summaryrefslogtreecommitdiff
path: root/aidsheet.tex
blob: 067de1573dcec331ac03a66c468436e6d3644ccb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
%% 18.022 cheat sheet
%%
%% Copyright (C) 2009, 2010, 2011 Benjamin Barenblat
%%                                http://benjamin.barenblat.name/
%%
%% This document is licensed under the Creative Commons
%% Attribution-NonCommercial-ShareAlike 3.0 United States License.
%% For more information, see
%% http://creativecommons.org/licenses/by-nc-sa/3.0/us/.
%%
%% This document is designed to be typeset with pdfLaTeX.
\documentclass[10pt,landscape]{article}
\usepackage{eco}
\usepackage{geometry}
\usepackage{multicol}
\usepackage{mathtools}
\usepackage{color}
\usepackage[colorlinks]{hyperref}
\definecolor{darkred}{rgb}{0.5,0,0}
\hypersetup{colorlinks,linkcolor=black,urlcolor=darkred}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{18.022}
\usepackage{esint}
\usepackage{titlesec}

% Only show equation numbers of referenced equations.
\mathtoolsset{showonlyrefs=true}

% Set margin.
\geometry{margin=6mm}

% Turn off header and footer.
\pagestyle{empty}

% Don't print subsection numbers.
\setcounter{secnumdepth}{0}

%% Squash paragraph headings.
\titlespacing*{\paragraph}{0pt}{.94em}{*1}

\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt}

\makeatletter
\newcommand{\@recitation}{}
\newcommand{\recitation}[1]{\renewcommand{\@recitation}{#1}}
\renewcommand{\maketitle}{%
  \begin{center}
    \LARGE{\textbf{\@title}}
  \end{center}
}
\newcommand{\makeend}{%
  \vfill
  \rule{0.3\linewidth}{0.25pt}
  \scriptsize
  \begin{tabular}{@{}l}
    Copyright \copyright\ \@date\ \@author.  \href{http://creativecommons.org/licenses/by-nc-sa/3.0/us/}{\textsc{cc by$\cdot$nc$\cdot$sa}}.  No warranty.\\
    \url{http://benjamin.barenblat.name/}
  \end{tabular}
}
\makeatother

\title{18.022 Cheat Sheet}
\author{Benjamin Barenblat}
\date{2009--2011}

\begin{document}
\raggedright
\begin{multicols*}{3}
\maketitle

\section{Vectors}
\paragraph{Dot product}
Let $\vec v, \vec w, \vec u \in \R^n$.
Then, $\vec v \dot \vec w = \langle \vec v, \vec w \rangle = \langle\vec v \vert \vec w\rangle = \bra v_1w_1 & \cdots & v_nw_n \ket$.

\paragraph{Cauchy-Schwarz inequality}
Let $\vec v, \vec w \in \R^n$.
Then, $(\vec v \dot \vec w)^2 \le (\vec v \dot \vec v)(\vec w \dot \vec w) \iff \abs{\vec v \dot \vec w} \le \norm{\vec v}\norm{\vec w}$.

\paragraph{Triangle inequality}
Let $\vec v, \vec w \in \R^n$.
Then, $\norm{\vec v + \vec w} \le \norm{\vec x} + \norm{\vec y}$ and $\norm{\vec v - \vec w} \ge \big\lvert\norm{\vec v} - \norm{\vec w}\big\rvert$.

\paragraph{Projection}
For $\vec a, \vec b \in \R^n$, the projection of $\vec b$ onto $\vec a$
\begin{equation}
  \label{eq:projection}
  \proj_{\vec a}\vec b = \frac{\vec a \dot \vec b}{\norm{\vec a}}\vec{\hat a} = \frac{\vec a \dot \vec b}{\norm{\vec a}^2}\vec a = \frac{\vec a \dot \vec b}{\vec a \dot \vec a}\vec a
\end{equation}
and $\norm{\proj_{\vec a}\vec b} = \norm{\vec b\cos\theta}$.

\paragraph{Distance from a point to a line}
Given a point $\vec p$ and a line $\vec l(t) = \vec vt + \vec q$, the shortest vector from $\vec p$ to $\vec l$ is
\begin{equation}
  \vec q - \vec p - \proj_{\vec v}(\vec q - \vec p) = \vec q - \vec p - \frac{(\vec q - \vec p) \dot \vec v}{\norm{\vec q - \vec p}^2}\vec v.
\end{equation}

\paragraph{Cross product}
Let $\vec v, \vec w \in \R^3$.
Then,
\begin{equation}
  \label{eq:crossproduct}
  \vec v \cross \vec w = \bra v_1 \\ v_2 \\ v_3 \ket \cross \bra w_1 \\ w_2 \\ w_3 \ket = \bra v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \ket
\end{equation}
and
$\norm{\vec v \cross \vec w} = \norm{\vec v}\norm{\vec w}\abs{\sin\theta}$.

\paragraph{Planes}
Let $\vec x = \bra x_1 & \cdots & x_n \ket \in \R^n$.
For a point $\vec p$ and normal vector $\vec n$, $(\vec x - \vec p) \dot \vec n = 0$.
\begin{list}{\textbullet}{\setlength{\itemsep}{0pt}}
\item Point and two vectors: $\vec n = \vec u \cross \vec v$.
\item Three points: $\vec n = (\vec q - \vec p) \cross (\vec r - \vec p) = 0$.
\item Function and point: $\vec n = \grad f(\vec p)$.
\end{list}

\paragraph{Triple scalar product / determinant}
For $\vec u, \vec v, \vec w \in \R^3$,
\begin{equation}
  \vec u \dot \vec v \cross \vec w = \det \bra \vec u & \vec v & \vec w \ket
\end{equation}
is the volume of the parallelepiped spanned by $\vec u$, $\vec v$, and $\vec w$.
$(\vec u, \vec v, \vec w)$ is right-handed iff $\det \bra \vec u & \vec v & \vec w \ket > 0$.

\paragraph{Matrix Multiplication}
Dimensionally, the number of columns in the first matrix must match the number of rows in the second.
\begin{wrapfigure}[5]{r}{1.4in}
  \includegraphics[width=1.4in]{matrix-multiplication}
  \scriptsize Copyright \textcopyright\ 2009 \href{http://en.wikipedia.org/wiki/User:Fangfufu}{Fangfufu}.\\\textsc{\href{http://creativecommons.org/licenses/by-sa/3.0/}{cc by$\cdot$sa}}.
\end{wrapfigure}
\begin{multline}
  \bra a & b & c \\ d & e & f \\ g & h & i \ket \bra \alpha & \delta \\ \beta & \epsilon \\ \gamma & \zeta \ket = \\ \bra a\alpha + b\beta + c\gamma & a\delta + b\epsilon + c\zeta \\ d\alpha + e\beta + f\gamma & d\delta + e\epsilon + f\zeta \\ g\alpha + h\beta + i\gamma & g\delta + h\epsilon + i\zeta\ket
\end{multline}
$a_{1,2}$ refers to the element in the $1$st row, $2$nd column.
Generally, for two matrices $A$ and $B$,
\begin{equation}
  (AB)_{i,j} = A_{i,1} + B_{1,j} + A_{i,2}B{2,j} + \cdots + A_{i,n}B_{n,j}.
\end{equation}

\section{Differential calculus}
\paragraph{Gradient}
For a scalar field $f : \R^n \to \R$, the gradient of $f$
\begin{equation}
  \grad f = \bra D_1f \\ D_2f \\ D_3f \\ \vdots \\ D_nf \ket,
\end{equation}
a new vector field which consistently points in the direction of $f$'s greatest increase with magnitude equal to the rate of that increase.
By corollary, $\grad f$ is always perpendicular to $f$'s level curves.

\paragraph{Divergence}
For a vector field $\vec F : \R^n \to \R^n$, the divergence of $\vec F$
\begin{equation}
  \div\vec F = D_1F_1 + D_2F_2 + D_3F_3 + \cdots + D_nF_n,
\end{equation}
a new scalar field.
Positive values of $\div\vec F$ indicate field sources, while negative values indicate field sinks.

\paragraph{Curl}
For a vector field $\vec F : \R^3 \to \R^3$, the curl of $\vec F$
\begin{equation}
  \curl\vec F = \bra D_2F_3 - D_3F_2 \\ D_3F_1 - D_1F_3 \\ D_1F_2 - D_2F_1 \ket,
\end{equation}
a new vector field measuring the rate of rotation at each point.

\paragraph{Laplacian}
For a scalar field $f : \R^n \to \R$, the Laplacian of $f$
\begin{equation}
  \nabla^2 f = \div\grad f = D_1^2f + D_2^2f + D_3^2f + \cdots + D_n^2f.
\end{equation}

\paragraph{Conservative vector fields}
Let $\vec F : U \subseteq \R^n \to \R^n$ ($U$ open) be a vector field
of class $C^1$.  If there exists a class $C^2$ scalar field $f : U \to
\R$ such that $\vec F = \grad f$ on $U$, then $\vec F$ is conservative
on $U$.  If $\vec F$ is conservative on $U$, then $\vec F$ is also
curl-free on $U$.  (The converses are true if $U$ is simply connected.)

\paragraph{Chain rule}
If $\vec f : \R^n \to \R^m$ is differentiable at $\vec x$ and $\vec g
: \R^m \to \R^p$ is differentiable at $\vec f(\vec x)$, then $\vec g
\circ \vec f$ is differentiable at $\vec x$ and
\begin{equation}
  \label{eq:chainrule}
  D(\vec g \circ \vec f)_{\vec x} = \big(D\vec g_{\vec f(\vec x)}\big)(D\vec f_{\vec x}).
\end{equation}

\paragraph{Implicit function theorem}
Let $\vec F : \R^{n+m} \to \R^m$ (i.e., $m$ functions in $n + m$ unknowns) be of class $C^1$ and let $\vec F(\vec x_0) = \0$ for some $\vec x_0 \in \R^{n+m}$.
Write $\vec x = (\vec a, \vec b)$, where $\vec a \in \R^n$ and $\vec b \in \R^m$; write $\vec x_0 = (\vec a_0, \vec b_0)$, where $\vec a_0 \in \R^n$ and $\vec b_0 \in \R^m$.
Note that $D\vec F = \bra D_{\vec a}\vec F & D_{\vec b}\vec F \ket$.
If $D_{\vec b}\vec F(\vec b_0)$ is invertible (i.e., $\det D_{\vec b}\vec F(\vec b_0) \ne 0$), then there exists a neighborhood $U$ of $\vec a_0$ in $\R^n$ and a neighborhood $V$ of $\vec b_0$ in $\R^m$ and a function $\vec f : U \to V$ such that $F\big(\vec a_0, f(\vec a_0)\big) = 0$.
$\vec f$ expresses $\vec b$ in terms of $\vec a$ in the neighborhood of $(\vec a_0, \vec b_0)$, and
\begin{equation}
  \label{eq:implicitdiff}
  D\vec f_{\vec a_0} = -\big(D_{\vec b}\vec F(\vec b_0)\big)^{-1}\big(D_{\vec a}\vec F(\vec a_0)\big).
\end{equation}

\paragraph{Taylor's theorem}
The $k$th-order Taylor polynomial of a class $C^k$ function $f : \R^2 \to \R$ at $\vec x \in \R^2$ near a point $\vec a \in \R^2$
\begin{equation}
  T^kf_{\vec a}(\vec x - \vec a) = \sum_{\substack{n,m\\n+m \le k}} \frac{D_1^nD_2^m f(a_1,a_2)}{n!m!}(x - a_1)^n(y - a_2)^m.
\end{equation}

\paragraph{Extrema}
Consider a function $f : \R^n \to \R$ of class $C^2$.
$f$ has critical points where $Df = \0$; if $f$ has local extrema, they will occur at critical points.
At each critical point,
\begin{itemize}
\item If $D^2f$'s minors are all positive, $D^2f$ is positive definite and the point is a local minimum.
\item If $-D^2f$'s minors are all positive, $D^2f$ is negative definite and the point is a local maximum.
\item If neither of these are true, but $D^2f$ is invertible, $D^2f$ is indefinite and the point is a saddle point.
\item If $D^2f$ is not invertible, then the point is degenerate.
\end{itemize}
If a function $f : K \to \R$ is of class $C^1$ on $K$ and continuous on the interior of $\partial K$ and $K$ is closed and bounded, then $f$ has at least one minimum and at least one maximum on $K$.
The extrema will occur inside $K$ at critical points or somewhere on $\partial K$.

\paragraph{Constrained optimization (one constraint)}
Consider a differentiable function $f : \R^n \to \R$ on a set $\mathscr{C} \subseteq \R$ defined as the level set of some function -- i.e., for some $C^1$ function $g$, $\mathscr{C} = \{ \vec x \in \R^n : g(\vec x) = 0 \}$.
Define $L(\vec x, \lambda) = f(\vec x) - \lambda g(\vec x)$.
If, at a point $\vec x_0$, $\grad L(\vec x_0, \lambda_0) = 0$ for some constant $\lambda_0$ and $\grad g(\vec x_0) \ne 0$, then $f\vert_\mathscr{C}$ has a critical point at $\vec x_0$.

\paragraph{Constrained optimization ($k$ constraints)}
Consider a differentiable function $f : \R^n \to \R$ on a set $\mathscr{C} \subseteq \R$ defined as the level set of some family of functions -- i.e., for some $C^1$ function $\vec g = \bra g_1 & g_2 & \cdots & g_n \ket$, $\mathscr{C} = \{ \vec x \in \R^n : \vec g(\vec x) = \0 \}$.
Define $L(\vec x, \boldsymbol\lambda) = f(\vec x) - \boldsymbol\lambda \dot \vec g(\vec x)$.
If, at a point $\vec x_0$, $\grad L(\vec x_0, \boldsymbol\lambda_0) = 0$ for some constant $\boldsymbol\lambda_0$ and $\bra \grad g_1(\vec x_0) & \cdots & \grad g_k(\vec x_0) \ket$ has a $k\times k$ submatrix that is invertible, then $f\vert_\mathscr{C}$ has a critical point at $\vec x_0$.

\section{Integral calculus}
\paragraph{Double integrals}
Let $f : \R^2 \to \R$ be Riemann integrable on some nice domain $D \subseteq \R^2$.
Define $a, b, c, d \in \R$ such that $[a,b] \times [c,d]$ is $D$'s bounding box.
Now define $f$'s extension
\begin{equation}
  f^{\text{ext}}(x,y,z) = \begin{cases}
    f(x,y) & \text{if $(x,y) \in D$},\\
    0 & \text{otherwise}.
    \end{cases}
\end{equation}
Then,
\begin{equation}
  \iint_D f(x,y) dxdy = \int_a^b \int_c^d f^{\text{ext}}(x,y) dydx.
\end{equation}
In practice,
\begin{equation}
  \iint_D f(x,y) dxdy = \int_a^b \int_{g(x)}^{h(x)} f^{\text{ext}}(x,y) dydx
\end{equation}j
for some functions $g$ and $h$.

\paragraph{Triple integrals}
Let $f : \R^3 \to \R$ be Riemann integrable on some nice domain $D \subseteq \R^3$.
Define $a, b, c, d, e, f \in \R$ such that $[a,b] \times [c,d] \times [e,f]$ is $D$'s bounding box.
Now define $f$'s extension
\begin{equation}
  f^{\text{ext}}(x,y,z) = \begin{cases}
    f(x,y,z) & \text{if $(x,y,z) \in D$},\\
    0 & \text{otherwise}.
    \end{cases}
\end{equation}
Then,
\begin{equation}
  \iiint_D f(x,y,z) dxdydz = \int_a^b \int_c^d \int_e^f f^{\text{ext}}(x,y,z) dzdydx.
\end{equation}
In practice,
\begin{multline}
  \iiint_D f(x,y,z) dxdydz\\ = \int_a^b \int_{g(x)}^{h(x)} \int_{p(x,y)}^{q(x,y)} f^{\text{ext}}(x,y,z) dzdydx
\end{multline}
for some functions $g$, $h$, $p$, and $q$.

\paragraph{Change of variables}
Let $f : D \subset \R^n \to \R$ be Riemann integrable on some nasty domain $D$ and let $\boldsymbol\Phi : D^* \subset \R^n \to D$ be such that $\boldsymbol\Phi$ is of class $C^1$, $\boldsymbol\Phi$ is one-to-one, $\boldsymbol\Phi$ is invertible on its domain (i.e., $\det D\boldsymbol\Phi_{\vec u} \ne 0$ for all $\vec u \in D^*$), and $\boldsymbol\Phi(D^*) = D$.  Then,
\begin{equation}
  \int_D f(\vec x) d\vec x = \int_{D^*} f\big(\boldsymbol\Phi(\vec u)\big)\abs{\det D\boldsymbol\Phi_{\vec u}} d\vec u.
\end{equation}
For well-known coordinate systems, $dxdy = rdrd\theta$; $dxdydz = \rho^2\sin\phi d\rho d\phi d\theta = rdrd\theta dz$.

\paragraph{Scalar line integrals}
Let $\vec x(t) : \R \to \R^n$ parametrize a curve $C$ in $\R^n$ with endpoints $\vec x(a)$ and $\vec x(b)$; let $f(\vec x) : \R^n \to \R$ be a function defined on $C$.
Then,
\begin{equation}
  \int_C fds = \int_a^b f\big(\vec x(t)\big) \norm{\vec{\flux x}(t)} dt.
\end{equation}

\paragraph{Vector line integrals}
Let $\vec x(t) : \R \to \R^n$ parametrize a curve $C$ in $\R^n$ with endpoints $\vec x(a)$ and $\vec x(b)$; let $\vec F(\vec x) : \R^n \to \R^m$ be a vector field defined on $C$.
Then,
\begin{equation}
  \int_C \vec F \dot d\vec s = \int_a^b \vec F\big(\vec x(t)\big) \dot \vec{\flux x}(t) dt.
\end{equation}

\paragraph{Scalar surface integrals}
Let $\vec X(u,v) : \R^2 \to \R^n$ be a piecewise smooth parametrization of a surface $\mathscr{S}$ in $\R^n$ such that $\vec X(D) = \mathscr{S}$; let $f(\vec X) : \R^n \to \R$ be a function defined on $\mathscr{S}$.
Then,
\begin{equation}
  \iint_\mathscr{S} fdS = \iint_D f\big(\vec X(u,v)\big) \norm{\frac{\partial\vec X}{\partial u} \cross \frac{\partial\vec X}{\partial v}} dudv.
\end{equation}

\paragraph{Vector surface integrals}
Let $\vec X(u,v) : \R^2 \to \R^n$ be a piecewise smooth parametrization of a surface $\mathscr{S}$ in $\R^n$ such that $\vec X(D) = \mathscr{S}$; let $\vec F(\vec X) : \R^n \to \R^m$ be a vector field defined on $\mathscr{S}$.
Then,
\begin{equation}
  \iint_\mathscr{S} \vec F \dot d\vec S = \iint_D \vec F\big(\vec X(u,v)\big) \dot \frac{\partial\vec X}{\partial u} \cross \frac{\partial\vec X}{\partial v} dudv.
\end{equation}
The first member of this definition, $\iint_\mathscr{S} \vec F \dot d\vec S$, is also called the flux of $\vec F$ through $\mathscr{S}$.

\section{Fundamental theorems}
\paragraph{The first fundamental theorem of calculus}
If $f : \R^n \to \R$ is of class $C^1$ and $C$ is a smooth curve in $\R^n$ with endpoints $\vec x_0$ and $\vec x_1$, then
\begin{equation}
  \int_C \grad f \dot d\vec s = f(\vec x_1) - f(\vec x_0).
\end{equation}

\paragraph{Green's theorem}
Let $D$ be a closed set in $\R^2$ such that $\partial D$ is a collection of closed curves oriented such that $D$ is to the left.
If $\vec F: D \to \R^2$ is of class $C^1$, then
\begin{equation}
  \oint_{\partial D} \vec F \dot d\vec s = \iint_D \curl \vec F \dot \vec k dxdy.
\end{equation}
This is a special case of Stokes' theorem.

\paragraph{Gauss's theorem (the second fundamental theorem of calculus)}
Let $\Omega \in \R^3$ be a closed domain whose boundary is a piecewise smooth surface $\partial\Omega$.
Give $\partial\Omega$ outward-pointing orientation.
If $\vec F$ is a $C^1$ vector field in $\Omega$, then
\begin{equation}
  \oiint_{\partial\Omega} \vec F \dot d\vec S = \iiint_\Omega \div\vec F dxdydz.
\end{equation}

\paragraph{Stokes' theorem (the third fundamental theorem of calculus)}
Let $\mathscr{S}$ be a piecewise smooth surface in $\R^3$ with a given continuous normal vector field $\vec N$.
Let $\partial\mathscr{S}$ be a collection of piecewise smooth curves.
Orient the curves such that the outside of the surface is to the left.
Now let $\vec F : \mathscr{S} \to \R$ be a $C^1$ vector field.
Then,
\begin{equation}
  \oint_{\partial\mathscr{S}} \vec F \dot d\vec s = \iint_\mathscr{S} \curl \vec F \dot d\vec S.
\end{equation}

\makeend
\end{multicols*}
\end{document}