

FIFTH EDITION

Textadept
Quick Reference

Mitchell

Textadept Quick Reference
by Mitchell

Copyright © 2013, 2015, 2016, 2018, 2020 Mitchell.
All rights reserved.

Contact the author at books@triplequasar.com.

Although great care has been taken in preparing this book, the au-
thor assumes no responsibility for errors or omissions, or for dam-
ages resulting from the use of the information contained herein. All
product names mentioned in this book are trademarks of their re-
spective owners.

Editor: Ana Balan
Cover Designer: Mitchell
Interior Designer: Mitchell
Indexer: Mitchell

Printing history:
December 2013: First Edition
May 2015: Second Edition
October 2016: Third Edition
August 2018: Fourth Edition
December 2020: Fifth Edition

ISBN: 978-0-9912379-6-8

Preface to the Fifth Edition
This book is an updated version of the fourth edition of Text-
adept Quick Reference. It includes many of the new features
introduced in Textadept 11.0, and covers the backwards-in-
compatible changes made. In a nutshell, this book covers the
following new or notable topics:

• The universal use of table indices that start at 1.

• The artificial separation of buffer and view API functions
and fields.

• Key sequence modifier changes.

• Theme changes and enhancements.

• New lexer functions, fields, and style definition syntax.

• The ability to save and restore custom session data.

• Auto-highlight the current word (or currently selected
word) and find results.

• The new progressbar dialog.

• New events for when text in the find entry and command
entry changes.

For a comprehensive list of changes between Textadept ver-
sions, please refer to the editor’s docs/changelog.md file,
which is distributed with the application. The online version
is located at https://orbitalquark.github.io/textadept/change
log.html.

Contents

Introduction 1
Download 2
Conventions 2
Terminology 2

Environment Variables 3

Important Files and Directories 4

Command Line Options 8
Define Custom Options 9

Global Variables 10
Platform Variables 11

Handle Events 11

Create Buffers and Views 13
Query View Information 14
Handle Buffer and View Events 14

Work with Files and Projects 15
Detect or Change File Encodings 17
Query File Information 17
Handle Input and Output Events 18

Work with Sessions 19
Configure Session Settings 19
Handle Session Events 19

Move Around 20
Move Within Lines 20
Move Between Lines 21
Move Between Pages 21

Contents | v

Move Between Buffers and Views 21
Other Movements 22
Handle Movement Events 23

Manipulate Text 23
Retrieve Text 23
Set Text 24
Delete Text 26
Transform Text 27
Undo and Redo 30
Employ the Clipboard 31
Handle Text Events 32

Select Text 32
Make Simple Selections 32
Make Multiple Selections 35
Make Rectangular Selections 37
Query Selection Information 37

Search for Text 39
Simple Search 42
Search and Replace 42
Interact with the Find & Replace Pane 44
Handle Find & Replace Events 46

Query Buffer Information 47
Query Position Information 47
Query Line and Line Number Information 48
Query Measurement Information 49

Configure Line Margins 49
Query Margin Information 51
Handle Margin Events 52

vi | Contents

Mark Lines with Markers 52
Bookmark Lines 56
Query Marker Information 57

Annotate Lines 57
Query Annotated Lines 58

Mark Text with Indicators 59
Highlight Words 61
Query Indicator Information 62
Handle Indicator Events 62

Show an Interactive List 62
Display an Autocompletion List 63
Display a User List 64
Configure List Behavior and Display 65
Display Images in Lists 66
Query Interactive List Information 68
Handle Interactive List Events 69

Show a Call Tip 69
Configure Call Tip Display 71
Query Call Tip Information 71
Handle Call Tip Events 71

Fold or Hide Lines 72
Query Folded or Hidden Line Information 73

Scroll the View 74

Prompt for Input with Dialogs 74
Prompt with Messagebox Dialogs 75
Prompt with Inputbox Dialogs 76
Prompt with File Selection Dialogs 78
Prompt with a Textbox Dialog 79

Contents | vii

Prompt with Dropdown Dialogs 81
Prompt with a Filtered List Dialog 83
Prompt with an Option Dialog 84
Prompt with a Color Dialog 86
Display Status with a Progressbar Dialog 87

Manipulate the Command Entry 89
Handle Command Entry Events 90
Issue Lua Commands 90

Compile and Run Code 91
Configure Compile and Run Settings 91
Handle Compile and Run Events 93

Spawn Processes 93

Configure Textadept 95
Configure Indentation and Line Endings 96
Configure Character Settings 97
Configure the Color Theme 98
Create or Modify a Color Theme 99
Override Style Settings 105
Configure the Display Settings 107
Configure File Types 117
Configure Key Bindings 118
Configure Key Settings 121
Configure Snippets 122
Configure Miscellaneous Settings 124

Define a Lexer 125
Declare the Lexer Configuration 125
Construct Patterns 125
Define Tokens 129
Define Rules 130

viii | Contents

Assign Styles 130
Specify Fold Points 131
Embed Lexers 131
Query Lexer Rules 132
Handle Lexer Events 132

Manually Style Text 132
Refresh Styling 133
Style Plain Text 133
Query Style Information 133

Miscellaneous 134
Handle Miscellaneous Events 135

Appendix A: File Encodings 138

Appendix B: Image Formats 138
XPM Image Format 138
RGBA Image Format 139

Index of Key and Mouse Bindings 141

Lua API Index 151

Concept Index 163

Contents | ix

Introduction
Textadept is a fast, minimalist, and remarkably extensible
cross-platform text editor for programmers. Written in a com-
bination of C and Lua1 and relentlessly optimized for speed
and minimalism for over twelve years, Textadept is an ideal
editor for programmers who want endless extensibility with-
out sacrificing speed and disk space, and without succumbing
to code bloat and a superabundance of features.

Textadept runs in both graphical and text-based user interface
environments. The text-based version of the editor is referred
to as the “terminal version,” since it executes within a termi-
nal emulator.

Textadept Quick Reference is designed to help the user “get
things done” when it comes to scripting and configuring Text-
adept. Its pragmatic approach assumes the user has a basic
working knowledge of both Lua and Textadept. This book is
broken up into a number of descriptive sections with conve-
niently grouped tasks that cover nearly every aspect of Text-
adept’s Application Programming Interface (API). For the
most part, the contents of each task are not listed in concep-
tual order. They are listed in procedural order, an order the
user would likely follow when writing Lua scripts. This quick
reference serves as a complement to Textadept’s comprehen-
sive Manual and extensive API documentation.

While this book aims to be a complete reference, it does omit
some of the less useful features of Textadept’s API. For exam-
ple, although many of Textadept’s table fields are both read-
able and writable, this reference sometimes chooses to cover
only one of those operations. (Unless a field is marked “Read-
only” or “Write-only”, it is both readable and writable.) This
book also does not cover Lua or its standard libraries. Lua
Quick Reference,2 by Mitchell (2020), is a good resource on
that subject.

Finally, the topics covered in this book are designed to be
used primarily in user-written Lua scripts and in the occa-
sional “one-shot” Lua command. If the user keeps this in
mind, he or she can realize Textadept’s full potential.
1 https://www.lua.org
2 https://orbitalquark.github.io/lua-quick-reference

Introduction | 1

Download
Textadept binary packages for Windows, macOS, and Linux
platforms are available from https://orbitalquark.github.io/text
adept. Each package is self-contained and need not be in-
stalled. Textadept’s source code is also included in each ar-
chive. The user may compile the application manually by
following the instructions in the editor’s Manual.

Conventions
This book uses the following typographical conventions.

Italic
Used for filenames and for introducing new terms.

Constant width
Used for environment variables, command line options,
and Lua code, including functions, tables, and variables.

Constant width italic
Used for user-specified parameters.

[]
Used for optional function arguments, except in code ex-
amples that index Lua tables. Unless otherwise specified,
optional arguments default to nil.

Terminology
This book uses the following terminology.

Buffer
An object that contains editable text.

View
An object that displays a single buffer.

Caret
Either the visual that represents the text insertion point
or the end point of a text selection.

2 | Textadept Quick Reference

Anchor
The start point of a text selection or search.

Word
A contiguous sequence of characters from a set of word
characters. What constitutes a word character varies be-
tween programming languages and can be configured in
Textadept.

Virtual Space
The empty space past the ends of lines.

Lexer
A Lua module that highlights the syntax of source code
written in a particular programming language. Textadept
refers to a programming language by its lexer’s name.

Style
A collection of display settings specific to source code
comments, strings, keywords, and other ranges of text.

Language Module
A Lua module automatically loaded by Textadept when
editing source code in a particular programming lan-
guage. The module’s name matches the language’s lexer
name. Not all languages have language modules.

Environment Variables
Textadept utilizes the following environment variables.

HOME or USERHOME
The user’s home directory. Textadept’s user data and
preferences exist in a .textadept/ sub-directory, denoted
as ~/.textadept/ throughout this book.

On Windows, this directory is typically C:\Users\user
name\. On macOS, it is /Users/username/. On Linux and
BSD it is often /home/username/.

LANG
The user’s default locale. Textadept will display localized
text and messages in it if possible.

Environment Variables | 3

Important Files and Directories
Textadept allows the user to configure and customize the edi-
tor using several important files and directories contained
within his or her ~/.textadept/ directory.

~/.textadept/init.lua
The file executed on startup that allows the user to con-
figure Textadept and customize what the application
does when it starts. For example, the user can set a color
theme, specify default buffer and view settings, change
the settings of existing modules, load custom modules,
configure key bindings and snippets, extend menus, en-
hance support for file types and programming languages,
and run arbitrary Lua code. Example 1 shows a sample
~/.textadept/init.lua file.

Example 1. Sample ~/.textadept/init.lua

-- Adjust the default theme's font name and size.
if not CURSES then
 view:set_theme('light', {
 font = 'DejaVu Sans Mono', size = 12
 })
end

-- Always use 4 spaces for each level of indentation.
buffer.use_tabs, buffer.tab_width = false, 4

-- Disable code folding and hide the fold margin.
lexer.folding = false
view.margin_width_n[3] = 0

-- Wrap long lines into view and hide the horizontal
-- scroll bar.
view.wrap_mode = view.WRAP_WHITESPACE
view.h_scroll_bar = false

-- Disable character auto-pairing with typeover, strip
-- trailing whitespace on save, and auto-highlight all
-- instances of the current word.
textadept.editing.auto_pairs = nil
textadept.editing.typeover_chars = nil
textadept.editing.strip_trailing_spaces = true
textadept.editing.highlight_words =
 textadept.editing.HIGHLIGHT_CURRENT

4 | Textadept Quick Reference

-- Load a user module from ~/.textadept/modules/ and
-- bind a key to one of its functions.
local ctags = require('ctags')
keys.f12 = ctags.goto_tag

-- Remap the quit command from Ctrl+Q to Ctrl+Alt+Q.
keys['ctrl+alt+q'], keys['ctrl+q'] = quit, nil

-- Define some global snippets.
snippets.date = ' <os.date()>'%
snippets.ta = '/home/mitchell/code/textadept/'
snippets.accessor = "\z
\tfunction 1(name)(self) return self._ 1 end\% %
\tfunction set_ 1(self, 2(value))\% %
\t\tself._ 1 = 2\% %
\tend\
"

-- Add menu option for resetting Textadept's Lua state.
local tools = textadept.menu.menubar[_L['Tools']]
table.insert(tools, {''}) -- menu separator
table.insert(tools, {'Reset L_ua State', reset})

-- Recognize .luadoc files as Lua code, change .html
-- files to be recognized as XML files, and recognize
-- a shebang like "#!/usr/bin/zsh" as shell code.
textadept.file_types.extensions.luadoc = 'lua'
textadept.file_types.extensions.html = 'xml'
textadept.file_types.patterns['^#!.+/zsh'] = 'bash'

-- Change the run commands for Lua and Python.
textadept.run.run_commands.lua = 'lua5.1 " f"'%
textadept.run.run_commands.python = 'python3 " f"'%

-- In the terminal version, disable suspend and make
-- Ctrl+Z perform undo.
if CURSES then
 events.connect(events.SUSPEND, function()
 buffer:undo()
 return true -- do not propagate
 end, 1)
end

-- Add an additional extension to ignore in all file
-- directory filters.
table.insert(lfs.default_filter, '!.ext')

Important Files and Directories | 5

-- Change the color of Java functions from orange to
-- black, ensure 4-space indentation for Python, and
-- load an extra module for the Lua language.
events.connect(events.LEXER_LOADED, function(name)
 if name == 'java' then
 local black = view.style_fore[view.STYLE_DEFAULT]
 local style_fun = buffer:style_of_name('function')
 view.style_fore[style_fun] = black
 elseif name == 'python' then
 buffer.use_tabs = false
 buffer.tab_width = 4
 elseif name == 'lua' then
 require('lua.repl')
 end
end)

~/.textadept/locale.conf
Defines Textadept’s localized messages. The user may
override or manually set Textadept’s locale by copying a
locale file from the editor’s core/locales/ directory to
~/.textadept/locale.conf.

~/.textadept/modules/
Contains user modules. When Textadept looks for mod-
ules to load via Lua’s require() function, it looks in this
directory first. The user can override one of Textadept’s
own modules by creating a new module of the same
name in ~/.textadept/modules/. For example, the user
may create a ~/.textadept/modules/textadept/keys.lua file
with a completely different set of default key bindings.
Textadept will load that file on startup instead of its own.

~/.textadept/themes/
Contains user themes. When Textadept looks for a color
theme to load, it looks in this directory first. The user
can override one of Textadept’s own themes by creating
a new theme of the same name in ~/.textadept/themes/.
Example 2 shows a sample ~/.textadept/themes/light.lua
file. The section “Create or Modify a Color Theme” on
page 99 describes themes in more detail.

Example 2. Sample ~/.textadept/themes/light.lua

-- Load the default light theme.
dofile(_HOME .. '/themes/light.lua')

6 | Textadept Quick Reference

-- Change the default theme's keywords to be bold.
local colors, styles = lexer.colors, lexer.styles
styles.keyword = {fore = colors.dark_blue, bold = true}

~/.textadept/lexers/
Contains user lexers. When Textadept looks for lexers to
highlight source code with, it looks in this directory first.
The user can override one of Textadept’s own lexers by
creating a new lexer of the same name in ~/.textadept/
lexers/. Example 3 shows a simple lexer for a C-like lan-
guage. The section “Define a Lexer” on page 125 de-
scribes lexers in more detail.

Example 3. Sample ~/.textadept/lexers/c_like.lua

-- Basic definitions.
local lexer = lexer
local token, word_match = lexer.token, lexer.word_match
local P, S = lpeg.P, lpeg.S

-- Create the lexer object.
local lex = lexer.new('c_like')

-- Whitespace.
local ws = token(lexer.WHITESPACE, lexer.space^1)
lex:add_rule('whitespace', ws)

-- Keywords.
local keyword = token(lexer.KEYWORD, word_match[[
 break continue do else for if return while
]])
lex:add_rule('keyword', keyword)

-- Types.
local type = token(lexer.TYPE, word_match[[
 bool char double float int long struct void
]])
lex:add_rule('type', type)

-- Null.
local null = token('null', P('NULL'))
lex:add_rule('null', null)
lex:add_style('null', lexer.STYLE_CONSTANT)

-- Identifiers.
local identifier = token(lexer.IDENTIFIER, lexer.word)
lex:add_rule('identifier', identifier)

Important Files and Directories | 7

-- Strings.
local sq_str = lexer.range("'", true)
local dq_str = lexer.range('"', true)
local string = token(lexer.STRING, sq_str + dq_str)
lex:add_rule('string', string)

-- Comments.
local line_comment = lexer.to_eol('//')
local block_comment = lexer.range('/*', '*/')
local comment = line_comment + block_comment
lex:add_rule('comment', token(lexer.COMMENT, comment))

-- Numbers.
local number = token(lexer.NUMBER, lexer.number)
lex:add_rule('number', number)

-- Preprocessor.
local pp = lexer.starts_line(lexer.to_eol('#', true))
lex:add_rule('preproc', token(lexer.PREPROCESSOR, pp)

-- Operators.
local op = S('+-/*^<>=;.,()[]{}')
lex:add_rule('operator', token(lexer.OPERATOR, op))

-- Specify how the lexer folds code.
lex:add_fold_point(lexer.OPERATOR, '{', '}')
lex:add_fold_point(lexer.COMMENT, '/*', '*/')
lex:add_fold_point(
 lexer.COMMENT, lexer.fold_consecutive_lines('//'))

return lex

Command Line Options
Textadept processes command line options sequentially, so
order matters. The application accepts the following com-
mand line options.

filename
Opens file filename for editing.

dirname
Sets Textadept’s current working directory to dirname,
which would typically be a project directory. Any subse-
quent relative filenames are considered relative to

8 | Textadept Quick Reference

buffer.annotation_lines[line] (Read-only)
The number of annotation text lines for line number
line.

Mark Text with Indicators
Textadept supplies 32 indicators to mark text with. Each indi-
cator has an assigned indicator style from the list in Table 6.
The editor displays indicators along with any existing styles
text may have. Indicators move along with text. Example 11
shows how to create and interact with clickable hyperlinks.

Table 6. Indicator styles

Indicator Style Visual or Description

view.INDIC_SQUIGGLEPIXMAP A squiggly underline.

view.INDIC_PLAIN An underline.

view.INDIC_DASH A dashed underline.

view.INDIC_DOTS A dotted underline.

view.INDIC_COMPOSITIONTHICK A thick underline.

view.INDIC_STRIKEOUT A strikeout line.

view.INDIC_BOX A bounding box.

view.INDIC_DOTBOX A dotted bounding box.

view.INDIC_STRAIGHTBOX A translucent box.

view.INDIC_ROUNDBOX A translucent box with rounded corners.

view.INDIC_FULLBOX A translucent box that extends to the
top of its line.

view.INDIC_GRADIENT A box with a vertical gradient from solid
to transparent.

view.INDIC_GRADIENTCENTER A box with a centered gradient from
solid to transparent.

view.INDIC_TT An underline of small ‘T’ shapes.

view.INDIC_DIAGONAL An underline of diagonal hatches.

view.INDIC_POINT A triangle below the start of text.

Mark Text with Indicators | 59

Indicator Style Visual or Description

view.INDIC_POINTCHARACTER A triangle under the first character.

view.INDIC_TEXTFORE Changes text’s foreground color.

view.INDIC_HIDDEN Plain text with no decorations.

Example 11. Create and interact with hyperlinks

-- Define hyperlink indicator.
local INDIC_LINK = _SCINTILLA.next_indic_number()
events.connect(events.VIEW_NEW, function()
 view.indic_hover_style[INDIC_LINK] =
 view.INDIC_TEXTFORE
 view.indic_hover_fore[INDIC_LINK] = 0xFF0000 -- blue
end)

-- Search the buffer and mark hyperlinks.
function mark_hyperlinks()
 local text = buffer:get_text()
 buffer.indicator_current = INDIC_LINK
 buffer:indicator_clear_range(1, buffer.length)
 for s, e in text:gmatch('()https?:// S+()') do%
 buffer:indicator_fill_range(s, e - s)
 end
end

-- Open clicked hyperlinks in a web browser.
local browser_cmd = 'firefox " s"'%
events.connect(events.INDICATOR_CLICK, function(pos)
 local indicators = buffer:indicator_all_on_for(pos)
 if indicators & INDIC_LINK > 0 then
 local s = buffer:indicator_start(INDIC_LINK, pos)
 local e = buffer:indicator_end(INDIC_LINK, pos)
 local url = buffer:text_range(s, e + 1)
 os.spawn(browser_cmd:format(url))
 end
end)

_SCINTILLA.next_indic_number()
Returns a unique indicator number, up to 32.

view.indic_style[indicator] = style
Assigns indicator style style to indicator number indica
tor. Table 6 lists all available indicator styles. The section
“Assign Indicator Colors” on page 104 describes how to
change the color and alpha values of indicator.

60 | Textadept Quick Reference

This assignment also resets view.indic_hover_style[indi
cator] to style.

The terminal version requires style to be buffer.INDIC_
STRAIGHTBOX, but cannot draw it translucently.

TIP
The user should either assign indicator styles in his or her
~/.textadept/init.lua file or within an events.VIEW_NEW han-
dler, so subsequent views can recognize them.

view.indic_under[indicator] = bool
Draw indicator number indicator behind text instead of
in front of it. The default value is false.

view.indic_hover_style[indicator] = style
Assigns indicator style style to indicator number indica
tor when either the mouse is hovering over that indica-
tor or when the caret is within that indicator.

buffer.indicator_current = indicator
Designates indicator number indicator as the indicator
used by buffer:indicator_fill_range() and buffer:indi
cator_clear_range().

buffer:indicator_fill_range(pos, length)
buffer:indicator_clear_range(pos, length)

Fills or clears the range of text from position pos to pos +
length with indicator number buffer.indicator_current.

Highlight Words
Textadept can automatically highlight all instances of the cur-
rent word or currently selected word using indicators. The
user’s ~/.textadept/init.lua file may configure this setting.

textadept.editing.highlight_words = mode
Specifies highlight mode mode as the mode for automatic
word highlighting. The default value is textadept.edit
ing.HIGHLIGHT_NONE. textadept.editing.HIGHLIGHT_SELEC
TED automatically highlights all instances of the currently
selected word, and textadept.editing.HIGHLIGHT_CURRENT
highlights all instances of the word under the caret.

Mark Text with Indicators | 61

Query Indicator Information
The user can fetch indicator locations and retrieve the indica-
tors present at particular positions.

buffer:indicator_start(indicator, pos)
buffer:indicator_end(indicator, pos)

Returns the previous or next boundary position, starting
from position pos, of indicator number indicator. Returns
1 in both instances if indicator was not found.

buffer:indicator_all_on_for(pos)
Returns a bit-mask that represents the indicators present
at position pos. The mask is a 32-bit value whose bits
correspond to Textadept’s 32 indicators.

Handle Indicator Events
Textadept emits the following indicator click events that the
user can connect to.

events.emit(events.INDICATOR_CLICK, position, modifiers)
Emitted when clicking the mouse on text that has an in-
dicator present. position is the clicked text’s position and
modifiers is a bit-mask of any modifier keys held down
(view.MOD_CTRL for Ctrl/Command, view.MOD_SHIFT for
Shift, view.MOD_ALT for Alt, and view.MOD_META for Ctrl on
macOS).

events.emit(events.INDICATOR_RELEASE, position)
Emitted when releasing the mouse after clicking on text
that has an indicator present. position is the clicked
text’s position.

Show an Interactive List
Textadept has the ability to display two types of interactive
lists that update as the user types: an autocompletion list and
a user list. An autocompletion list is a list of completions
shown for the current word. A user list is a more general list
of options presented to the user. Both types of lists have simi-
lar behavior and may display images alongside text. All of the
above is described in the following sections.

62 | Textadept Quick Reference

Concept Index

Symbols
~/.textadept/, 3, 9, 11

A
annotations, 57-59
autocompleting code, 63
autocompletion list

configuring, 65
displaying, 63
images in,

displaying, 66-68
information, 68

autopaired characters, 26

B
block comments, 29
bookmarks, 22, 56, 103
brace matching, 104, 115
buffers

creating, 13
line information in, 48
list of open, 10
manipulating text in (see

manipulating text)
measurements, 49
moving around in (see

moving around)
moving between, 22
position information

in, 47
searching and replacing

in (see searching
for text)

selecting text in (see
selecting text)

C
call tip

configuring, 71, 100, 105
displaying, 69
information, 71

character classifications, 97
clipboard operations, 31
code autocompletion, 63
code folding, 72, 114, 131
color dialog, 86
color theme

bookmarks, 103
carets, 101
changing, 98
color definitions, 99
highlighted words, 105
indicators, 104
location of, 6
long lines, 105
margins, 102
markers, 103
matching braces, 104
selections, 102
styles for, 100
whitespace, 105

Command Entry, 89
Lua commands with,

issuing, 90
command line options, 8-10
commenting code, 29
compiling and running

code, 91-93
configuring Textadept

~/.textadept/, 9
autopaired characters, 26
block comments, 29
character classifications,

97
color theme (see color

theme)
compile and run

code, 91
display settings (see

display settings)
file types, 117

Index | 163

configuring Textadept
(continued)

key bindings (see key
bindings)

line endings, 96
line indentation, 96
locale, 6
matching braces, 115
sessions, 9, 19
snippets (see snippets)
typeover characters, 26

D
deleting text, 26
dialogs

color, 86
dropdown, 81
file selection, 78
filtered list, 83
inputbox, 76-78
messagebox, 75
option, 84-86
progressbar, 87-89
textbox, 80

display settings
carets, 107
indentation guides, 115
long lines, 113
matching braces, 115
mouse cursor, 111
scrollbars, 109
selections, 108
whitespace, 109
window, 116
wrapped lines, 112
zoom, 113

downloading Textadept, 2
dropdown dialog, 81

E
encodings

converting between, 29
for files, 17

of filesystem, 11
supported, list of, 138

end of lines, 96
environment variables, 3
events

autocompletion list, 69
buffer and view, 14
call tip, 71
command entry, 90
compile and run, 93
connecting to, 12
CSI, 135
double click, 135
dwell, 135
emitting, 13
error, 136
Find & Replace, 46
focus, 136
indicator, 62
initialized, 136
input and output, 18
interactive list, 69
keypress, 136
lexer, 132
margin, 52
mouse, 136
movement, 23
no command line

arguments, 135
quit, 136
reset, 137
resume, 137
session, 19
suspend, 137
tab click, 137
text, 32
update, 137
user list, 69
zoom, 137

F
file encodings, 17
file filters, 16

164 | Index

file information, 17
file operations, 15-17
file selection dialog, 78
file types, 117
filesystem encoding, 11
filtered list dialog, 83
filtering text through shell

commands, 28
Find & Replace Pane, 44

Regex syntax for, 40-42
search flags for, 44
searching and replacing

with, 45
searching in files

with, 45
finding text (see searching

for text)
fold markers, 54
folding lines, 72
fonts and font sizes, 100,

113

H
hiding lines, 72
highlighting words, 61, 105
history, 23, 135

I
image formats

RGBA, 139
XPM, 138

incremental searching, 45
indentation, 27, 48, 96
indentation guides, 115
indicators, 59-62, 104
init.lua, 4
input, prompting for (see

dialogs)
inputbox dialog, 76-78
inserting text, 24
installing Textadept, 2
interactive lists (see

autocompletion list;
user list)

internationalizing
messages, 10

K
key bindings

configuring, 121
modifier keys, list of, 120
special keys, list of, 120
terminology, 118-120

L
language modules, location

of, 6
lexers

changing, 117
code folding, 131
defining, 125
embedding, 131
fold points, 131
information, 117
location of, 7
patterns, 125-128
properties for, 132
rules, 130
styles, 130
tokens, 129

line annotations, 57-59
line endings, 96
line indentation, 27, 48, 96
line information, 48
line margins, 49-51, 102
line markers, 52-57, 103
line wrapping, 112
lines

annotations, 57-59
bookmarking, 56
endings for, 96
folding, 72
hiding, 72
indentation for, 27, 48,

96
information for, 48, 73
joining, 28
long, 105, 113

Index | 165

lines (continued)
marking, 52-56, 103
moving between, 21
moving up or down, 28
moving within, 20
splitting, 28
transposing, 28
wrapping, 112

locale, 3, 6
localizing messages, 10
long lines, 105, 113
Lua commands, issuing, 9,

90
Lua pattern syntax, 40-42

M
manipulating text

clipboard, using the, 31
converting between

encodings, 29
deleting, 26
inserting, 24
replacing, 25
retrieving, 23
setting, 24
transforming, 28

margins, 49-51, 102
marking lines, 52-56, 103
marking text, 59-61, 104
matching braces, 104, 115
measurements, 49
messagebox dialog, 75
modules, location of, 6
moving around

between bookmarks, 22
between buffers, 22
between lines, 21
between pages, 21
between paragraphs, 22
between views, 22
selecting and, 33-35, 37
within history, 23
within lines, 20

multiple selections, 35, 38

O
option dialog, 84-86
overtype mode,

toggling, 134

P
pages, moving between, 21
paragraphs, moving

between, 22
piping text through shell

commands, 28
pixmaps, 138
position information, 47
printing messages, 25
processes, spawning

of, 93-95
progressbar dialog, 87-89

Q
quitting, 134

R
rectangular selections, 37-39
replacing text, 25, 42
resetting, 134
retrieving text, 23
RGBA image format, 139
running code, 91-93
running Textadept, 8

S
scrolling, 74, 110
search flags, 40, 44
searching for text

Find & Replace Pane,
using the, 44-46

in files, 45
incrementally, 45
regular expression syntax

for, 40-42
replacing and, 42
search flags for, 40, 44
simple search, 42

166 | Index

selecting text
modal selection, 35
multiple selection, 35
rectangular selection, 37
simple selection, 32
while moving, 33-35

selections, 37-39, 102, 108
sessions, 9, 19
setting text, 24
snippets

configuring, 124
inserting, 25
special constructs, list

of, 123
terminology, 122

spawning processes, 93-95
split views, 14
style information, 133
styles, 100
styling text, 105-107, 132

(see also lexers)
switching buffers, 22
switching views, 22
syntax highlighting, 117, 133

(see also lexers)

T
target ranges, 25, 28, 42
text indicators, 59-62, 104
text manipulations (see

manipulating text)
text selections (see selecting

text; selections)
Textadept

configuring (see
configuring
Textadept)

downloading, 2
installing, 2

running, 8
user data directory of, 3,

9, 11
textbox dialog, 80
theme (see color theme)
transforming text, 28
transposing characters and

lines, 28
typeover characters, 26

U
undo and redo actions, 30
user data directory, 3, 9, 11
user list

configuring, 65
displaying, 64
images in,

displaying, 66-68
information, 68

V
variables, 10
views

information, 14
list of open, 10
moving between, 22
scrolling, 74
splitting, 14
unsplitting, 14

W
window, 116
word characters, 3, 97
wrapping lines, 112

X
XPM image format, 138

Z
zooming, 113

Index | 167

