611d4), C(e777b1fd580582f2), C(7b880f58da112699),
+ C(562c6b189a6333f4), C(139d64f88a611d4), C(53d8ef17eda64fa4),
+ C(bf3eded14dc60a04), C(2b5c559cf5ec07c5), C(8895f7339d03a48a),
+ C(6b9fce95)},
+ {C(f71e9c926d711e2b), C(d77af2853a4ceaa1), C(9aa0d6d76a36fae7),
+ C(dd16cd0fbc08393), C(29a414a5d8c58962), C(72793d8d1022b5b2),
+ C(2e8e69cf7cbffdf0), C(dd16cd0fbc08393), C(29a414a5d8c58962),
+ C(72793d8d1022b5b2), C(2e8e69cf7cbffdf0), C(3721c0473aa99c9a),
+ C(1cff4ed9c31cd91c), C(4990735033cc482b), C(7fdf8c701c72f577),
+ C(19399857)},
+ {C(cb20ac28f52df368), C(e6705ee7880996de), C(9b665cc3ec6972f2),
+ C(4260e8c254e9924b), C(f197a6eb4591572d), C(8e867ff0fb7ab27c),
+ C(f95502fb503efaf3), C(4260e8c254e9924b), C(f197a6eb4591572d),
+ C(8e867ff0fb7ab27c), C(f95502fb503efaf3), C(30c41876b08e3e22),
+ C(958e2419e3cd22f4), C(f0f3aa1fe119a107), C(481662310a379100),
+ C(3c57a994)},
+ {C(e4a794b4acb94b55), C(89795358057b661b), C(9c4cdcec176d7a70),
+ C(4890a83ee435bc8b), C(d8c1c00fceb00914), C(9e7111ba234f900f),
+ C(eb8dbab364d8b604), C(4890a83ee435bc8b), C(d8c1c00fceb00914),
+ C(9e7111ba234f900f), C(eb8dbab364d8b604), C(b3261452963eebb),
+ C(6cf94b02792c4f95), C(d88fa815ef1e8fc), C(2d687af66604c73), C(c053e729)},
+ {C(cb942e91443e7208), C(e335de8125567c2a), C(d4d74d268b86df1f),
+ C(8ba0fdd2ffc8b239), C(f413b366c1ffe02f), C(c05b2717c59a8a28),
+ C(981188eab4fcc8fb), C(8ba0fdd2ffc8b239), C(f413b366c1ffe02f),
+ C(c05b2717c59a8a28), C(981188eab4fcc8fb), C(e563f49a1d9072ba),
+ C(3c6a3aa4a26367dc), C(ba0db13448653f34), C(31065d756074d7d6),
+ C(51cbbba7)},
+ {C(ecca7563c203f7ba), C(177ae2423ef34bb2), C(f60b7243400c5731),
+ C(cf1edbfe7330e94e), C(881945906bcb3cc6), C(4acf0293244855da),
+ C(65ae042c1c2a28c2), C(cf1edbfe7330e94e), C(881945906bcb3cc6),
+ C(4acf0293244855da), C(65ae042c1c2a28c2), C(b25fa0a1cab33559),
+ C(d98e8daa28124131), C(fce17f50b9c351b3), C(3f995ccf7386864b),
+ C(1acde79a)},
+ {C(1652cb940177c8b5), C(8c4fe7d85d2a6d6d), C(f6216ad097e54e72),
+ C(f6521b912b368ae6), C(a9fe4eff81d03e73), C(d6f623629f80d1a3),
+ C(2b9604f32cb7dc34), C(f6521b912b368ae6), C(a9fe4eff81d03e73),
+ C(d6f623629f80d1a3), C(2b9604f32cb7dc34), C(2a43d84dcf59c7e2),
+ C(d0a197c70c5dae0b), C(6e84d4bbc71d76a0), C(c7e94620378c6cb2),
+ C(2d160d13)},
+ {C(31fed0fc04c13ce8), C(3d5d03dbf7ff240a), C(727c5c9b51581203),
+ C(6b5ffc1f54fecb29), C(a8e8e7ad5b9a21d9), C(c4d5a32cd6aac22d),
+ C(d7e274ad22d4a79a), C(6b5ffc1f54fecb29), C(a8e8e7ad5b9a21d9),
+ C(c4d5a32cd6aac22d), C(d7e274ad22d4a79a), C(368841ea5731a112),
+ C(feaf7bc2e73ca48f), C(636fb272e9ea1f6), C(5d9cb7580c3f6207), C(787f5801)},
+ {C(e7b668947590b9b3), C(baa41ad32938d3fa), C(abcbc8d4ca4b39e4),
+ C(381ee1b7ea534f4e), C(da3759828e3de429), C(3e015d76729f9955),
+ C(cbbec51a6485fbde), C(381ee1b7ea534f4e), C(da3759828e3de429),
+ C(3e015d76729f9955), C(cbbec51a6485fbde), C(9b86605281f20727),
+ C(fc6fcf508676982a), C(3b135f7a813a1040), C(d3a4706bea1db9c9),
+ C(c9629828)},
+ {C(1de2119923e8ef3c), C(6ab27c096cf2fe14), C(8c3658edca958891),
+ C(4cc8ed3ada5f0f2), C(4a496b77c1f1c04e), C(9085b0a862084201),
+ C(a1894bde9e3dee21), C(4cc8ed3ada5f0f2), C(4a496b77c1f1c04e),
+ C(9085b0a862084201), C(a1894bde9e3dee21), C(367fb472dc5b277d),
+ C(7d39ccca16fc6745), C(763f988d70db9106), C(a8b66f7fecb70f02),
+ C(be139231)},
+ {C(1269df1e69e14fa7), C(992f9d58ac5041b7), C(e97fcf695a7cbbb4),
+ C(e5d0549802d15008), C(424c134ecd0db834), C(6fc44fd91be15c6c),
+ C(a1a5ef95d50e537d), C(e5d0549802d15008), C(424c134ecd0db834),
+ C(6fc44fd91be15c6c), C(a1a5ef95d50e537d), C(d1e3daf5d05f5308),
+ C(4c7f81600eaa1327), C(109d1b8d1f9d0d2b), C(871e8699e0aeb862),
+ C(7df699ef)},
+ {C(820826d7aba567ff), C(1f73d28e036a52f3), C(41c4c5a73f3b0893),
+ C(aa0d74d4a98db89b), C(36fd486d07c56e1d), C(d0ad23cbb6660d8a),
+ C(1264a84665b35e19), C(aa0d74d4a98db89b), C(36fd486d07c56e1d),
+ C(d0ad23cbb6660d8a), C(1264a84665b35e19), C(789682bf7d781b33),
+ C(6bfa6abd2fb5722d), C(6779cb3623d33900), C(435ca5214e1ee5f0),
+ C(8ce6b96d)},
+ {C(ffe0547e4923cef9), C(3534ed49b9da5b02), C(548a273700fba03d),
+ C(28ac84ca70958f7e), C(d8ae575a68faa731), C(2aaaee9b9dcffd4c),
+ C(6c7faab5c285c6da), C(28ac84ca70958f7e), C(d8ae575a68faa731),
+ C(2aaaee9b9dcffd4c), C(6c7faab5c285c6da), C(45d94235f99ba78f),
+ C(ab5ea16f39497f5b), C(fb4d6c86fccbdca3), C(8104e6310a5fd2c7),
+ C(6f9ed99c)},
+ {C(72da8d1b11d8bc8b), C(ba94b56b91b681c6), C(4e8cc51bd9b0fc8c),
+ C(43505ed133be672a), C(e8f2f9d973c2774e), C(677b9b9c7cad6d97),
+ C(4e1f5d56ef17b906), C(43505ed133be672a), C(e8f2f9d973c2774e),
+ C(677b9b9c7cad6d97), C(4e1f5d56ef17b906), C(eea3a6038f983767),
+ C(87109f077f86db01), C(ecc1ca41f74d61cc), C(34a87e86e83bed17),
+ C(e0244796)},
+ {C(d62ab4e3f88fc797), C(ea86c7aeb6283ae4), C(b5b93e09a7fe465),
+ C(4344a1a0134afe2), C(ff5c17f02b62341d), C(3214c6a587ce4644),
+ C(a905e7ed0629d05c), C(4344a1a0134afe2), C(ff5c17f02b62341d),
+ C(3214c6a587ce4644), C(a905e7ed0629d05c), C(b5c72690cd716e82),
+ C(7c6097649e6ebe7b), C(7ceee8c6e56a4dcd), C(80ca849dc53eb9e4),
+ C(4ccf7e75)},
+ {C(d0f06c28c7b36823), C(1008cb0874de4bb8), C(d6c7ff816c7a737b),
+ C(489b697fe30aa65f), C(4da0fb621fdc7817), C(dc43583b82c58107),
+ C(4b0261debdec3cd6), C(489b697fe30aa65f), C(4da0fb621fdc7817),
+ C(dc43583b82c58107), C(4b0261debdec3cd6), C(a9748d7b6c0e016c),
+ C(7e8828f7ba4b034b), C(da0fa54348a2512a), C(ebf9745c0962f9ad),
+ C(915cef86)},
+ {C(99b7042460d72ec6), C(2a53e5e2b8e795c2), C(53a78132d9e1b3e3),
+ C(c043e67e6fc64118), C(ff0abfe926d844d3), C(f2a9fe5db2e910fe),
+ C(ce352cdc84a964dd), C(c043e67e6fc64118), C(ff0abfe926d844d3),
+ C(f2a9fe5db2e910fe), C(ce352cdc84a964dd), C(b89bc028aa5e6063),
+ C(a354e7fdac04459c), C(68d6547e6e980189), C(c968dddfd573773e),
+ C(5cb59482)},
+ {C(4f4dfcfc0ec2bae5), C(841233148268a1b8), C(9248a76ab8be0d3),
+ C(334c5a25b5903a8c), C(4c94fef443122128), C(743e7d8454655c40),
+ C(1ab1e6d1452ae2cd), C(334c5a25b5903a8c), C(4c94fef443122128),
+ C(743e7d8454655c40), C(1ab1e6d1452ae2cd), C(fec766de4a8e476c),
+ C(cc0929da9567e71b), C(5f9ef5b5f150c35a), C(87659cabd649768f),
+ C(6ca3f532)},
+ {C(fe86bf9d4422b9ae), C(ebce89c90641ef9c), C(1c84e2292c0b5659),
+ C(8bde625a10a8c50d), C(eb8271ded1f79a0b), C(14dc6844f0de7a3c),
+ C(f85b2f9541e7e6da), C(8bde625a10a8c50d), C(eb8271ded1f79a0b),
+ C(14dc6844f0de7a3c), C(f85b2f9541e7e6da), C(2fe22cfd1683b961),
+ C(ea1d75c5b7aa01ca), C(9eef60a44876bb95), C(950c818e505c6f7f),
+ C(e24f3859)},
+ {C(a90d81060932dbb0), C(8acfaa88c5fbe92b), C(7c6f3447e90f7f3f),
+ C(dd52fc14c8dd3143), C(1bc7508516e40628), C(3059730266ade626),
+ C(ffa526822f391c2), C(dd52fc14c8dd3143), C(1bc7508516e40628),
+ C(3059730266ade626), C(ffa526822f391c2), C(e25232d7afc8a406),
+ C(d2b8a5a3f3b5f670), C(6630f33edb7dfe32), C(c71250ba68c4ea86),
+ C(adf5a9c7)},
+ {C(17938a1b0e7f5952), C(22cadd2f56f8a4be), C(84b0d1183d5ed7c1),
+ C(c1336b92fef91bf6), C(80332a3945f33fa9), C(a0f68b86f726ff92),
+ C(a3db5282cf5f4c0b), C(c1336b92fef91bf6), C(80332a3945f33fa9),
+ C(a0f68b86f726ff92), C(a3db5282cf5f4c0b), C(82640b6fc4916607),
+ C(2dc2a3aa1a894175), C(8b4c852bdee7cc9), C(10b9d0a08b55ff83), C(32264b75)},
+ {C(de9e0cb0e16f6e6d), C(238e6283aa4f6594), C(4fb9c914c2f0a13b),
+ C(497cb912b670f3b), C(d963a3f02ff4a5b6), C(4fccefae11b50391),
+ C(42ba47db3f7672f), C(497cb912b670f3b), C(d963a3f02ff4a5b6),
+ C(4fccefae11b50391), C(42ba47db3f7672f), C(1d6b655a1889feef),
+ C(5f319abf8fafa19f), C(715c2e49deb14620), C(8d9153082ecdcea4),
+ C(a64b3376)},
+ {C(6d4b876d9b146d1a), C(aab2d64ce8f26739), C(d315f93600e83fe5),
+ C(2fe9fabdbe7fdd4), C(755db249a2d81a69), C(f27929f360446d71),
+ C(79a1bf957c0c1b92), C(2fe9fabdbe7fdd4), C(755db249a2d81a69),
+ C(f27929f360446d71), C(79a1bf957c0c1b92), C(3c8a28d4c936c9cd),
+ C(df0d3d13b2c6a902), C(c76702dd97cd2edd), C(1aa220f7be16517), C(d33890e)},
+ {C(e698fa3f54e6ea22), C(bd28e20e7455358c), C(9ace161f6ea76e66),
+ C(d53fb7e3c93a9e4), C(737ae71b051bf108), C(7ac71feb84c2df42),
+ C(3d8075cd293a15b4), C(d53fb7e3c93a9e4), C(737ae71b051bf108),
+ C(7ac71feb84c2df42), C(3d8075cd293a15b4), C(bf8cee5e095d8a7c),
+ C(e7086b3c7608143a), C(e55b0c2fa938d70c), C(fffb5f58e643649c),
+ C(926d4b63)},
+ {C(7bc0deed4fb349f7), C(1771aff25dc722fa), C(19ff0644d9681917),
+ C(cf7d7f25bd70cd2c), C(9464ed9baeb41b4f), C(b9064f5c3cb11b71),
+ C(237e39229b012b20), C(cf7d7f25bd70cd2c), C(9464ed9baeb41b4f),
+ C(b9064f5c3cb11b71), C(237e39229b012b20), C(dd54d3f5d982dffe),
+ C(7fc7562dbfc81dbf), C(5b0dd1924f70945), C(f1760537d8261135), C(d51ba539)},
+ {C(db4b15e88533f622), C(256d6d2419b41ce9), C(9d7c5378396765d5),
+ C(9040e5b936b8661b), C(276e08fa53ac27fd), C(8c944d39c2bdd2cc),
+ C(e2514c9802a5743c), C(9040e5b936b8661b), C(276e08fa53ac27fd),
+ C(8c944d39c2bdd2cc), C(e2514c9802a5743c), C(e82107b11ac90386),
+ C(7d6a22bc35055e6), C(fd6ea9d1c438d8ae), C(be6015149e981553), C(7f37636d)},
+ {C(922834735e86ecb2), C(363382685b88328e), C(e9c92960d7144630),
+ C(8431b1bfd0a2379c), C(90383913aea283f9), C(a6163831eb4924d2),
+ C(5f3921b4f9084aee), C(8431b1bfd0a2379c), C(90383913aea283f9),
+ C(a6163831eb4924d2), C(5f3921b4f9084aee), C(7a70061a1473e579),
+ C(5b19d80dcd2c6331), C(6196b97931faad27), C(869bf6828e237c3f),
+ C(b98026c0)},
+ {C(30f1d72c812f1eb8), C(b567cd4a69cd8989), C(820b6c992a51f0bc),
+ C(c54677a80367125e), C(3204fbdba462e606), C(8563278afc9eae69),
+ C(262147dd4bf7e566), C(c54677a80367125e), C(3204fbdba462e606),
+ C(8563278afc9eae69), C(262147dd4bf7e566), C(2178b63e7ee2d230),
+ C(e9c61ad81f5bff26), C(9af7a81b3c501eca), C(44104a3859f0238f),
+ C(b877767e)},
+ {C(168884267f3817e9), C(5b376e050f637645), C(1c18314abd34497a),
+ C(9598f6ab0683fcc2), C(1c805abf7b80e1ee), C(dec9ac42ee0d0f32),
+ C(8cd72e3912d24663), C(9598f6ab0683fcc2), C(1c805abf7b80e1ee),
+ C(dec9ac42ee0d0f32), C(8cd72e3912d24663), C(1f025d405f1c1d87),
+ C(bf7b6221e1668f8f), C(52316f64e692dbb0), C(7bf43df61ec51b39), C(aefae77)},
+ {C(82e78596ee3e56a7), C(25697d9c87f30d98), C(7600a8342834924d),
+ C(6ba372f4b7ab268b), C(8c3237cf1fe243df), C(3833fc51012903df),
+ C(8e31310108c5683f), C(6ba372f4b7ab268b), C(8c3237cf1fe243df),
+ C(3833fc51012903df), C(8e31310108c5683f), C(126593715c2de429),
+ C(48ca8f35a3f54b90), C(b9322b632f4f8b0), C(926bb169b7337693), C(f686911)},
+ {C(aa2d6cf22e3cc252), C(9b4dec4f5e179f16), C(76fb0fba1d99a99a),
+ C(9a62af3dbba140da), C(27857ea044e9dfc1), C(33abce9da2272647),
+ C(b22a7993aaf32556), C(9a62af3dbba140da), C(27857ea044e9dfc1),
+ C(33abce9da2272647), C(b22a7993aaf32556), C(bf8f88f8019bedf0),
+ C(ed2d7f01fb273905), C(6b45f15901b481cd), C(f88ebb413ba6a8d5),
+ C(3deadf12)},
+ {C(7bf5ffd7f69385c7), C(fc077b1d8bc82879), C(9c04e36f9ed83a24),
+ C(82065c62e6582188), C(8ef787fd356f5e43), C(2922e53e36e17dfa),
+ C(9805f223d385010b), C(82065c62e6582188), C(8ef787fd356f5e43),
+ C(2922e53e36e17dfa), C(9805f223d385010b), C(692154f3491b787d),
+ C(e7e64700e414fbf), C(757d4d4ab65069a0), C(cd029446a8e348e2), C(ccf02a4e)},
+ {C(e89c8ff9f9c6e34b), C(f54c0f669a49f6c4), C(fc3e46f5d846adef),
+ C(22f2aa3df2221cc), C(f66fea90f5d62174), C(b75defaeaa1dd2a7),
+ C(9b994cd9a7214fd5), C(22f2aa3df2221cc), C(f66fea90f5d62174),
+ C(b75defaeaa1dd2a7), C(9b994cd9a7214fd5), C(fac675a31804b773),
+ C(98bcb3b820c50fc6), C(e14af64d28cf0885), C(27466fbd2b360eb5),
+ C(176c1722)},
+ {C(a18fbcdccd11e1f4), C(8248216751dfd65e), C(40c089f208d89d7c),
+ C(229b79ab69ae97d), C(a87aabc2ec26e582), C(be2b053721eb26d2),
+ C(10febd7f0c3d6fcb), C(229b79ab69ae97d), C(a87aabc2ec26e582),
+ C(be2b053721eb26d2), C(10febd7f0c3d6fcb), C(9cc5b9b2f6e3bf7b),
+ C(655d8495fe624a86), C(6381a9f3d1f2bd7e), C(79ebabbfc25c83e2), C(26f82ad)},
+ {C(2d54f40cc4088b17), C(59d15633b0cd1399), C(a8cc04bb1bffd15b),
+ C(d332cdb073d8dc46), C(272c56466868cb46), C(7e7fcbe35ca6c3f3),
+ C(ee8f51e5a70399d4), C(d332cdb073d8dc46), C(272c56466868cb46),
+ C(7e7fcbe35ca6c3f3), C(ee8f51e5a70399d4), C(16737a9c7581fe7b),
+ C(ed04bf52f4b75dcb), C(9707ffb36bd30c1a), C(1390f236fdc0de3e),
+ C(b5244f42)},
+ {C(69276946cb4e87c7), C(62bdbe6183be6fa9), C(3ba9773dac442a1a),
+ C(702e2afc7f5a1825), C(8c49b11ea8151fdc), C(caf3fef61f5a86fa),
+ C(ef0b2ee8649d7272), C(702e2afc7f5a1825), C(8c49b11ea8151fdc),
+ C(caf3fef61f5a86fa), C(ef0b2ee8649d7272), C(9e34a4e08d9441e1),
+ C(7bdc0cd64d5af533), C(a926b14d99e3d868), C(fca923a17788cce4),
+ C(49a689e5)},
+ {C(668174a3f443df1d), C(407299392da1ce86), C(c2a3f7d7f2c5be28),
+ C(a590b202a7a5807b), C(968d2593f7ccb54e), C(9dd8d669e3e95dec),
+ C(ee0cc5dd58b6e93a), C(a590b202a7a5807b), C(968d2593f7ccb54e),
+ C(9dd8d669e3e95dec), C(ee0cc5dd58b6e93a), C(ac65d5a9466fb483),
+ C(221be538b2c9d806), C(5cbe9441784f9fd9), C(d4c7d5d6e3c122b8), C(59fcdd3)},
+ {C(5e29be847bd5046), C(b561c7f19c8f80c3), C(5e5abd5021ccaeaf),
+ C(7432d63888e0c306), C(74bbceeed479cb71), C(6471586599575fdf),
+ C(6a859ad23365cba2), C(7432d63888e0c306), C(74bbceeed479cb71),
+ C(6471586599575fdf), C(6a859ad23365cba2), C(f9ceec84acd18dcc),
+ C(74a242ff1907437c), C(f70890194e1ee913), C(777dfcb4bb01f0ba),
+ C(4f4b04e9)},
+ {C(cd0d79f2164da014), C(4c386bb5c5d6ca0c), C(8e771b03647c3b63),
+ C(69db23875cb0b715), C(ada8dd91504ae37f), C(46bf18dbf045ed6a),
+ C(e1b5f67b0645ab63), C(69db23875cb0b715), C(ada8dd91504ae37f),
+ C(46bf18dbf045ed6a), C(e1b5f67b0645ab63), C(877be8f5dcddff4),
+ C(6d471b5f9ca2e2d1), C(802c86d6f495b9bb), C(a1f9b9b22b3be704),
+ C(8b00f891)},
+ {C(e0e6fc0b1628af1d), C(29be5fb4c27a2949), C(1c3f781a604d3630),
+ C(c4af7faf883033aa), C(9bd296c4e9453cac), C(ca45426c1f7e33f9),
+ C(a6bbdcf7074d40c5), C(c4af7faf883033aa), C(9bd296c4e9453cac),
+ C(ca45426c1f7e33f9), C(a6bbdcf7074d40c5), C(e13a005d7142733b),
+ C(c02b7925c5eeefaf), C(d39119a60441e2d5), C(3c24c710df8f4d43),
+ C(16e114f3)},
+ {C(2058927664adfd93), C(6e8f968c7963baa5), C(af3dced6fff7c394),
+ C(42e34cf3d53c7876), C(9cddbb26424dc5e), C(64f6340a6d8eddad),
+ C(2196e488eb2a3a4b), C(42e34cf3d53c7876), C(9cddbb26424dc5e),
+ C(64f6340a6d8eddad), C(2196e488eb2a3a4b), C(c9e9da25911a16fd),
+ C(e21b4683f3e196a8), C(cb80bf1a4c6fdbb4), C(53792e9b3c3e67f8),
+ C(d6b6dadc)},
+ {C(dc107285fd8e1af7), C(a8641a0609321f3f), C(db06e89ffdc54466),
+ C(bcc7a81ed5432429), C(b6d7bdc6ad2e81f1), C(93605ec471aa37db),
+ C(a2a73f8a85a8e397), C(bcc7a81ed5432429), C(b6d7bdc6ad2e81f1),
+ C(93605ec471aa37db), C(a2a73f8a85a8e397), C(10a012b8ca7ac24b),
+ C(aac5fd63351595cf), C(5bb4c648a226dea0), C(9d11ecb2b5c05c5f),
+ C(897e20ac)},
+ {C(fbba1afe2e3280f1), C(755a5f392f07fce), C(9e44a9a15402809a),
+ C(6226a32e25099848), C(ea895661ecf53004), C(4d7e0158db2228b9),
+ C(e5a7d82922f69842), C(6226a32e25099848), C(ea895661ecf53004),
+ C(4d7e0158db2228b9), C(e5a7d82922f69842), C(2cea7713b69840ca),
+ C(18de7b9ae938375b), C(f127cca08f3cc665), C(b1c22d727665ad2), C(f996e05d)},
+ {C(bfa10785ddc1011b), C(b6e1c4d2f670f7de), C(517d95604e4fcc1f),
+ C(ca6552a0dfb82c73), C(b024cdf09e34ba07), C(66cd8c5a95d7393b),
+ C(e3939acf790d4a74), C(ca6552a0dfb82c73), C(b024cdf09e34ba07),
+ C(66cd8c5a95d7393b), C(e3939acf790d4a74), C(97827541a1ef051e),
+ C(ac2fce47ebe6500c), C(b3f06d3bddf3bd6a), C(1d74afb25e1ce5fe),
+ C(c4306af6)},
+ {C(534cc35f0ee1eb4e), C(b703820f1f3b3dce), C(884aa164cf22363),
+ C(f14ef7f47d8a57a3), C(80d1f86f2e061d7c), C(401d6c2f151b5a62),
+ C(e988460224108944), C(f14ef7f47d8a57a3), C(80d1f86f2e061d7c),
+ C(401d6c2f151b5a62), C(e988460224108944), C(7804d4135f68cd19),
+ C(5487b4b39e69fe8e), C(8cc5999015358a27), C(8f3729b61c2d5601),
+ C(6dcad433)},
+ {C(7ca6e3933995dac), C(fd118c77daa8188), C(3aceb7b5e7da6545),
+ C(c8389799445480db), C(5389f5df8aacd50d), C(d136581f22fab5f),
+ C(c2f31f85991da417), C(c8389799445480db), C(5389f5df8aacd50d),
+ C(d136581f22fab5f), C(c2f31f85991da417), C(aefbf9ff84035a43),
+ C(8accbaf44adadd7c), C(e57f3657344b67f5), C(21490e5e8abdec51),
+ C(3c07374d)},
+ {C(f0d6044f6efd7598), C(e044d6ba4369856e), C(91968e4f8c8a1a4c),
+ C(70bd1968996bffc2), C(4c613de5d8ab32ac), C(fe1f4f97206f79d8),
+ C(ac0434f2c4e213a9), C(70bd1968996bffc2), C(4c613de5d8ab32ac),
+ C(fe1f4f97206f79d8), C(ac0434f2c4e213a9), C(7490e9d82cfe22ca),
+ C(5fbbf7f987454238), C(c39e0dc8368ce949), C(22201d3894676c71),
+ C(f0f4602c)},
+ {C(3d69e52049879d61), C(76610636ea9f74fe), C(e9bf5602f89310c0),
+ C(8eeb177a86053c11), C(e390122c345f34a2), C(1e30e47afbaaf8d6),
+ C(7b892f68e5f91732), C(8eeb177a86053c11), C(e390122c345f34a2),
+ C(1e30e47afbaaf8d6), C(7b892f68e5f91732), C(b87922525fa44158),
+ C(f440a1ee1a1a766b), C(ee8efad279d08c5c), C(421f910c5b60216e),
+ C(3e1ea071)},
+ {C(79da242a16acae31), C(183c5f438e29d40), C(6d351710ae92f3de),
+ C(27233b28b5b11e9b), C(c7dfe8988a942700), C(570ed11c4abad984),
+ C(4b4c04632f48311a), C(27233b28b5b11e9b), C(c7dfe8988a942700),
+ C(570ed11c4abad984), C(4b4c04632f48311a), C(12f33235442cbf9),
+ C(a35315ca0b5b8cdb), C(d8abde62ead5506b), C(fc0fcf8478ad5266),
+ C(67580f0c)},
+ {C(461c82656a74fb57), C(d84b491b275aa0f7), C(8f262cb29a6eb8b2),
+ C(49fa3070bc7b06d0), C(f12ed446bd0c0539), C(6d43ac5d1dd4b240),
+ C(7609524fe90bec93), C(49fa3070bc7b06d0), C(f12ed446bd0c0539),
+ C(6d43ac5d1dd4b240), C(7609524fe90bec93), C(391c2b2e076ec241),
+ C(f5e62deda7839f7b), C(3c7b3186a10d870f), C(77ef4f2cba4f1005),
+ C(4e109454)},
+ {C(53c1a66d0b13003), C(731f060e6fe797fc), C(daa56811791371e3),
+ C(57466046cf6896ed), C(8ac37e0e8b25b0c6), C(3e6074b52ad3cf18),
+ C(aa491ce7b45db297), C(57466046cf6896ed), C(8ac37e0e8b25b0c6),
+ C(3e6074b52ad3cf18), C(aa491ce7b45db297), C(f7a9227c5e5e22c3),
+ C(3d92e0841e29ce28), C(2d30da5b2859e59d), C(ff37fa1c9cbfafc2),
+ C(88a474a7)},
+ {C(d3a2efec0f047e9), C(1cabce58853e58ea), C(7a17b2eae3256be4),
+ C(c2dcc9758c910171), C(cb5cddaeff4ddb40), C(5d7cc5869baefef1),
+ C(9644c5853af9cfeb), C(c2dcc9758c910171), C(cb5cddaeff4ddb40),
+ C(5d7cc5869baefef1), C(9644c5853af9cfeb), C(255c968184694ee1),
+ C(4e4d726eda360927), C(7d27dd5b6d100377), C(9a300e2020ddea2c), C(5b5bedd)},
+ {C(43c64d7484f7f9b2), C(5da002b64aafaeb7), C(b576c1e45800a716),
+ C(3ee84d3d5b4ca00b), C(5cbc6d701894c3f9), C(d9e946f5ae1ca95),
+ C(24ca06e67f0b1833), C(3ee84d3d5b4ca00b), C(5cbc6d701894c3f9),
+ C(d9e946f5ae1ca95), C(24ca06e67f0b1833), C(3413d46b4152650e),
+ C(cbdfdbc2ab516f9c), C(2aad8acb739e0c6c), C(2bfc950d9f9fa977),
+ C(1aaddfa7)},
+ {C(a7dec6ad81cf7fa1), C(180c1ab708683063), C(95e0fd7008d67cff),
+ C(6b11c5073687208), C(7e0a57de0d453f3), C(e48c267d4f646867),
+ C(2168e9136375f9cb), C(6b11c5073687208), C(7e0a57de0d453f3),
+ C(e48c267d4f646867), C(2168e9136375f9cb), C(64da194aeeea7fdf),
+ C(a3b9f01fa5885678), C(c316f8ee2eb2bd17), C(a7e4d80f83e4427f),
+ C(5be07fd8)},
+ {C(5408a1df99d4aff), C(b9565e588740f6bd), C(abf241813b08006e),
+ C(7da9e81d89fda7ad), C(274157cabe71440d), C(2c22d9a480b331f7),
+ C(e835c8ac746472d5), C(7da9e81d89fda7ad), C(274157cabe71440d),
+ C(2c22d9a480b331f7), C(e835c8ac746472d5), C(2038ce817a201ae4),
+ C(46f3289dfe1c5e40), C(435578a42d4b7c56), C(f96d9f409fcf561), C(cbca8606)},
+ {C(a8b27a6bcaeeed4b), C(aec1eeded6a87e39), C(9daf246d6fed8326),
+ C(d45a938b79f54e8f), C(366b219d6d133e48), C(5b14be3c25c49405),
+ C(fdd791d48811a572), C(d45a938b79f54e8f), C(366b219d6d133e48),
+ C(5b14be3c25c49405), C(fdd791d48811a572), C(3de67b8d9e95d335),
+ C(903c01307cfbeed5), C(af7d65f32274f1d1), C(4dba141b5fc03c42),
+ C(bde64d01)},
+ {C(9a952a8246fdc269), C(d0dcfcac74ef278c), C(250f7139836f0f1f),
+ C(c83d3c5f4e5f0320), C(694e7adeb2bf32e5), C(7ad09538a3da27f5),
+ C(2b5c18f934aa5303), C(c83d3c5f4e5f0320), C(694e7adeb2bf32e5),
+ C(7ad09538a3da27f5), C(2b5c18f934aa5303), C(c4dad7703d34326e),
+ C(825569e2bcdc6a25), C(b83d267709ca900d), C(44ed05151f5d74e6),
+ C(ee90cf33)},
+ {C(c930841d1d88684f), C(5eb66eb18b7f9672), C(e455d413008a2546),
+ C(bc271bc0df14d647), C(b071100a9ff2edbb), C(2b1a4c1cc31a119a),
+ C(b5d7caa1bd946cef), C(bc271bc0df14d647), C(b071100a9ff2edbb),
+ C(2b1a4c1cc31a119a), C(b5d7caa1bd946cef), C(e02623ae10f4aadd),
+ C(d79f600389cd06fd), C(1e8da7965303e62b), C(86f50e10eeab0925),
+ C(4305c3ce)},
+ {C(94dc6971e3cf071a), C(994c7003b73b2b34), C(ea16e85978694e5),
+ C(336c1b59a1fc19f6), C(c173acaecc471305), C(db1267d24f3f3f36),
+ C(e9a5ee98627a6e78), C(336c1b59a1fc19f6), C(c173acaecc471305),
+ C(db1267d24f3f3f36), C(e9a5ee98627a6e78), C(718f334204305ae5),
+ C(e3b53c148f98d22c), C(a184012df848926), C(6e96386127d51183), C(4b3a1d76)},
+ {C(7fc98006e25cac9), C(77fee0484cda86a7), C(376ec3d447060456),
+ C(84064a6dcf916340), C(fbf55a26790e0ebb), C(2e7f84151c31a5c2),
+ C(9f7f6d76b950f9bf), C(84064a6dcf916340), C(fbf55a26790e0ebb),
+ C(2e7f84151c31a5c2), C(9f7f6d76b950f9bf), C(125e094fbee2b146),
+ C(5706aa72b2eef7c2), C(1c4a2daa905ee66e), C(83d48029b5451694),
+ C(a8bb6d80)},
+ {C(bd781c4454103f6), C(612197322f49c931), C(b9cf17fd7e5462d5),
+ C(e38e526cd3324364), C(85f2b63a5b5e840a), C(485d7cef5aaadd87),
+ C(d2b837a462f6db6d), C(e38e526cd3324364), C(85f2b63a5b5e840a),
+ C(485d7cef5aaadd87), C(d2b837a462f6db6d), C(3e41cef031520d9a),
+ C(82df73902d7f67e), C(3ba6fd54c15257cb), C(22f91f079be42d40), C(1f9fa607)},
+ {C(da60e6b14479f9df), C(3bdccf69ece16792), C(18ebf45c4fecfdc9),
+ C(16818ee9d38c6664), C(5519fa9a1e35a329), C(cbd0001e4b08ed8),
+ C(41a965e37a0c731b), C(16818ee9d38c6664), C(5519fa9a1e35a329),
+ C(cbd0001e4b08ed8), C(41a965e37a0c731b), C(66e7b5dcca1ca28f),
+ C(963b2d993614347d), C(9b6fc6f41d411106), C(aaaecaccf7848c0c),
+ C(8d0e4ed2)},
+ {C(4ca56a348b6c4d3), C(60618537c3872514), C(2fbb9f0e65871b09),
+ C(30278016830ddd43), C(f046646d9012e074), C(c62a5804f6e7c9da),
+ C(98d51f5830e2bc1e), C(30278016830ddd43), C(f046646d9012e074),
+ C(c62a5804f6e7c9da), C(98d51f5830e2bc1e), C(7b2cbe5d37e3f29e),
+ C(7b8c3ed50bda4aa0), C(3ea60cc24639e038), C(f7706de9fb0b5801),
+ C(1bf31347)},
+ {C(ebd22d4b70946401), C(6863602bf7139017), C(c0b1ac4e11b00666),
+ C(7d2782b82bd494b6), C(97159ba1c26b304b), C(42b3b0fd431b2ac2),
+ C(faa81f82691c830c), C(7d2782b82bd494b6), C(97159ba1c26b304b),
+ C(42b3b0fd431b2ac2), C(faa81f82691c830c), C(7cc6449234c7e185),
+ C(aeaa6fa643ca86a5), C(1412db1c0f2e0133), C(4df2fe3e4072934f),
+ C(1ae3fc5b)},
+ {C(3cc4693d6cbcb0c), C(501689ea1c70ffa), C(10a4353e9c89e364),
+ C(58c8aba7475e2d95), C(3e2f291698c9427a), C(e8710d19c9de9e41),
+ C(65dda22eb04cf953), C(58c8aba7475e2d95), C(3e2f291698c9427a),
+ C(e8710d19c9de9e41), C(65dda22eb04cf953), C(d7729c48c250cffa),
+ C(ef76162b2ddfba4b), C(52371e17f4d51f6d), C(ddd002112ff0c833),
+ C(459c3930)},
+ {C(38908e43f7ba5ef0), C(1ab035d4e7781e76), C(41d133e8c0a68ff7),
+ C(d1090893afaab8bc), C(96c4fe6922772807), C(4522426c2b4205eb),
+ C(efad99a1262e7e0d), C(d1090893afaab8bc), C(96c4fe6922772807),
+ C(4522426c2b4205eb), C(efad99a1262e7e0d), C(c7696029abdb465e),
+ C(4e18eaf03d517651), C(d006bced54c86ac8), C(4330326d1021860c),
+ C(e00c4184)},
+ {C(34983ccc6aa40205), C(21802cad34e72bc4), C(1943e8fb3c17bb8),
+ C(fc947167f69c0da5), C(ae79cfdb91b6f6c1), C(7b251d04c26cbda3),
+ C(128a33a79060d25e), C(fc947167f69c0da5), C(ae79cfdb91b6f6c1),
+ C(7b251d04c26cbda3), C(128a33a79060d25e), C(1eca842dbfe018dd),
+ C(50a4cd2ee0ba9c63), C(c2f5c97d8399682f), C(3f929fc7cbe8ecbb),
+ C(ffc7a781)},
+ {C(86215c45dcac9905), C(ea546afe851cae4b), C(d85b6457e489e374),
+ C(b7609c8e70386d66), C(36e6ccc278d1636d), C(2f873307c08e6a1c),
+ C(10f252a758505289), C(b7609c8e70386d66), C(36e6ccc278d1636d),
+ C(2f873307c08e6a1c), C(10f252a758505289), C(c8977646e81ab4b6),
+ C(8017b745cd80213b), C(960687db359bea0), C(ef4a470660799488), C(6a125480)},
+ {C(420fc255c38db175), C(d503cd0f3c1208d1), C(d4684e74c825a0bc),
+ C(4c10537443152f3d), C(720451d3c895e25d), C(aff60c4d11f513fd),
+ C(881e8d6d2d5fb953), C(4c10537443152f3d), C(720451d3c895e25d),
+ C(aff60c4d11f513fd), C(881e8d6d2d5fb953), C(9dec034a043f1f55),
+ C(e27a0c22e7bfb39d), C(2220b959128324), C(53240272152dbd8b), C(88a1512b)},
+ {C(1d7a31f5bc8fe2f9), C(4763991092dcf836), C(ed695f55b97416f4),
+ C(f265edb0c1c411d7), C(30e1e9ec5262b7e6), C(c2c3ba061ce7957a),
+ C(d975f93b89a16409), C(f265edb0c1c411d7), C(30e1e9ec5262b7e6),
+ C(c2c3ba061ce7957a), C(d975f93b89a16409), C(e9d703123f43450a),
+ C(41383fedfed67c82), C(6e9f43ecbbbd6004), C(c7ccd23a24e77b8), C(549bbbe5)},
+ {C(94129a84c376a26e), C(c245e859dc231933), C(1b8f74fecf917453),
+ C(e9369d2e9007e74b), C(b1375915d1136052), C(926c2021fe1d2351),
+ C(1d943addaaa2e7e6), C(e9369d2e9007e74b), C(b1375915d1136052),
+ C(926c2021fe1d2351), C(1d943addaaa2e7e6), C(f5f515869c246738),
+ C(7e309cd0e1c0f2a0), C(153c3c36cf523e3b), C(4931c66872ea6758),
+ C(c133d38c)},
+ {C(1d3a9809dab05c8d), C(adddeb4f71c93e8), C(ef342eb36631edb),
+ C(301d7a61c4b3dbca), C(861336c3f0552d61), C(12c6db947471300f),
+ C(a679ef0ed761deb9), C(301d7a61c4b3dbca), C(861336c3f0552d61),
+ C(12c6db947471300f), C(a679ef0ed761deb9), C(5f713b720efcd147),
+ C(37ac330a333aa6b), C(3309dc9ec1616eef), C(52301d7a908026b5), C(fcace348)},
+ {C(90fa3ccbd60848da), C(dfa6e0595b569e11), C(e585d067a1f5135d),
+ C(6cef866ec295abea), C(c486c0d9214beb2d), C(d6e490944d5fe100),
+ C(59df3175d72c9f38), C(6cef866ec295abea), C(c486c0d9214beb2d),
+ C(d6e490944d5fe100), C(59df3175d72c9f38), C(3f23aeb4c04d1443),
+ C(9bf0515cd8d24770), C(958554f60ccaade2), C(5182863c90132fe8),
+ C(ed7b6f9a)},
+ {C(2dbb4fc71b554514), C(9650e04b86be0f82), C(60f2304fba9274d3),
+ C(fcfb9443e997cab), C(f13310d96dec2772), C(709cad2045251af2),
+ C(afd0d30cc6376dad), C(fcfb9443e997cab), C(f13310d96dec2772),
+ C(709cad2045251af2), C(afd0d30cc6376dad), C(59d4bed30d550d0d),
+ C(58006d4e22d8aad1), C(eee12d2362d1f13b), C(35cf1d7faaf1d228),
+ C(6d907dda)},
+ {C(b98bf4274d18374a), C(1b669fd4c7f9a19a), C(b1f5972b88ba2b7a),
+ C(73119c99e6d508be), C(5d4036a187735385), C(8fa66e192fd83831),
+ C(2abf64b6b592ed57), C(73119c99e6d508be), C(5d4036a187735385),
+ C(8fa66e192fd83831), C(2abf64b6b592ed57), C(d4501f95dd84b08c),
+ C(bf1552439c8bea02), C(4f56fe753ba7e0ba), C(4ca8d35cc058cfcd),
+ C(7a4d48d5)},
+ {C(d6781d0b5e18eb68), C(b992913cae09b533), C(58f6021caaee3a40),
+ C(aafcb77497b5a20b), C(411819e5e79b77a3), C(bd779579c51c77ce),
+ C(58d11f5dcf5d075d), C(aafcb77497b5a20b), C(411819e5e79b77a3),
+ C(bd779579c51c77ce), C(58d11f5dcf5d075d), C(9eae76cde1cb4233),
+ C(32fe25a9bf657970), C(1c0c807948edb06a), C(b8f29a3dfaee254d),
+ C(e686f3db)},
+ {C(226651cf18f4884c), C(595052a874f0f51c), C(c9b75162b23bab42),
+ C(3f44f873be4812ec), C(427662c1dbfaa7b2), C(a207ff9638fb6558),
+ C(a738d919e45f550f), C(3f44f873be4812ec), C(427662c1dbfaa7b2),
+ C(a207ff9638fb6558), C(a738d919e45f550f), C(cb186ea05717e7d6),
+ C(1ca7d68a5871fdc1), C(5d4c119ea8ef3750), C(72b6a10fa2ff9406), C(cce7c55)},
+ {C(a734fb047d3162d6), C(e523170d240ba3a5), C(125a6972809730e8),
+ C(d396a297799c24a1), C(8fee992e3069bad5), C(2e3a01b0697ccf57),
+ C(ee9c7390bd901cfa), C(d396a297799c24a1), C(8fee992e3069bad5),
+ C(2e3a01b0697ccf57), C(ee9c7390bd901cfa), C(56f2d9da0af28af2),
+ C(3fdd37b2fe8437cb), C(3d13eeeb60d6aec0), C(2432ae62e800a5ce), C(f58b96b)},
+ {C(c6df6364a24f75a3), C(c294e2c84c4f5df8), C(a88df65c6a89313b),
+ C(895fe8443183da74), C(c7f2f6f895a67334), C(a0d6b6a506691d31),
+ C(24f51712b459a9f0), C(895fe8443183da74), C(c7f2f6f895a67334),
+ C(a0d6b6a506691d31), C(24f51712b459a9f0), C(173a699481b9e088),
+ C(1dee9b77bcbf45d3), C(32b98a646a8667d0), C(3adcd4ee28f42a0e),
+ C(1bbf6f60)},
+ {C(d8d1364c1fbcd10), C(2d7cc7f54832deaa), C(4e22c876a7c57625),
+ C(a3d5d1137d30c4bd), C(1e7d706a49bdfb9e), C(c63282b20ad86db2),
+ C(aec97fa07916bfd6), C(a3d5d1137d30c4bd), C(1e7d706a49bdfb9e),
+ C(c63282b20ad86db2), C(aec97fa07916bfd6), C(7c9ba3e52d44f73e),
+ C(af62fd245811185d), C(8a9d2dacd8737652), C(bd2cce277d5fbec0),
+ C(ce5e0cc2)},
+ {C(aae06f9146db885f), C(3598736441e280d9), C(fba339b117083e55),
+ C(b22bf08d9f8aecf7), C(c182730de337b922), C(2b9adc87a0450a46),
+ C(192c29a9cfc00aad), C(b22bf08d9f8aecf7), C(c182730de337b922),
+ C(2b9adc87a0450a46), C(192c29a9cfc00aad), C(9fd733f1d84a59d9),
+ C(d86bd5c9839ace15), C(af20b57303172876), C(9f63cb7161b5364c),
+ C(584cfd6f)},
+ {C(8955ef07631e3bcc), C(7d70965ea3926f83), C(39aed4134f8b2db6),
+ C(882efc2561715a9c), C(ef8132a18a540221), C(b20a3c87a8c257c1),
+ C(f541b8628fad6c23), C(882efc2561715a9c), C(ef8132a18a540221),
+ C(b20a3c87a8c257c1), C(f541b8628fad6c23), C(9552aed57a6e0467),
+ C(4d9fdd56867611a7), C(c330279bf23b9eab), C(44dbbaea2fcb8eba),
+ C(8f9bbc33)},
+ {C(ad611c609cfbe412), C(d3c00b18bf253877), C(90b2172e1f3d0bfd),
+ C(371a98b2cb084883), C(33a2886ee9f00663), C(be9568818ed6e6bd),
+ C(f244a0fa2673469a), C(371a98b2cb084883), C(33a2886ee9f00663),
+ C(be9568818ed6e6bd), C(f244a0fa2673469a), C(b447050bd3e559e9),
+ C(d3b695dae7a13383), C(ded0bb65be471188), C(ca3c7a2b78922cae),
+ C(d7640d95)},
+ {C(d5339adc295d5d69), C(b633cc1dcb8b586a), C(ee84184cf5b1aeaf),
+ C(89f3aab99afbd636), C(f420e004f8148b9a), C(6818073faa797c7c),
+ C(dd3b4e21cbbf42ca), C(89f3aab99afbd636), C(f420e004f8148b9a),
+ C(6818073faa797c7c), C(dd3b4e21cbbf42ca), C(6a2b7db261164844),
+ C(cbead63d1895852a), C(93d37e1eae05e2f9), C(5d06db2703fbc3ae), C(3d12a2b)},
+ {C(40d0aeff521375a8), C(77ba1ad7ecebd506), C(547c6f1a7d9df427),
+ C(21c2be098327f49b), C(7e035065ac7bbef5), C(6d7348e63023fb35),
+ C(9d427dc1b67c3830), C(21c2be098327f49b), C(7e035065ac7bbef5),
+ C(6d7348e63023fb35), C(9d427dc1b67c3830), C(4e3d018a43858341),
+ C(cf924bb44d6b43c5), C(4618b6a26e3446ae), C(54d3013fac3ed469),
+ C(aaeafed0)},
+ {C(8b2d54ae1a3df769), C(11e7adaee3216679), C(3483781efc563e03),
+ C(9d097dd3152ab107), C(51e21d24126e8563), C(cba56cac884a1354),
+ C(39abb1b595f0a977), C(9d097dd3152ab107), C(51e21d24126e8563),
+ C(cba56cac884a1354), C(39abb1b595f0a977), C(81e6dd1c1109848f),
+ C(1644b209826d7b15), C(6ac67e4e4b4812f0), C(b3a9f5622c935bf7),
+ C(95b9b814)},
+ {C(99c175819b4eae28), C(932e8ff9f7a40043), C(ec78dcab07ca9f7c),
+ C(c1a78b82ba815b74), C(458cbdfc82eb322a), C(17f4a192376ed8d7),
+ C(6f9e92968bc8ccef), C(c1a78b82ba815b74), C(458cbdfc82eb322a),
+ C(17f4a192376ed8d7), C(6f9e92968bc8ccef), C(93e098c333b39905),
+ C(d59b1cace44b7fdc), C(f7a64ed78c64c7c5), C(7c6eca5dd87ec1ce),
+ C(45fbe66e)},
+ {C(2a418335779b82fc), C(af0295987849a76b), C(c12bc5ff0213f46e),
+ C(5aeead8d6cb25bb9), C(739315f7743ec3ff), C(9ab48d27111d2dcc),
+ C(5b87bd35a975929b), C(5aeead8d6cb25bb9), C(739315f7743ec3ff),
+ C(9ab48d27111d2dcc), C(5b87bd35a975929b), C(c3dd8d6d95a46bb3),
+ C(7bf9093215a4f483), C(cb557d6ed84285bd), C(daf58422f261fdb5),
+ C(b4baa7a8)},
+ {C(3b1fc6a3d279e67d), C(70ea1e49c226396), C(25505adcf104697c),
+ C(ba1ffba29f0367aa), C(a20bec1dd15a8b6c), C(e9bf61d2dab0f774),
+ C(f4f35bf5870a049c), C(ba1ffba29f0367aa), C(a20bec1dd15a8b6c),
+ C(e9bf61d2dab0f774), C(f4f35bf5870a049c), C(26787efa5b92385),
+ C(3d9533590ce30b59), C(a4da3e40530a01d4), C(6395deaefb70067c),
+ C(83e962fe)},
+ {C(d97eacdf10f1c3c9), C(b54f4654043a36e0), C(b128f6eb09d1234),
+ C(d8ad7ec84a9c9aa2), C(e256cffed11f69e6), C(2cf65e4958ad5bda),
+ C(cfbf9b03245989a7), C(d8ad7ec84a9c9aa2), C(e256cffed11f69e6),
+ C(2cf65e4958ad5bda), C(cfbf9b03245989a7), C(9fa51e6686cf4444),
+ C(9425c117a34609d5), C(b25f7e2c6f30e96), C(ea5477c3f2b5afd1), C(aac3531c)},
+ {C(293a5c1c4e203cd4), C(6b3329f1c130cefe), C(f2e32f8ec76aac91),
+ C(361e0a62c8187bff), C(6089971bb84d7133), C(93df7741588dd50b),
+ C(c2a9b6abcd1d80b1), C(361e0a62c8187bff), C(6089971bb84d7133),
+ C(93df7741588dd50b), C(c2a9b6abcd1d80b1), C(4d2f86869d79bc59),
+ C(85cd24d8aa570ff), C(b0dcf6ef0e94bbb5), C(2037c69aa7a78421), C(2b1db7cc)},
+ {C(4290e018ffaedde7), C(a14948545418eb5e), C(72d851b202284636),
+ C(4ec02f3d2f2b23f2), C(ab3580708aa7c339), C(cdce066fbab3f65),
+ C(d8ed3ecf3c7647b9), C(4ec02f3d2f2b23f2), C(ab3580708aa7c339),
+ C(cdce066fbab3f65), C(d8ed3ecf3c7647b9), C(6d2204b3e31f344a),
+ C(61a4d87f80ee61d7), C(446c43dbed4b728f), C(73130ac94f58747e),
+ C(cf00cd31)},
+ {C(f919a59cbde8bf2f), C(a56d04203b2dc5a5), C(38b06753ac871e48),
+ C(c2c9fc637dbdfcfa), C(292ab8306d149d75), C(7f436b874b9ffc07),
+ C(a5b56b0129218b80), C(c2c9fc637dbdfcfa), C(292ab8306d149d75),
+ C(7f436b874b9ffc07), C(a5b56b0129218b80), C(9188f7bdc47ec050),
+ C(cfe9345d03a15ade), C(40b520fb2750c49e), C(c2e83d343968af2e),
+ C(7d3c43b8)},
+ {C(1d70a3f5521d7fa4), C(fb97b3fdc5891965), C(299d49bbbe3535af),
+ C(e1a8286a7d67946e), C(52bd956f047b298), C(cbd74332dd4204ac),
+ C(12b5be7752721976), C(e1a8286a7d67946e), C(52bd956f047b298),
+ C(cbd74332dd4204ac), C(12b5be7752721976), C(278426e27f6204b6),
+ C(932ca7a7cd610181), C(41647321f0a5914d), C(48f4aa61a0ae80db),
+ C(cbd5fac6)},
+ {C(6af98d7b656d0d7c), C(d2e99ae96d6b5c0c), C(f63bd1603ef80627),
+ C(bde51033ac0413f8), C(bc0272f691aec629), C(6204332651bebc44),
+ C(1cbf00de026ea9bd), C(bde51033ac0413f8), C(bc0272f691aec629),
+ C(6204332651bebc44), C(1cbf00de026ea9bd), C(b9c7ed6a75f3ff1e),
+ C(7e310b76a5808e4f), C(acbbd1aad5531885), C(fc245f2473adeb9c),
+ C(76d0fec4)},
+ {C(395b7a8adb96ab75), C(582df7165b20f4a), C(e52bd30e9ff657f9),
+ C(6c71064996cbec8b), C(352c535edeefcb89), C(ac7f0aba15cd5ecd),
+ C(3aba1ca8353e5c60), C(6c71064996cbec8b), C(352c535edeefcb89),
+ C(ac7f0aba15cd5ecd), C(3aba1ca8353e5c60), C(5c30a288a80ce646),
+ C(c2940488b6617674), C(925f8cc66b370575), C(aa65d1283b9bb0ef),
+ C(405e3402)},
+ {C(3822dd82c7df012f), C(b9029b40bd9f122b), C(fd25b988468266c4),
+ C(43e47bd5bab1e0ef), C(4a71f363421f282f), C(880b2f32a2b4e289),
+ C(1299d4eda9d3eadf), C(43e47bd5bab1e0ef), C(4a71f363421f282f),
+ C(880b2f32a2b4e289), C(1299d4eda9d3eadf), C(d713a40226f5564),
+ C(4d8d34fedc769406), C(a85001b29cd9cac3), C(cae92352a41fd2b0),
+ C(c732c481)},
+ {C(79f7efe4a80b951a), C(dd3a3fddfc6c9c41), C(ab4c812f9e27aa40),
+ C(832954ec9d0de333), C(94c390aa9bcb6b8a), C(f3b32afdc1f04f82),
+ C(d229c3b72e4b9a74), C(832954ec9d0de333), C(94c390aa9bcb6b8a),
+ C(f3b32afdc1f04f82), C(d229c3b72e4b9a74), C(1d11860d7ed624a6),
+ C(cadee20b3441b984), C(75307079bf306f7b), C(87902aa3b9753ba4),
+ C(a8d123c9)},
+ {C(ae6e59f5f055921a), C(e9d9b7bf68e82), C(5ce4e4a5b269cc59),
+ C(4960111789727567), C(149b8a37c7125ab6), C(78c7a13ab9749382),
+ C(1c61131260ca151a), C(4960111789727567), C(149b8a37c7125ab6),
+ C(78c7a13ab9749382), C(1c61131260ca151a), C(1e93276b35c309a0),
+ C(2618f56230acde58), C(af61130a18e4febf), C(7145deb18e89befe),
+ C(1e80ad7d)},
+ {C(8959dbbf07387d36), C(b4658afce48ea35d), C(8f3f82437d8cb8d6),
+ C(6566d74954986ba5), C(99d5235cc82519a7), C(257a23805c2d825),
+ C(ad75ccb968e93403), C(6566d74954986ba5), C(99d5235cc82519a7),
+ C(257a23805c2d825), C(ad75ccb968e93403), C(b45bd4cf78e11f7f),
+ C(80c5536bdc487983), C(a4fd76ecbf018c8a), C(3b9dac78a7a70d43),
+ C(52aeb863)},
+ {C(4739613234278a49), C(99ea5bcd340bf663), C(258640912e712b12),
+ C(c8a2827404991402), C(7ee5e78550f02675), C(2ec53952db5ac662),
+ C(1526405a9df6794b), C(c8a2827404991402), C(7ee5e78550f02675),
+ C(2ec53952db5ac662), C(1526405a9df6794b), C(eddc6271170c5e1f),
+ C(f5a85f986001d9d6), C(95427c677bf58d58), C(53ed666dfa85cb29),
+ C(ef7c0c18)},
+ {C(420e6c926bc54841), C(96dbbf6f4e7c75cd), C(d8d40fa70c3c67bb),
+ C(3edbc10e4bfee91b), C(f0d681304c28ef68), C(77ea602029aaaf9c),
+ C(90f070bd24c8483c), C(3edbc10e4bfee91b), C(f0d681304c28ef68),
+ C(77ea602029aaaf9c), C(90f070bd24c8483c), C(28bc8e41e08ceb86),
+ C(1eb56e48a65691ef), C(9fea5301c9202f0e), C(3fcb65091aa9f135),
+ C(b6ad4b68)},
+ {C(c8601bab561bc1b7), C(72b26272a0ff869a), C(56fdfc986d6bc3c4),
+ C(83707730cad725d4), C(c9ca88c3a779674a), C(e1c696fbbd9aa933),
+ C(723f3baab1c17a45), C(83707730cad725d4), C(c9ca88c3a779674a),
+ C(e1c696fbbd9aa933), C(723f3baab1c17a45), C(f82abc7a1d851682),
+ C(30683836818e857d), C(78bfa3e89a5ab23f), C(6928234482b31817),
+ C(c1e46b17)},
+ {C(b2d294931a0e20eb), C(284ffd9a0815bc38), C(1f8a103aac9bbe6),
+ C(1ef8e98e1ea57269), C(5971116272f45a8b), C(187ad68ce95d8eac),
+ C(e94e93ee4e8ecaa6), C(1ef8e98e1ea57269), C(5971116272f45a8b),
+ C(187ad68ce95d8eac), C(e94e93ee4e8ecaa6), C(a0ff2a58611838b5),
+ C(b01e03849bfbae6f), C(d081e202e28ea3ab), C(51836bcee762bf13),
+ C(57b8df25)},
+ {C(7966f53c37b6c6d7), C(8e6abcfb3aa2b88f), C(7f2e5e0724e5f345),
+ C(3eeb60c3f5f8143d), C(a25aec05c422a24f), C(b026b03ad3cca4db),
+ C(e6e030028cc02a02), C(3eeb60c3f5f8143d), C(a25aec05c422a24f),
+ C(b026b03ad3cca4db), C(e6e030028cc02a02), C(16fe679338b34bfc),
+ C(c1be385b5c8a9de4), C(65af5df6567530eb), C(ed3b303df4dc6335),
+ C(e9fa36d6)},
+ {C(be9bb0abd03b7368), C(13bca93a3031be55), C(e864f4f52b55b472),
+ C(36a8d13a2cbb0939), C(254ac73907413230), C(73520d1522315a70),
+ C(8c9fdb5cf1e1a507), C(36a8d13a2cbb0939), C(254ac73907413230),
+ C(73520d1522315a70), C(8c9fdb5cf1e1a507), C(b3640570b926886),
+ C(fba2344ee87f7bab), C(de57341ab448df05), C(385612ee094fa977),
+ C(8f8daefc)},
+ {C(a08d128c5f1649be), C(a8166c3dbbe19aad), C(cb9f914f829ec62c),
+ C(5b2b7ca856fad1c3), C(8093022d682e375d), C(ea5d163ba7ea231f),
+ C(d6181d012c0de641), C(5b2b7ca856fad1c3), C(8093022d682e375d),
+ C(ea5d163ba7ea231f), C(d6181d012c0de641), C(e7d40d0ab8b08159),
+ C(2e82320f51b3a67e), C(27c2e356ea0b63a3), C(58842d01a2b1d077), C(6e1bb7e)},
+ {C(7c386f0ffe0465ac), C(530419c9d843dbf3), C(7450e3a4f72b8d8c),
+ C(48b218e3b721810d), C(d3757ac8609bc7fc), C(111ba02a88aefc8),
+ C(e86343137d3bfc2a), C(48b218e3b721810d), C(d3757ac8609bc7fc),
+ C(111ba02a88aefc8), C(e86343137d3bfc2a), C(44ad26b51661b507),
+ C(db1268670274f51e), C(62a5e75beae875f3), C(e266e7a44c5f28c6),
+ C(fd0076f0)},
+ {C(bb362094e7ef4f8), C(ff3c2a48966f9725), C(55152803acd4a7fe),
+ C(15747d8c505ffd00), C(438a15f391312cd6), C(e46ca62c26d821f5),
+ C(be78d74c9f79cb44), C(15747d8c505ffd00), C(438a15f391312cd6),
+ C(e46ca62c26d821f5), C(be78d74c9f79cb44), C(a8aa19f3aa59f09a),
+ C(effb3cddab2c9267), C(d78e41ad97cb16a5), C(ace6821513527d32),
+ C(899b17b6)},
+ {C(cd80dea24321eea4), C(52b4fdc8130c2b15), C(f3ea100b154bfb82),
+ C(d9ccef1d4be46988), C(5ede0c4e383a5e66), C(da69683716a54d1e),
+ C(bfc3fdf02d242d24), C(d9ccef1d4be46988), C(5ede0c4e383a5e66),
+ C(da69683716a54d1e), C(bfc3fdf02d242d24), C(20ed30274651b3f5),
+ C(4c659824169e86c6), C(637226dae5b52a0e), C(7e050dbd1c71dc7f),
+ C(e3e84e31)},
+ {C(d599a04125372c3a), C(313136c56a56f363), C(1e993c3677625832),
+ C(2870a99c76a587a4), C(99f74cc0b182dda4), C(8a5e895b2f0ca7b6),
+ C(3d78882d5e0bb1dc), C(2870a99c76a587a4), C(99f74cc0b182dda4),
+ C(8a5e895b2f0ca7b6), C(3d78882d5e0bb1dc), C(f466123732a3e25e),
+ C(aca5e59716a40e50), C(261d2e7383d0e686), C(ce9362d6a42c15a7),
+ C(eef79b6b)},
+ {C(dbbf541e9dfda0a), C(1479fceb6db4f844), C(31ab576b59062534),
+ C(a3335c417687cf3a), C(92ff114ac45cda75), C(c3b8a627384f13b5),
+ C(c4f25de33de8b3f7), C(a3335c417687cf3a), C(92ff114ac45cda75),
+ C(c3b8a627384f13b5), C(c4f25de33de8b3f7), C(eacbf520578c5964),
+ C(4cb19c5ab24f3215), C(e7d8a6f67f0c6e7), C(325c2413eb770ada), C(868e3315)},
+ {C(c2ee3288be4fe2bf), C(c65d2f5ddf32b92), C(af6ecdf121ba5485),
+ C(c7cd48f7abf1fe59), C(ce600656ace6f53a), C(8a94a4381b108b34),
+ C(f9d1276c64bf59fb), C(c7cd48f7abf1fe59), C(ce600656ace6f53a),
+ C(8a94a4381b108b34), C(f9d1276c64bf59fb), C(219ce70ff5a112a5),
+ C(e6026c576e2d28d7), C(b8e467f25015e3a6), C(950cb904f37af710),
+ C(4639a426)},
+ {C(d86603ced1ed4730), C(f9de718aaada7709), C(db8b9755194c6535),
+ C(d803e1eead47604c), C(ad00f7611970a71b), C(bc50036b16ce71f5),
+ C(afba96210a2ca7d6), C(d803e1eead47604c), C(ad00f7611970a71b),
+ C(bc50036b16ce71f5), C(afba96210a2ca7d6), C(28f7a7be1d6765f0),
+ C(97bd888b93938c68), C(6ad41d1b407ded49), C(b9bfec098dc543e4),
+ C(f3213646)},
+ {C(915263c671b28809), C(a815378e7ad762fd), C(abec6dc9b669f559),
+ C(d17c928c5342477f), C(745130b795254ad5), C(8c5db926fe88f8ba),
+ C(742a95c953e6d974), C(d17c928c5342477f), C(745130b795254ad5),
+ C(8c5db926fe88f8ba), C(742a95c953e6d974), C(279db8057b5d3e96),
+ C(98168411565b4ec4), C(50a72c54fa1125fa), C(27766a635db73638),
+ C(17f148e9)},
+ {C(2b67cdd38c307a5e), C(cb1d45bb5c9fe1c), C(800baf2a02ec18ad),
+ C(6531c1fe32bcb417), C(8c970d8df8cdbeb4), C(917ba5fc67e72b40),
+ C(4b65e4e263e0a426), C(6531c1fe32bcb417), C(8c970d8df8cdbeb4),
+ C(917ba5fc67e72b40), C(4b65e4e263e0a426), C(e0de33ce88a8b3a9),
+ C(f8ef98a437e16b08), C(a5162c0c7c5f7b62), C(dbdac43361b2b881),
+ C(bfd94880)},
+ {C(2d107419073b9cd0), C(a96db0740cef8f54), C(ec41ee91b3ecdc1b),
+ C(ffe319654c8e7ebc), C(6a67b8f13ead5a72), C(6dd10a34f80d532f),
+ C(6e9cfaece9fbca4), C(ffe319654c8e7ebc), C(6a67b8f13ead5a72),
+ C(6dd10a34f80d532f), C(6e9cfaece9fbca4), C(b4468eb6a30aa7e9),
+ C(e87995bee483222a), C(d036c2c90c609391), C(853306e82fa32247),
+ C(bb1fa7f3)},
+ {C(f3e9487ec0e26dfc), C(1ab1f63224e837fa), C(119983bb5a8125d8),
+ C(8950cfcf4bdf622c), C(8847dca82efeef2f), C(646b75b026708169),
+ C(21cab4b1687bd8b), C(8950cfcf4bdf622c), C(8847dca82efeef2f),
+ C(646b75b026708169), C(21cab4b1687bd8b), C(243b489a9eae6231),
+ C(5f3e634c4b779876), C(ff8abd1548eaf646), C(c7962f5f0151914b), C(88816b1)},
+ {C(1160987c8fe86f7d), C(879e6db1481eb91b), C(d7dcb802bfe6885d),
+ C(14453b5cc3d82396), C(4ef700c33ed278bc), C(1639c72ffc00d12e),
+ C(fb140ee6155f700d), C(14453b5cc3d82396), C(4ef700c33ed278bc),
+ C(1639c72ffc00d12e), C(fb140ee6155f700d), C(2e6b5c96a6620862),
+ C(a1f136998cbe19c), C(74e058a3b6c5a712), C(93dcf6bd33928b17), C(5c2faeb3)},
+ {C(eab8112c560b967b), C(97f550b58e89dbae), C(846ed506d304051f),
+ C(276aa37744b5a028), C(8c10800ee90ea573), C(e6e57d2b33a1e0b7),
+ C(91f83563cd3b9dda), C(276aa37744b5a028), C(8c10800ee90ea573),
+ C(e6e57d2b33a1e0b7), C(91f83563cd3b9dda), C(afbb4739570738a1),
+ C(440ba98da5d8f69), C(fde4e9b0eda20350), C(e67dfa5a2138fa1), C(51b5fc6f)},
+ {C(1addcf0386d35351), C(b5f436561f8f1484), C(85d38e22181c9bb1),
+ C(ff5c03f003c1fefe), C(e1098670afe7ff6), C(ea445030cf86de19),
+ C(f155c68b5c2967f8), C(ff5c03f003c1fefe), C(e1098670afe7ff6),
+ C(ea445030cf86de19), C(f155c68b5c2967f8), C(95d31b145dbb2e9e),
+ C(914fe1ca3deb3265), C(6066020b1358ccc1), C(c74bb7e2dee15036),
+ C(33d94752)},
+ {C(d445ba84bf803e09), C(1216c2497038f804), C(2293216ea2237207),
+ C(e2164451c651adfb), C(b2534e65477f9823), C(4d70691a69671e34),
+ C(15be4963dbde8143), C(e2164451c651adfb), C(b2534e65477f9823),
+ C(4d70691a69671e34), C(15be4963dbde8143), C(762e75c406c5e9a3),
+ C(7b7579f7e0356841), C(480533eb066dfce5), C(90ae14ea6bfeb4ae),
+ C(b0c92948)},
+ {C(37235a096a8be435), C(d9b73130493589c2), C(3b1024f59378d3be),
+ C(ad159f542d81f04e), C(49626a97a946096), C(d8d3998bf09fd304),
+ C(d127a411eae69459), C(ad159f542d81f04e), C(49626a97a946096),
+ C(d8d3998bf09fd304), C(d127a411eae69459), C(8f3253c4eb785a7b),
+ C(4049062f37e62397), C(b9fa04d3b670e5c1), C(1211a7967ac9350f),
+ C(c7171590)},
+ {C(763ad6ea2fe1c99d), C(cf7af5368ac1e26b), C(4d5e451b3bb8d3d4),
+ C(3712eb913d04e2f2), C(2f9500d319c84d89), C(4ac6eb21a8cf06f9),
+ C(7d1917afcde42744), C(3712eb913d04e2f2), C(2f9500d319c84d89),
+ C(4ac6eb21a8cf06f9), C(7d1917afcde42744), C(6b58604b5dd10903),
+ C(c4288dfbc1e319fc), C(230f75ca96817c6e), C(8894cba3b763756c),
+ C(240a67fb)},
+ {C(ea627fc84cd1b857), C(85e372494520071f), C(69ec61800845780b),
+ C(a3c1c5ca1b0367), C(eb6933997272bb3d), C(76a72cb62692a655),
+ C(140bb5531edf756e), C(a3c1c5ca1b0367), C(eb6933997272bb3d),
+ C(76a72cb62692a655), C(140bb5531edf756e), C(8d0d8067d1c925f4),
+ C(7b3fa56d8d77a10c), C(2bd00287b0946d88), C(f08c8e4bd65b8970),
+ C(e1843cd5)},
+ {C(1f2ffd79f2cdc0c8), C(726a1bc31b337aaa), C(678b7f275ef96434),
+ C(5aa82bfaa99d3978), C(c18f96cade5ce18d), C(38404491f9e34c03),
+ C(891fb8926ba0418c), C(5aa82bfaa99d3978), C(c18f96cade5ce18d),
+ C(38404491f9e34c03), C(891fb8926ba0418c), C(e5f69a6398114c15),
+ C(7b8ded3623bc6b1d), C(2f3e5c5da5ff70e8), C(1ab142addea6a9ec),
+ C(fda1452b)},
+ {C(39a9e146ec4b3210), C(f63f75802a78b1ac), C(e2e22539c94741c3),
+ C(8b305d532e61226e), C(caeae80da2ea2e), C(88a6289a76ac684e),
+ C(8ce5b5f9df1cbd85), C(8b305d532e61226e), C(caeae80da2ea2e),
+ C(88a6289a76ac684e), C(8ce5b5f9df1cbd85), C(8ae1fc4798e00d57),
+ C(e7164b8fb364fc46), C(6a978c9bd3a66943), C(ef10d5ae4dd08dc), C(a2cad330)},
+ {C(74cba303e2dd9d6d), C(692699b83289fad1), C(dfb9aa7874678480),
+ C(751390a8a5c41bdc), C(6ee5fbf87605d34), C(6ca73f610f3a8f7c),
+ C(e898b3c996570ad), C(751390a8a5c41bdc), C(6ee5fbf87605d34),
+ C(6ca73f610f3a8f7c), C(e898b3c996570ad), C(98168a5858fc7110),
+ C(6f987fa27aa0daa2), C(f25e3e180d4b36a3), C(d0b03495aeb1be8a),
+ C(53467e16)},
+ {C(4cbc2b73a43071e0), C(56c5db4c4ca4e0b7), C(1b275a162f46bd3d),
+ C(b87a326e413604bf), C(d8f9a5fa214b03ab), C(8a8bb8265771cf88),
+ C(a655319054f6e70f), C(b87a326e413604bf), C(d8f9a5fa214b03ab),
+ C(8a8bb8265771cf88), C(a655319054f6e70f), C(b499cb8e65a9af44),
+ C(bee7fafcc8307491), C(5d2e55fa9b27cda2), C(63b120f5fb2d6ee5),
+ C(da14a8d0)},
+ {C(875638b9715d2221), C(d9ba0615c0c58740), C(616d4be2dfe825aa),
+ C(5df25f13ea7bc284), C(165edfaafd2598fb), C(af7215c5c718c696),
+ C(e9f2f9ca655e769), C(5df25f13ea7bc284), C(165edfaafd2598fb),
+ C(af7215c5c718c696), C(e9f2f9ca655e769), C(e459cfcb565d3d2d),
+ C(41d032631be2418a), C(c505db05fd946f60), C(54990394a714f5de),
+ C(67333551)},
+ {C(fb686b2782994a8d), C(edee60693756bb48), C(e6bc3cae0ded2ef5),
+ C(58eb4d03b2c3ddf5), C(6d2542995f9189f1), C(c0beec58a5f5fea2),
+ C(ed67436f42e2a78b), C(58eb4d03b2c3ddf5), C(6d2542995f9189f1),
+ C(c0beec58a5f5fea2), C(ed67436f42e2a78b), C(dfec763cdb2b5193),
+ C(724a8d5345bd2d6), C(94d4fd1b81457c23), C(28e87c50cdede453), C(a0ebd66e)},
+ {C(ab21d81a911e6723), C(4c31b07354852f59), C(835da384c9384744),
+ C(7f759dddc6e8549a), C(616dd0ca022c8735), C(94717ad4bc15ceb3),
+ C(f66c7be808ab36e), C(7f759dddc6e8549a), C(616dd0ca022c8735),
+ C(94717ad4bc15ceb3), C(f66c7be808ab36e), C(af8286b550b2f4b7),
+ C(745bd217d20a9f40), C(c73bfb9c5430f015), C(55e65922666e3fc2),
+ C(4b769593)},
+ {C(33d013cc0cd46ecf), C(3de726423aea122c), C(116af51117fe21a9),
+ C(f271ba474edc562d), C(e6596e67f9dd3ebd), C(c0a288edf808f383),
+ C(b3def70681c6babc), C(f271ba474edc562d), C(e6596e67f9dd3ebd),
+ C(c0a288edf808f383), C(b3def70681c6babc), C(7da7864e9989b095),
+ C(bf2f8718693cd8a1), C(264a9144166da776), C(61ad90676870beb6),
+ C(6aa75624)},
+ {C(8ca92c7cd39fae5d), C(317e620e1bf20f1), C(4f0b33bf2194b97f),
+ C(45744afcf131dbee), C(97222392c2559350), C(498a19b280c6d6ed),
+ C(83ac2c36acdb8d49), C(45744afcf131dbee), C(97222392c2559350),
+ C(498a19b280c6d6ed), C(83ac2c36acdb8d49), C(7a69645c294daa62),
+ C(abe9d2be8275b3d2), C(39542019de371085), C(7f4efac8488cd6ad),
+ C(602a3f96)},
+ {C(fdde3b03f018f43e), C(38f932946c78660), C(c84084ce946851ee),
+ C(b6dd09ba7851c7af), C(570de4e1bb13b133), C(c4e784eb97211642),
+ C(8285a7fcdcc7c58d), C(b6dd09ba7851c7af), C(570de4e1bb13b133),
+ C(c4e784eb97211642), C(8285a7fcdcc7c58d), C(d421f47990da899b),
+ C(8aed409c997eaa13), C(7a045929c2e29ccf), C(b373682a6202c86b),
+ C(cd183c4d)},
+ {C(9c8502050e9c9458), C(d6d2a1a69964beb9), C(1675766f480229b5),
+ C(216e1d6c86cb524c), C(d01cf6fd4f4065c0), C(fffa4ec5b482ea0f),
+ C(a0e20ee6a5404ac1), C(216e1d6c86cb524c), C(d01cf6fd4f4065c0),
+ C(fffa4ec5b482ea0f), C(a0e20ee6a5404ac1), C(c1b037e4eebaf85e),
+ C(634e3d7c3ebf89eb), C(bcda972358c67d1), C(fd1352181e5b8578), C(960a4d07)},
+ {C(348176ca2fa2fdd2), C(3a89c514cc360c2d), C(9f90b8afb318d6d0),
+ C(bceee07c11a9ac30), C(2e2d47dff8e77eb7), C(11a394cd7b6d614a),
+ C(1d7c41d54e15cb4a), C(bceee07c11a9ac30), C(2e2d47dff8e77eb7),
+ C(11a394cd7b6d614a), C(1d7c41d54e15cb4a), C(15baa5ae7312b0fc),
+ C(f398f596cc984635), C(8ab8fdf87a6788e8), C(b2b5c1234ab47e2), C(9ae998c4)},
+ {C(4a3d3dfbbaea130b), C(4e221c920f61ed01), C(553fd6cd1304531f),
+ C(bd2b31b5608143fe), C(ab717a10f2554853), C(293857f04d194d22),
+ C(d51be8fa86f254f0), C(bd2b31b5608143fe), C(ab717a10f2554853),
+ C(293857f04d194d22), C(d51be8fa86f254f0), C(1eee39e07686907e),
+ C(639039fe0e8d3052), C(d6ec1470cef97ff), C(370c82b860034f0f), C(74e2179d)},
+ {C(b371f768cdf4edb9), C(bdef2ace6d2de0f0), C(e05b4100f7f1baec),
+ C(b9e0d415b4ebd534), C(c97c2a27efaa33d7), C(591cdb35f84ef9da),
+ C(a57d02d0e8e3756c), C(b9e0d415b4ebd534), C(c97c2a27efaa33d7),
+ C(591cdb35f84ef9da), C(a57d02d0e8e3756c), C(23f55f12d7c5c87b),
+ C(4c7ca0fe23221101), C(dbc3020480334564), C(d985992f32c236b1),
+ C(ee9bae25)},
+ {C(7a1d2e96934f61f), C(eb1760ae6af7d961), C(887eb0da063005df),
+ C(2228d6725e31b8ab), C(9b98f7e4d0142e70), C(b6a8c2115b8e0fe7),
+ C(b591e2f5ab9b94b1), C(2228d6725e31b8ab), C(9b98f7e4d0142e70),
+ C(b6a8c2115b8e0fe7), C(b591e2f5ab9b94b1), C(6c1feaa8065318e0),
+ C(4e7e2ca21c2e81fb), C(e9fe5d8ce7993c45), C(ee411fa2f12cf8df),
+ C(b66edf10)},
+ {C(8be53d466d4728f2), C(86a5ac8e0d416640), C(984aa464cdb5c8bb),
+ C(87049e68f5d38e59), C(7d8ce44ec6bd7751), C(cc28d08ab414839c),
+ C(6c8f0bd34fe843e3), C(87049e68f5d38e59), C(7d8ce44ec6bd7751),
+ C(cc28d08ab414839c), C(6c8f0bd34fe843e3), C(b8496dcdc01f3e47),
+ C(2f03125c282ac26), C(82a8797ba3f5ef07), C(7c977a4d10bf52b8), C(d6209737)},
+ {C(829677eb03abf042), C(43cad004b6bc2c0), C(f2f224756803971a),
+ C(98d0dbf796480187), C(fbcb5f3e1bef5742), C(5af2a0463bf6e921),
+ C(ad9555bf0120b3a3), C(98d0dbf796480187), C(fbcb5f3e1bef5742),
+ C(5af2a0463bf6e921), C(ad9555bf0120b3a3), C(283e39b3dc99f447),
+ C(bedaa1a4a0250c28), C(9d50546624ff9a57), C(4abaf523d1c090f6), C(b994a88)},
+ {C(754435bae3496fc), C(5707fc006f094dcf), C(8951c86ab19d8e40),
+ C(57c5208e8f021a77), C(f7653fbb69cd9276), C(a484410af21d75cb),
+ C(f19b6844b3d627e8), C(57c5208e8f021a77), C(f7653fbb69cd9276),
+ C(a484410af21d75cb), C(f19b6844b3d627e8), C(f37400fc3ffd9514),
+ C(36ae0d821734edfd), C(5f37820af1f1f306), C(be637d40e6a5ad0), C(a05d43c0)},
+ {C(fda9877ea8e3805f), C(31e868b6ffd521b7), C(b08c90681fb6a0fd),
+ C(68110a7f83f5d3ff), C(6d77e045901b85a8), C(84ef681113036d8b),
+ C(3b9f8e3928f56160), C(68110a7f83f5d3ff), C(6d77e045901b85a8),
+ C(84ef681113036d8b), C(3b9f8e3928f56160), C(fc8b7f56c130835),
+ C(a11f3e800638e841), C(d9572267f5cf28c1), C(7897c8149803f2aa),
+ C(c79f73a8)},
+ {C(2e36f523ca8f5eb5), C(8b22932f89b27513), C(331cd6ecbfadc1bb),
+ C(d1bfe4df12b04cbf), C(f58c17243fd63842), C(3a453cdba80a60af),
+ C(5737b2ca7470ea95), C(d1bfe4df12b04cbf), C(f58c17243fd63842),
+ C(3a453cdba80a60af), C(5737b2ca7470ea95), C(54d44a3f4477030c),
+ C(8168e02d4869aa7f), C(77f383a17778559d), C(95e1737d77a268fc),
+ C(a490aff5)},
+ {C(21a378ef76828208), C(a5c13037fa841da2), C(506d22a53fbe9812),
+ C(61c9c95d91017da5), C(16f7c83ba68f5279), C(9c0619b0808d05f7),
+ C(83c117ce4e6b70a3), C(61c9c95d91017da5), C(16f7c83ba68f5279),
+ C(9c0619b0808d05f7), C(83c117ce4e6b70a3), C(cfb4c8af7fd01413),
+ C(fdef04e602e72296), C(ed6124d337889b1), C(4919c86707b830da), C(dfad65b4)},
+ {C(ccdd5600054b16ca), C(f78846e84204cb7b), C(1f9faec82c24eac9),
+ C(58634004c7b2d19a), C(24bb5f51ed3b9073), C(46409de018033d00),
+ C(4a9805eed5ac802e), C(58634004c7b2d19a), C(24bb5f51ed3b9073),
+ C(46409de018033d00), C(4a9805eed5ac802e), C(e18de8db306baf82),
+ C(46bbf75f1fa025ff), C(5faf2fb09be09487), C(3fbc62bd4e558fb3), C(1d07dfb)},
+ {C(7854468f4e0cabd0), C(3a3f6b4f098d0692), C(ae2423ec7799d30d),
+ C(29c3529eb165eeba), C(443de3703b657c35), C(66acbce31ae1bc8d),
+ C(1acc99effe1d547e), C(29c3529eb165eeba), C(443de3703b657c35),
+ C(66acbce31ae1bc8d), C(1acc99effe1d547e), C(cf07f8a57906573d),
+ C(31bafb0bbb9a86e7), C(40c69492702a9346), C(7df61fdaa0b858af),
+ C(416df9a0)},
+ {C(7f88db5346d8f997), C(88eac9aacc653798), C(68a4d0295f8eefa1),
+ C(ae59ca86f4c3323d), C(25906c09906d5c4c), C(8dd2aa0c0a6584ae),
+ C(232a7d96b38f40e9), C(ae59ca86f4c3323d), C(25906c09906d5c4c),
+ C(8dd2aa0c0a6584ae), C(232a7d96b38f40e9), C(8986ee00a2ed0042),
+ C(c49ae7e428c8a7d1), C(b7dd8280713ac9c2), C(e018720aed1ebc28),
+ C(1f8fb9cc)},
+ {C(bb3fb5fb01d60fcf), C(1b7cc0847a215eb6), C(1246c994437990a1),
+ C(d4edc954c07cd8f3), C(224f47e7c00a30ab), C(d5ad7ad7f41ef0c6),
+ C(59e089281d869fd7), C(d4edc954c07cd8f3), C(224f47e7c00a30ab),
+ C(d5ad7ad7f41ef0c6), C(59e089281d869fd7), C(f29340d07a14b6f1),
+ C(c87c5ef76d9c4ef3), C(463118794193a9a), C(2922dcb0540f0dbc), C(7abf48e3)},
+ {C(2e783e1761acd84d), C(39158042bac975a0), C(1cd21c5a8071188d),
+ C(b1b7ec44f9302176), C(5cb476450dc0c297), C(dc5ef652521ef6a2),
+ C(3cc79a9e334e1f84), C(b1b7ec44f9302176), C(5cb476450dc0c297),
+ C(dc5ef652521ef6a2), C(3cc79a9e334e1f84), C(769e2a283dbcc651),
+ C(9f24b105c8511d3f), C(c31c15575de2f27e), C(ecfecf32c3ae2d66),
+ C(dea4e3dd)},
+ {C(392058251cf22acc), C(944ec4475ead4620), C(b330a10b5cb94166),
+ C(54bc9bee7cbe1767), C(485820bdbe442431), C(54d6120ea2972e90),
+ C(f437a0341f29b72a), C(54bc9bee7cbe1767), C(485820bdbe442431),
+ C(54d6120ea2972e90), C(f437a0341f29b72a), C(8f30885c784d5704),
+ C(aa95376b16c7906a), C(e826928cfaf93dc3), C(20e8f54d1c16d7d8),
+ C(c6064f22)},
+ {C(adf5c1e5d6419947), C(2a9747bc659d28aa), C(95c5b8cb1f5d62c),
+ C(80973ea532b0f310), C(a471829aa9c17dd9), C(c2ff3479394804ab),
+ C(6bf44f8606753636), C(80973ea532b0f310), C(a471829aa9c17dd9),
+ C(c2ff3479394804ab), C(6bf44f8606753636), C(5184d2973e6dd827),
+ C(121b96369a332d9a), C(5c25d3475ab69e50), C(26d2961d62884168),
+ C(743bed9c)},
+ {C(6bc1db2c2bee5aba), C(e63b0ed635307398), C(7b2eca111f30dbbc),
+ C(230d2b3e47f09830), C(ec8624a821c1caf4), C(ea6ec411cdbf1cb1),
+ C(5f38ae82af364e27), C(230d2b3e47f09830), C(ec8624a821c1caf4),
+ C(ea6ec411cdbf1cb1), C(5f38ae82af364e27), C(a519ef515ea7187c),
+ C(6bad5efa7ebae05f), C(748abacb11a74a63), C(a28eef963d1396eb),
+ C(fce254d5)},
+ {C(b00f898229efa508), C(83b7590ad7f6985c), C(2780e70a0592e41d),
+ C(7122413bdbc94035), C(e7f90fae33bf7763), C(4b6bd0fb30b12387),
+ C(557359c0c44f48ca), C(7122413bdbc94035), C(e7f90fae33bf7763),
+ C(4b6bd0fb30b12387), C(557359c0c44f48ca), C(d5656c3d6bc5f0d),
+ C(983ff8e5e784da99), C(628479671b445bf), C(e179a1e27ce68f5d), C(e47ec9d1)},
+ {C(b56eb769ce0d9a8c), C(ce196117bfbcaf04), C(b26c3c3797d66165),
+ C(5ed12338f630ab76), C(fab19fcb319116d), C(167f5f42b521724b),
+ C(c4aa56c409568d74), C(5ed12338f630ab76), C(fab19fcb319116d),
+ C(167f5f42b521724b), C(c4aa56c409568d74), C(75fff4b42f8e9778),
+ C(94218f94710c1ea3), C(b7b05efb738b06a6), C(83fff2deabf9cd3), C(334a145c)},
+ {C(70c0637675b94150), C(259e1669305b0a15), C(46e1dd9fd387a58d),
+ C(fca4e5bc9292788e), C(cd509dc1facce41c), C(bbba575a59d82fe),
+ C(4e2e71c15b45d4d3), C(fca4e5bc9292788e), C(cd509dc1facce41c),
+ C(bbba575a59d82fe), C(4e2e71c15b45d4d3), C(5dc54582ead999c),
+ C(72612d1571963c6f), C(30318a9d2d3d1829), C(785dd00f4cc9c9a0),
+ C(adec1e3c)},
+ {C(74c0b8a6821faafe), C(abac39d7491370e7), C(faf0b2a48a4e6aed),
+ C(967e970df9673d2a), C(d465247cffa415c0), C(33a1df0ca1107722),
+ C(49fc2a10adce4a32), C(967e970df9673d2a), C(d465247cffa415c0),
+ C(33a1df0ca1107722), C(49fc2a10adce4a32), C(c5707e079a284308),
+ C(573028266635dda6), C(f786f5eee6127fa0), C(b30d79cebfb51266),
+ C(f6a9fbf8)},
+ {C(5fb5e48ac7b7fa4f), C(a96170f08f5acbc7), C(bbf5c63d4f52a1e5),
+ C(6cc09e60700563e9), C(d18f23221e964791), C(ffc23eeef7af26eb),
+ C(693a954a3622a315), C(815308a32a9b0daf), C(efb2ab27bf6fd0bd),
+ C(9f1ffc0986111118), C(f9a3aa1778ea3985), C(698fe54b2b93933b),
+ C(dacc2b28404d0f10), C(815308a32a9b0daf), C(efb2ab27bf6fd0bd),
+ C(5398210c)},
+};
+
+void TestUnchanging(const uint64_t* expected, int offset, int len) {
+ const uint128 u = CityHash128(data + offset, len);
+ const uint128 v = CityHash128WithSeed(data + offset, len, kSeed128);
+ EXPECT_EQ(expected[0], CityHash64(data + offset, len));
+ EXPECT_EQ(expected[15], CityHash32(data + offset, len));
+ EXPECT_EQ(expected[1], CityHash64WithSeed(data + offset, len, kSeed0));
+ EXPECT_EQ(expected[2],
+ CityHash64WithSeeds(data + offset, len, kSeed0, kSeed1));
+ EXPECT_EQ(expected[3], Uint128Low64(u));
+ EXPECT_EQ(expected[4], Uint128High64(u));
+ EXPECT_EQ(expected[5], Uint128Low64(v));
+ EXPECT_EQ(expected[6], Uint128High64(v));
+#ifdef __SSE4_2__
+ const uint128 y = CityHashCrc128(data + offset, len);
+ const uint128 z = CityHashCrc128WithSeed(data + offset, len, kSeed128);
+ uint64_t crc256_results[4];
+ CityHashCrc256(data + offset, len, crc256_results);
+ EXPECT_EQ(expected[7], Uint128Low64(y));
+ EXPECT_EQ(expected[8], Uint128High64(y));
+ EXPECT_EQ(expected[9], Uint128Low64(z));
+ EXPECT_EQ(expected[10], Uint128High64(z));
+ for (int i = 0; i < 4; i++) {
+ EXPECT_EQ(expected[11 + i], crc256_results[i]);
+ }
+#endif
+}
+
+TEST(CityHashTest, Unchanging) {
+ setup();
+ int i = 0;
+ for (; i < kTestSize - 1; i++) {
+ TestUnchanging(testdata[i], i * i, i);
+ }
+ TestUnchanging(testdata[i], 0, kDataSize);
+}
+
+} // namespace hash_internal
+} // namespace absl
diff --git a/absl/hash/internal/hash.cc b/absl/hash/internal/hash.cc
new file mode 100644
index 0000000..4bf6409
--- /dev/null
+++ b/absl/hash/internal/hash.cc
@@ -0,0 +1,23 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/hash/internal/hash.h"
+
+namespace absl {
+namespace hash_internal {
+
+ABSL_CONST_INIT const void* const CityHashState::kSeed = &kSeed;
+
+} // namespace hash_internal
+} // namespace absl
diff --git a/absl/hash/internal/hash.h b/absl/hash/internal/hash.h
new file mode 100644
index 0000000..4543d67
--- /dev/null
+++ b/absl/hash/internal/hash.h
@@ -0,0 +1,885 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: hash.h
+// -----------------------------------------------------------------------------
+//
+#ifndef ABSL_HASH_INTERNAL_HASH_H_
+#define ABSL_HASH_INTERNAL_HASH_H_
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include <cstring>
+#include <deque>
+#include <forward_list>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <list>
+#include <map>
+#include <memory>
+#include <set>
+#include <string>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "absl/base/internal/endian.h"
+#include "absl/base/port.h"
+#include "absl/container/fixed_array.h"
+#include "absl/meta/type_traits.h"
+#include "absl/numeric/int128.h"
+#include "absl/strings/string_view.h"
+#include "absl/types/optional.h"
+#include "absl/types/variant.h"
+#include "absl/utility/utility.h"
+#include "absl/hash/internal/city.h"
+
+namespace absl {
+namespace hash_internal {
+
+// HashStateBase
+//
+// A hash state object represents an intermediate state in the computation
+// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
+// base class for hash state implementations. Developers adding type support
+// for `absl::Hash` should not rely on any parts of the state object other than
+// the following member functions:
+//
+// * HashStateBase::combine()
+// * HashStateBase::combine_contiguous()
+//
+// A derived hash state class of type `H` must provide a static member function
+// with a signature similar to the following:
+//
+// `static H combine_contiguous(H state, const unsigned char*, size_t)`.
+//
+// `HashStateBase` will provide a complete implementations for a hash state
+// object in terms of this method.
+//
+// Example:
+//
+// // Use CRTP to define your derived class.
+// struct MyHashState : HashStateBase<MyHashState> {
+// static H combine_contiguous(H state, const unsigned char*, size_t);
+// using MyHashState::HashStateBase::combine;
+// using MyHashState::HashStateBase::combine_contiguous;
+// };
+template <typename H>
+class HashStateBase {
+ public:
+ // HashStateBase::combine()
+ //
+ // Combines an arbitrary number of values into a hash state, returning the
+ // updated state.
+ //
+ // Each of the value types `T` must be separately hashable by the Abseil
+ // hashing framework.
+ //
+ // NOTE:
+ //
+ // state = H::combine(std::move(state), value1, value2, value3);
+ //
+ // is guaranteed to produce the same hash expansion as:
+ //
+ // state = H::combine(std::move(state), value1);
+ // state = H::combine(std::move(state), value2);
+ // state = H::combine(std::move(state), value3);
+ template <typename T, typename... Ts>
+ static H combine(H state, const T& value, const Ts&... values);
+ static H combine(H state) { return state; }
+
+ // HashStateBase::combine_contiguous()
+ //
+ // Combines a contiguous array of `size` elements into a hash state, returning
+ // the updated state.
+ //
+ // NOTE:
+ //
+ // state = H::combine_contiguous(std::move(state), data, size);
+ //
+ // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
+ // perform internal optimizations). If you need this guarantee, use the
+ // for-loop instead.
+ template <typename T>
+ static H combine_contiguous(H state, const T* data, size_t size);
+};
+
+// is_uniquely_represented
+//
+// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
+// is uniquely represented.
+//
+// A type is "uniquely represented" if two equal values of that type are
+// guaranteed to have the same bytes in their underlying storage. In other
+// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
+// zero. This property cannot be detected automatically, so this trait is false
+// by default, but can be specialized by types that wish to assert that they are
+// uniquely represented. This makes them eligible for certain optimizations.
+//
+// If you have any doubt whatsoever, do not specialize this template.
+// The default is completely safe, and merely disables some optimizations
+// that will not matter for most types. Specializing this template,
+// on the other hand, can be very hazardous.
+//
+// To be uniquely represented, a type must not have multiple ways of
+// representing the same value; for example, float and double are not
+// uniquely represented, because they have distinct representations for
+// +0 and -0. Furthermore, the type's byte representation must consist
+// solely of user-controlled data, with no padding bits and no compiler-
+// controlled data such as vptrs or sanitizer metadata. This is usually
+// very difficult to guarantee, because in most cases the compiler can
+// insert data and padding bits at its own discretion.
+//
+// If you specialize this template for a type `T`, you must do so in the file
+// that defines that type (or in this file). If you define that specialization
+// anywhere else, `is_uniquely_represented<T>` could have different meanings
+// in different places.
+//
+// The Enable parameter is meaningless; it is provided as a convenience,
+// to support certain SFINAE techniques when defining specializations.
+template <typename T, typename Enable = void>
+struct is_uniquely_represented : std::false_type {};
+
+// is_uniquely_represented<unsigned char>
+//
+// unsigned char is a synonym for "byte", so it is guaranteed to be
+// uniquely represented.
+template <>
+struct is_uniquely_represented<unsigned char> : std::true_type {};
+
+// is_uniquely_represented for non-standard integral types
+//
+// Integral types other than bool should be uniquely represented on any
+// platform that this will plausibly be ported to.
+template <typename Integral>
+struct is_uniquely_represented<
+ Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
+ : std::true_type {};
+
+// is_uniquely_represented<bool>
+//
+//
+template <>
+struct is_uniquely_represented<bool> : std::false_type {};
+
+// hash_bytes()
+//
+// Convenience function that combines `hash_state` with the byte representation
+// of `value`.
+template <typename H, typename T>
+H hash_bytes(H hash_state, const T& value) {
+ const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
+ return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Basic Types
+// -----------------------------------------------------------------------------
+
+// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
+// allows us to block lexical scope lookup when doing an unqualified call to
+// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
+// only be found via ADL.
+
+// AbslHashValue() for hashing bool values
+//
+// We use SFINAE to ensure that this overload only accepts bool, not types that
+// are convertible to bool.
+template <typename H, typename B>
+typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
+ H hash_state, B value) {
+ return H::combine(std::move(hash_state),
+ static_cast<unsigned char>(value ? 1 : 0));
+}
+
+// AbslHashValue() for hashing enum values
+template <typename H, typename Enum>
+typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
+ H hash_state, Enum e) {
+ // In practice, we could almost certainly just invoke hash_bytes directly,
+ // but it's possible that a sanitizer might one day want to
+ // store data in the unused bits of an enum. To avoid that risk, we
+ // convert to the underlying type before hashing. Hopefully this will get
+ // optimized away; if not, we can reopen discussion with c-toolchain-team.
+ return H::combine(std::move(hash_state),
+ static_cast<typename std::underlying_type<Enum>::type>(e));
+}
+// AbslHashValue() for hashing floating-point values
+template <typename H, typename Float>
+typename std::enable_if<std::is_floating_point<Float>::value, H>::type
+AbslHashValue(H hash_state, Float value) {
+ return hash_internal::hash_bytes(std::move(hash_state),
+ value == 0 ? 0 : value);
+}
+
+// Long double has the property that it might have extra unused bytes in it.
+// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
+// of it. This means we can't use hash_bytes on a long double and have to
+// convert it to something else first.
+template <typename H>
+H AbslHashValue(H hash_state, long double value) {
+ const int category = std::fpclassify(value);
+ switch (category) {
+ case FP_INFINITE:
+ // Add the sign bit to differentiate between +Inf and -Inf
+ hash_state = H::combine(std::move(hash_state), std::signbit(value));
+ break;
+
+ case FP_NAN:
+ case FP_ZERO:
+ default:
+ // Category is enough for these.
+ break;
+
+ case FP_NORMAL:
+ case FP_SUBNORMAL:
+ // We can't convert `value` directly to double because this would have
+ // undefined behavior if the value is out of range.
+ // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
+ // guaranteed to be in range for `double`. The truncation is
+ // implementation defined, but that works as long as it is deterministic.
+ int exp;
+ auto mantissa = static_cast<double>(std::frexp(value, &exp));
+ hash_state = H::combine(std::move(hash_state), mantissa, exp);
+ }
+
+ return H::combine(std::move(hash_state), category);
+}
+
+// AbslHashValue() for hashing pointers
+template <typename H, typename T>
+H AbslHashValue(H hash_state, T* ptr) {
+ return hash_internal::hash_bytes(std::move(hash_state), ptr);
+}
+
+// AbslHashValue() for hashing nullptr_t
+template <typename H>
+H AbslHashValue(H hash_state, std::nullptr_t) {
+ return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Composite Types
+// -----------------------------------------------------------------------------
+
+// is_hashable()
+//
+// Trait class which returns true if T is hashable by the absl::Hash framework.
+// Used for the AbslHashValue implementations for composite types below.
+template <typename T>
+struct is_hashable;
+
+// AbslHashValue() for hashing pairs
+template <typename H, typename T1, typename T2>
+typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
+ return H::combine(std::move(hash_state), p.first, p.second);
+}
+
+// hash_tuple()
+//
+// Helper function for hashing a tuple. The third argument should
+// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
+template <typename H, typename Tuple, size_t... Is>
+H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
+ return H::combine(std::move(hash_state), std::get<Is>(t)...);
+}
+
+// AbslHashValue for hashing tuples
+template <typename H, typename... Ts>
+#if _MSC_VER
+// This SFINAE gets MSVC confused under some conditions. Let's just disable it
+// for now.
+H
+#else
+typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
+#endif
+AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
+ return hash_internal::hash_tuple(std::move(hash_state), t,
+ absl::make_index_sequence<sizeof...(Ts)>());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Pointers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing unique_ptr
+template <typename H, typename T, typename D>
+H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
+ return H::combine(std::move(hash_state), ptr.get());
+}
+
+// AbslHashValue for hashing shared_ptr
+template <typename H, typename T>
+H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
+ return H::combine(std::move(hash_state), ptr.get());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for String-Like Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing strings
+//
+// All the string-like types supported here provide the same hash expansion for
+// the same character sequence. These types are:
+//
+// - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
+// any allocator A)
+// - `absl::string_view` and `std::string_view`
+//
+// For simplicity, we currently support only `char` strings. This support may
+// be broadened, if necessary, but with some caution - this overload would
+// misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
+// on the underlying character type.
+template <typename H>
+H AbslHashValue(H hash_state, absl::string_view str) {
+ return H::combine(
+ H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
+ str.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Sequence Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::array
+template <typename H, typename T, size_t N>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::array<T, N>& array) {
+ return H::combine_contiguous(std::move(hash_state), array.data(),
+ array.size());
+}
+
+// AbslHashValue for hashing std::deque
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::deque<T, Allocator>& deque) {
+ // TODO(gromer): investigate a more efficient implementation taking
+ // advantage of the chunk structure.
+ for (const auto& t : deque) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), deque.size());
+}
+
+// AbslHashValue for hashing std::forward_list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::forward_list<T, Allocator>& list) {
+ size_t size = 0;
+ for (const T& t : list) {
+ hash_state = H::combine(std::move(hash_state), t);
+ ++size;
+ }
+ return H::combine(std::move(hash_state), size);
+}
+
+// AbslHashValue for hashing std::list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::list<T, Allocator>& list) {
+ for (const auto& t : list) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), list.size());
+}
+
+// AbslHashValue for hashing std::vector
+//
+// Do not use this for vector<bool>. It does not have a .data(), and a fallback
+// for std::hash<> is most likely faster.
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
+ return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
+ vector.size()),
+ vector.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Ordered Associative Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::map
+template <typename H, typename Key, typename T, typename Compare,
+ typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
+ for (const auto& t : map) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::multimap
+template <typename H, typename Key, typename T, typename Compare,
+ typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+ H>::type
+AbslHashValue(H hash_state,
+ const std::multimap<Key, T, Compare, Allocator>& map) {
+ for (const auto& t : map) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::set
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+ H hash_state, const std::set<Key, Compare, Allocator>& set) {
+ for (const auto& t : set) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), set.size());
+}
+
+// AbslHashValue for hashing std::multiset
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+ H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
+ for (const auto& t : set) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), set.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Wrapper Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing absl::optional
+template <typename H, typename T>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const absl::optional<T>& opt) {
+ if (opt) hash_state = H::combine(std::move(hash_state), *opt);
+ return H::combine(std::move(hash_state), opt.has_value());
+}
+
+// VariantVisitor
+template <typename H>
+struct VariantVisitor {
+ H&& hash_state;
+ template <typename T>
+ H operator()(const T& t) const {
+ return H::combine(std::move(hash_state), t);
+ }
+};
+
+// AbslHashValue for hashing absl::variant
+template <typename H, typename... T>
+typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
+AbslHashValue(H hash_state, const absl::variant<T...>& v) {
+ if (!v.valueless_by_exception()) {
+ hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
+ }
+ return H::combine(std::move(hash_state), v.index());
+}
+// -----------------------------------------------------------------------------
+
+// hash_range_or_bytes()
+//
+// Mixes all values in the range [data, data+size) into the hash state.
+// This overload accepts only uniquely-represented types, and hashes them by
+// hashing the entire range of bytes.
+template <typename H, typename T>
+typename std::enable_if<is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+ const auto* bytes = reinterpret_cast<const unsigned char*>(data);
+ return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
+}
+
+// hash_range_or_bytes()
+template <typename H, typename T>
+typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+ for (const auto end = data + size; data < end; ++data) {
+ hash_state = H::combine(std::move(hash_state), *data);
+ }
+ return hash_state;
+}
+
+// InvokeHashTag
+//
+// InvokeHash(H, const T&) invokes the appropriate hash implementation for a
+// hasher of type `H` and a value of type `T`. If `T` is not hashable, there
+// will be no matching overload of InvokeHash().
+// Note: Some platforms (eg MSVC) do not support the detect idiom on
+// std::hash. In those platforms the last fallback will be std::hash and
+// InvokeHash() will always have a valid overload even if std::hash<T> is not
+// valid.
+//
+// We try the following options in order:
+// * If is_uniquely_represented, hash bytes directly.
+// * ADL AbslHashValue(H, const T&) call.
+// * std::hash<T>
+
+// In MSVC we can't probe std::hash or stdext::hash because it triggers a
+// static_assert instead of failing substitution.
+#if defined(_MSC_VER)
+#undef ABSL_HASH_INTERNAL_CAN_POISON_
+#else // _MSC_VER
+#define ABSL_HASH_INTERNAL_CAN_POISON_ 1
+#endif // _MSC_VER
+
+#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
+ ABSL_HASH_INTERNAL_CAN_POISON_
+#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
+#endif
+
+enum class InvokeHashTag {
+ kUniquelyRepresented,
+ kHashValue,
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ kLegacyHash,
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ kStdHash,
+ kNone
+};
+
+// HashSelect
+//
+// Type trait to select the appropriate hash implementation to use.
+// HashSelect<T>::value is an instance of InvokeHashTag that indicates the best
+// available hashing mechanism.
+// See `Note` above about MSVC.
+template <typename T>
+struct HashSelect {
+ private:
+ struct State : HashStateBase<State> {
+ static State combine_contiguous(State hash_state, const unsigned char*,
+ size_t);
+ using State::HashStateBase::combine_contiguous;
+ };
+
+ // `Probe<V, Tag>::value` evaluates to `V<T>::value` if it is a valid
+ // expression, and `false` otherwise.
+ // `Probe<V, Tag>::tag` always evaluates to `Tag`.
+ template <template <typename> class V, InvokeHashTag Tag>
+ struct Probe {
+ private:
+ template <typename U, typename std::enable_if<V<U>::value, int>::type = 0>
+ static std::true_type Test(int);
+ template <typename U>
+ static std::false_type Test(char);
+
+ public:
+ static constexpr InvokeHashTag kTag = Tag;
+ static constexpr bool value = decltype(
+ Test<absl::remove_const_t<absl::remove_reference_t<T>>>(0))::value;
+ };
+
+ template <typename U>
+ using ProbeUniquelyRepresented = is_uniquely_represented<U>;
+
+ template <typename U>
+ using ProbeHashValue =
+ std::is_same<State, decltype(AbslHashValue(std::declval<State>(),
+ std::declval<const U&>()))>;
+
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ template <typename U>
+ using ProbeLegacyHash =
+ std::is_convertible<decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<
+ U>()(std::declval<const U&>())),
+ size_t>;
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+
+ template <typename U>
+ using ProbeStdHash =
+#if ABSL_HASH_INTERNAL_CAN_POISON_
+ std::is_convertible<decltype(std::hash<U>()(std::declval<const U&>())),
+ size_t>;
+#else // ABSL_HASH_INTERNAL_CAN_POISON_
+ std::true_type;
+#endif // ABSL_HASH_INTERNAL_CAN_POISON_
+
+ template <typename U>
+ using ProbeNone = std::true_type;
+
+ public:
+ // Probe each implementation in order.
+ // disjunction provides short circuting wrt instantiation.
+ static constexpr InvokeHashTag value = absl::disjunction<
+ Probe<ProbeUniquelyRepresented, InvokeHashTag::kUniquelyRepresented>,
+ Probe<ProbeHashValue, InvokeHashTag::kHashValue>,
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ Probe<ProbeLegacyHash, InvokeHashTag::kLegacyHash>,
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ Probe<ProbeStdHash, InvokeHashTag::kStdHash>,
+ Probe<ProbeNone, InvokeHashTag::kNone>>::kTag;
+};
+
+template <typename T>
+struct is_hashable : std::integral_constant<bool, HashSelect<T>::value !=
+ InvokeHashTag::kNone> {};
+
+template <typename H, typename T>
+absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kUniquelyRepresented,
+ H>
+InvokeHash(H state, const T& value) {
+ return hash_internal::hash_bytes(std::move(state), value);
+}
+
+template <typename H, typename T>
+absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kHashValue, H>
+InvokeHash(H state, const T& value) {
+ return AbslHashValue(std::move(state), value);
+}
+
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+template <typename H, typename T>
+absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kLegacyHash, H>
+InvokeHash(H state, const T& value) {
+ return hash_internal::hash_bytes(
+ std::move(state), ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
+}
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+
+template <typename H, typename T>
+absl::enable_if_t<HashSelect<T>::value == InvokeHashTag::kStdHash, H>
+InvokeHash(H state, const T& value) {
+ return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
+}
+
+// CityHashState
+class CityHashState : public HashStateBase<CityHashState> {
+ // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
+ // We use the intrinsic when available to improve performance.
+#ifdef ABSL_HAVE_INTRINSIC_INT128
+ using uint128 = __uint128_t;
+#else // ABSL_HAVE_INTRINSIC_INT128
+ using uint128 = absl::uint128;
+#endif // ABSL_HAVE_INTRINSIC_INT128
+
+ static constexpr uint64_t kMul =
+ sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} : uint64_t{0x9ddfea08eb382d69};
+
+ template <typename T>
+ using IntegralFastPath =
+ conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
+
+ public:
+ // Move only
+ CityHashState(CityHashState&&) = default;
+ CityHashState& operator=(CityHashState&&) = default;
+
+ // CityHashState::combine_contiguous()
+ //
+ // Fundamental base case for hash recursion: mixes the given range of bytes
+ // into the hash state.
+ static CityHashState combine_contiguous(CityHashState hash_state,
+ const unsigned char* first,
+ size_t size) {
+ return CityHashState(
+ CombineContiguousImpl(hash_state.state_, first, size,
+ std::integral_constant<int, sizeof(size_t)>{}));
+ }
+ using CityHashState::HashStateBase::combine_contiguous;
+
+ // CityHashState::hash()
+ //
+ // For performance reasons in non-opt mode, we specialize this for
+ // integral types.
+ // Otherwise we would be instantiating and calling dozens of functions for
+ // something that is just one multiplication and a couple xor's.
+ // The result should be the same as running the whole algorithm, but faster.
+ template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
+ static size_t hash(T value) {
+ return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
+ }
+
+ // Overload of CityHashState::hash()
+ template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
+ static size_t hash(const T& value) {
+ return static_cast<size_t>(combine(CityHashState{}, value).state_);
+ }
+
+ private:
+ // Invoked only once for a given argument; that plus the fact that this is
+ // move-only ensures that there is only one non-moved-from object.
+ CityHashState() : state_(Seed()) {}
+
+ // Workaround for MSVC bug.
+ // We make the type copyable to fix the calling convention, even though we
+ // never actually copy it. Keep it private to not affect the public API of the
+ // type.
+ CityHashState(const CityHashState&) = default;
+
+ explicit CityHashState(uint64_t state) : state_(state) {}
+
+ // Implementation of the base case for combine_contiguous where we actually
+ // mix the bytes into the state.
+ // Dispatch to different implementations of the combine_contiguous depending
+ // on the value of `sizeof(size_t)`.
+ static uint64_t CombineContiguousImpl(uint64_t state,
+ const unsigned char* first, size_t len,
+ std::integral_constant<int, 4>
+ /* sizeof_size_t */);
+ static uint64_t CombineContiguousImpl(uint64_t state,
+ const unsigned char* first, size_t len,
+ std::integral_constant<int, 8>
+ /* sizeof_size_t*/);
+
+ // Reads 9 to 16 bytes from p.
+ // The first 8 bytes are in .first, the rest (zero padded) bytes are in
+ // .second.
+ static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
+ size_t len) {
+ uint64_t high = little_endian::Load64(p + len - 8);
+ return {little_endian::Load64(p), high >> (128 - len * 8)};
+ }
+
+ // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
+ static uint64_t Read4To8(const unsigned char* p, size_t len) {
+ return (static_cast<uint64_t>(little_endian::Load32(p + len - 4))
+ << (len - 4) * 8) |
+ little_endian::Load32(p);
+ }
+
+ // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
+ static uint32_t Read1To3(const unsigned char* p, size_t len) {
+ return static_cast<uint32_t>((p[0]) | //
+ (p[len / 2] << (len / 2 * 8)) | //
+ (p[len - 1] << ((len - 1) * 8)));
+ }
+
+ ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
+ using MultType =
+ absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
+ // We do the addition in 64-bit space to make sure the 128-bit
+ // multiplication is fast. If we were to do it as MultType the compiler has
+ // to assume that the high word is non-zero and needs to perform 2
+ // multiplications instead of one.
+ MultType m = state + v;
+ m *= kMul;
+ return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
+ }
+
+ // Seed()
+ //
+ // A non-deterministic seed.
+ //
+ // The current purpose of this seed is to generate non-deterministic results
+ // and prevent having users depend on the particular hash values.
+ // It is not meant as a security feature right now, but it leaves the door
+ // open to upgrade it to a true per-process random seed. A true random seed
+ // costs more and we don't need to pay for that right now.
+ //
+ // On platforms with ASLR, we take advantage of it to make a per-process
+ // random value.
+ // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
+ //
+ // On other platforms this is still going to be non-deterministic but most
+ // probably per-build and not per-process.
+ ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
+ return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
+ }
+ static const void* const kSeed;
+
+ uint64_t state_;
+};
+
+// CityHashState::CombineContiguousImpl()
+inline uint64_t CityHashState::CombineContiguousImpl(
+ uint64_t state, const unsigned char* first, size_t len,
+ std::integral_constant<int, 4> /* sizeof_size_t */) {
+ // For large values we use CityHash, for small ones we just use a
+ // multiplicative hash.
+ uint64_t v;
+ if (len > 8) {
+ v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
+ } else if (len >= 4) {
+ v = Read4To8(first, len);
+ } else if (len > 0) {
+ v = Read1To3(first, len);
+ } else {
+ // Empty ranges have no effect.
+ return state;
+ }
+ return Mix(state, v);
+}
+
+// Overload of CityHashState::CombineContiguousImpl()
+inline uint64_t CityHashState::CombineContiguousImpl(
+ uint64_t state, const unsigned char* first, size_t len,
+ std::integral_constant<int, 8> /* sizeof_size_t */) {
+ // For large values we use CityHash, for small ones we just use a
+ // multiplicative hash.
+ uint64_t v;
+ if (len > 16) {
+ v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len);
+ } else if (len > 8) {
+ auto p = Read9To16(first, len);
+ state = Mix(state, p.first);
+ v = p.second;
+ } else if (len >= 4) {
+ v = Read4To8(first, len);
+ } else if (len > 0) {
+ v = Read1To3(first, len);
+ } else {
+ // Empty ranges have no effect.
+ return state;
+ }
+ return Mix(state, v);
+}
+
+
+struct AggregateBarrier {};
+
+// HashImpl
+
+// Add a private base class to make sure this type is not an aggregate.
+// Aggregates can be aggregate initialized even if the default constructor is
+// deleted.
+struct PoisonedHash : private AggregateBarrier {
+ PoisonedHash() = delete;
+ PoisonedHash(const PoisonedHash&) = delete;
+ PoisonedHash& operator=(const PoisonedHash&) = delete;
+};
+
+template <typename T>
+struct HashImpl {
+ size_t operator()(const T& value) const { return CityHashState::hash(value); }
+};
+
+template <typename T>
+struct Hash
+ : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
+
+template <typename H>
+template <typename T, typename... Ts>
+H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
+ return H::combine(hash_internal::InvokeHash(std::move(state), value),
+ values...);
+}
+
+// HashStateBase::combine_contiguous()
+template <typename H>
+template <typename T>
+H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
+ return hash_internal::hash_range_or_bytes(std::move(state), data, size);
+}
+} // namespace hash_internal
+} // namespace absl
+
+#endif // ABSL_HASH_INTERNAL_HASH_H_
diff --git a/absl/hash/internal/print_hash_of.cc b/absl/hash/internal/print_hash_of.cc
new file mode 100644
index 0000000..b6df31c
--- /dev/null
+++ b/absl/hash/internal/print_hash_of.cc
@@ -0,0 +1,23 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <cstdlib>
+
+#include "absl/hash/hash.h"
+
+// Prints the hash of argv[1].
+int main(int argc, char** argv) {
+ if (argc < 2) return 1;
+ printf("%zu\n", absl::Hash<int>{}(std::atoi(argv[1]))); // NOLINT
+}
diff --git a/absl/hash/internal/spy_hash_state.h b/absl/hash/internal/spy_hash_state.h
new file mode 100644
index 0000000..03d795b
--- /dev/null
+++ b/absl/hash/internal/spy_hash_state.h
@@ -0,0 +1,218 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
+#define ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
+
+#include <ostream>
+#include <string>
+#include <vector>
+
+#include "absl/hash/hash.h"
+#include "absl/strings/match.h"
+#include "absl/strings/str_format.h"
+#include "absl/strings/str_join.h"
+
+namespace absl {
+namespace hash_internal {
+
+// SpyHashState is an implementation of the HashState API that simply
+// accumulates all input bytes in an internal buffer. This makes it useful
+// for testing AbslHashValue overloads (so long as they are templated on the
+// HashState parameter), since it can report the exact hash representation
+// that the AbslHashValue overload produces.
+//
+// Sample usage:
+// EXPECT_EQ(SpyHashState::combine(SpyHashState(), foo),
+// SpyHashState::combine(SpyHashState(), bar));
+template <typename T>
+class SpyHashStateImpl : public HashStateBase<SpyHashStateImpl<T>> {
+ public:
+ SpyHashStateImpl()
+ : error_(std::make_shared<absl::optional<std::string>>()) {
+ static_assert(std::is_void<T>::value, "");
+ }
+
+ // Move-only
+ SpyHashStateImpl(const SpyHashStateImpl&) = delete;
+ SpyHashStateImpl& operator=(const SpyHashStateImpl&) = delete;
+
+ SpyHashStateImpl(SpyHashStateImpl&& other) noexcept {
+ *this = std::move(other);
+ }
+
+ SpyHashStateImpl& operator=(SpyHashStateImpl&& other) noexcept {
+ hash_representation_ = std::move(other.hash_representation_);
+ error_ = other.error_;
+ moved_from_ = other.moved_from_;
+ other.moved_from_ = true;
+ return *this;
+ }
+
+ template <typename U>
+ SpyHashStateImpl(SpyHashStateImpl<U>&& other) { // NOLINT
+ hash_representation_ = std::move(other.hash_representation_);
+ error_ = other.error_;
+ moved_from_ = other.moved_from_;
+ other.moved_from_ = true;
+ }
+
+ template <typename A, typename... Args>
+ static SpyHashStateImpl combine(SpyHashStateImpl s, const A& a,
+ const Args&... args) {
+ // Pass an instance of SpyHashStateImpl<A> when trying to combine `A`. This
+ // allows us to test that the user only uses this instance for combine calls
+ // and does not call AbslHashValue directly.
+ // See AbslHashValue implementation at the bottom.
+ s = SpyHashStateImpl<A>::HashStateBase::combine(std::move(s), a);
+ return SpyHashStateImpl::combine(std::move(s), args...);
+ }
+ static SpyHashStateImpl combine(SpyHashStateImpl s) {
+ if (direct_absl_hash_value_error_) {
+ *s.error_ = "AbslHashValue should not be invoked directly.";
+ } else if (s.moved_from_) {
+ *s.error_ = "Used moved-from instance of the hash state object.";
+ }
+ return s;
+ }
+
+ static void SetDirectAbslHashValueError() {
+ direct_absl_hash_value_error_ = true;
+ }
+
+ // Two SpyHashStateImpl objects are equal if they hold equal hash
+ // representations.
+ friend bool operator==(const SpyHashStateImpl& lhs,
+ const SpyHashStateImpl& rhs) {
+ return lhs.hash_representation_ == rhs.hash_representation_;
+ }
+
+ friend bool operator!=(const SpyHashStateImpl& lhs,
+ const SpyHashStateImpl& rhs) {
+ return !(lhs == rhs);
+ }
+
+ enum class CompareResult {
+ kEqual,
+ kASuffixB,
+ kBSuffixA,
+ kUnequal,
+ };
+
+ static CompareResult Compare(const SpyHashStateImpl& a,
+ const SpyHashStateImpl& b) {
+ const std::string a_flat = absl::StrJoin(a.hash_representation_, "");
+ const std::string b_flat = absl::StrJoin(b.hash_representation_, "");
+ if (a_flat == b_flat) return CompareResult::kEqual;
+ if (absl::EndsWith(a_flat, b_flat)) return CompareResult::kBSuffixA;
+ if (absl::EndsWith(b_flat, a_flat)) return CompareResult::kASuffixB;
+ return CompareResult::kUnequal;
+ }
+
+ // operator<< prints the hash representation as a hex and ASCII dump, to
+ // facilitate debugging.
+ friend std::ostream& operator<<(std::ostream& out,
+ const SpyHashStateImpl& hash_state) {
+ out << "[\n";
+ for (auto& s : hash_state.hash_representation_) {
+ size_t offset = 0;
+ for (char c : s) {
+ if (offset % 16 == 0) {
+ out << absl::StreamFormat("\n0x%04x: ", offset);
+ }
+ if (offset % 2 == 0) {
+ out << " ";
+ }
+ out << absl::StreamFormat("%02x", c);
+ ++offset;
+ }
+ out << "\n";
+ }
+ return out << "]";
+ }
+
+ // The base case of the combine recursion, which writes raw bytes into the
+ // internal buffer.
+ static SpyHashStateImpl combine_contiguous(SpyHashStateImpl hash_state,
+ const unsigned char* begin,
+ size_t size) {
+ hash_state.hash_representation_.emplace_back(
+ reinterpret_cast<const char*>(begin), size);
+ return hash_state;
+ }
+
+ using SpyHashStateImpl::HashStateBase::combine_contiguous;
+
+ absl::optional<std::string> error() const {
+ if (moved_from_) {
+ return "Returned a moved-from instance of the hash state object.";
+ }
+ return *error_;
+ }
+
+ private:
+ template <typename U>
+ friend class SpyHashStateImpl;
+
+ // This is true if SpyHashStateImpl<T> has been passed to a call of
+ // AbslHashValue with the wrong type. This detects that the user called
+ // AbslHashValue directly (because the hash state type does not match).
+ static bool direct_absl_hash_value_error_;
+
+
+ std::vector<std::string> hash_representation_;
+ // This is a shared_ptr because we want all instances of the particular
+ // SpyHashState run to share the field. This way we can set the error for
+ // use-after-move and all the copies will see it.
+ std::shared_ptr<absl::optional<std::string>> error_;
+ bool moved_from_ = false;
+};
+
+template <typename T>
+bool SpyHashStateImpl<T>::direct_absl_hash_value_error_;
+
+template <bool& B>
+struct OdrUse {
+ constexpr OdrUse() {}
+ bool& b = B;
+};
+
+template <void (*)()>
+struct RunOnStartup {
+ static bool run;
+ static constexpr OdrUse<run> kOdrUse{};
+};
+
+template <void (*f)()>
+bool RunOnStartup<f>::run = (f(), true);
+
+template <
+ typename T, typename U,
+ // Only trigger for when (T != U),
+ absl::enable_if_t<!std::is_same<T, U>::value, int> = 0,
+ // This statement works in two ways:
+ // - First, it instantiates RunOnStartup and forces the initialization of
+ // `run`, which set the global variable.
+ // - Second, it triggers a SFINAE error disabling the overload to prevent
+ // compile time errors. If we didn't disable the overload we would get
+ // ambiguous overload errors, which we don't want.
+ int = RunOnStartup<SpyHashStateImpl<T>::SetDirectAbslHashValueError>::run>
+void AbslHashValue(SpyHashStateImpl<T>, const U&);
+
+using SpyHashState = SpyHashStateImpl<void>;
+
+} // namespace hash_internal
+} // namespace absl
+
+#endif // ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_