/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // StatusOr is the union of a Status object and a T object. StatusOr models // the concept of an object that is either a value, or an error Status // explaining why such a value is not present. To this end, StatusOr does not // allow its Status value to be Status::OK. // // The primary use-case for StatusOr is as the return value of a // function which may fail. // // Example client usage for a StatusOr, where T is not a pointer: // // StatusOr result = DoBigCalculationThatCouldFail(); // if (result.ok()) { // float answer = result.ValueOrDie(); // printf("Big calculation yielded: %f", answer); // } else { // LOG(ERROR) << result.status(); // } // // Example client usage for a StatusOr: // // StatusOr result = FooFactory::MakeNewFoo(arg); // if (result.ok()) { // std::unique_ptr foo(result.ValueOrDie()); // foo->DoSomethingCool(); // } else { // LOG(ERROR) << result.status(); // } // // Example client usage for a StatusOr>: // // StatusOr> result = FooFactory::MakeNewFoo(arg); // if (result.ok()) { // std::unique_ptr foo = std::move(result.ValueOrDie()); // foo->DoSomethingCool(); // } else { // LOG(ERROR) << result.status(); // } // // Example factory implementation returning StatusOr: // // StatusOr FooFactory::MakeNewFoo(int arg) { // if (arg <= 0) { // return tensorflow::InvalidArgument("Arg must be positive"); // } else { // return new Foo(arg); // } // } // // Note that the assignment operators require that destroying the currently // stored value cannot invalidate the argument; in other words, the argument // cannot be an alias for the current value, or anything owned by the current // value. #ifndef TENSORFLOW_STREAM_EXECUTOR_LIB_STATUSOR_H_ #define TENSORFLOW_STREAM_EXECUTOR_LIB_STATUSOR_H_ #include "tensorflow/core/platform/macros.h" #include "tensorflow/stream_executor/lib/status.h" #include "tensorflow/stream_executor/lib/statusor_internals.h" namespace stream_executor { namespace port { #if defined(__clang__) // Only clang supports warn_unused_result as a type annotation. template class TF_MUST_USE_RESULT StatusOr; #endif template class StatusOr : private internal_statusor::StatusOrData, private internal_statusor::TraitsBase< std::is_copy_constructible::value, std::is_move_constructible::value> { template friend class StatusOr; typedef internal_statusor::StatusOrData Base; public: typedef T element_type; // Constructs a new StatusOr with Status::UNKNOWN status. This is marked // 'explicit' to try to catch cases like 'return {};', where people think // StatusOr> will be initialized with an empty vector, // instead of a Status::UNKNOWN status. explicit StatusOr(); // StatusOr will be copy constructible/assignable if T is copy // constructible. StatusOr(const StatusOr&) = default; StatusOr& operator=(const StatusOr&) = default; // StatusOr will be move constructible/assignable if T is move // constructible. StatusOr(StatusOr&&) = default; StatusOr& operator=(StatusOr&&) = default; // Conversion copy/move constructor, T must be convertible from U. template ::value>::type* = nullptr> StatusOr(const StatusOr& other); template ::value>::type* = nullptr> StatusOr(StatusOr&& other); // Conversion copy/move assignment operator, T must be convertible from U. template ::value>::type* = nullptr> StatusOr& operator=(const StatusOr& other); template ::value>::type* = nullptr> StatusOr& operator=(StatusOr&& other); // Constructs a new StatusOr with the given value. After calling this // constructor, calls to ValueOrDie() will succeed, and calls to status() will // return OK. // // NOTE: Not explicit - we want to use StatusOr as a return type // so it is convenient and sensible to be able to do 'return T()' // when the return type is StatusOr. // // REQUIRES: T is copy constructible. StatusOr(const T& value); // Constructs a new StatusOr with the given non-ok status. After calling // this constructor, calls to ValueOrDie() will CHECK-fail. // // NOTE: Not explicit - we want to use StatusOr as a return // value, so it is convenient and sensible to be able to do 'return // Status()' when the return type is StatusOr. // // REQUIRES: !status.ok(). This requirement is DCHECKed. // In optimized builds, passing Status::OK() here will have the effect // of passing tensorflow::error::INTERNAL as a fallback. StatusOr(const Status& status); StatusOr& operator=(const Status& status); // TODO(b/62186997): Add operator=(T) overloads. // Similar to the `const T&` overload. // // REQUIRES: T is move constructible. StatusOr(T&& value); // RValue versions of the operations declared above. StatusOr(Status&& status); StatusOr& operator=(Status&& status); // Returns this->status().ok() bool ok() const { return this->status_.ok(); } // Returns a reference to our status. If this contains a T, then // returns Status::OK(). const Status& status() const &; Status status() &&; // Returns a reference to our current value, or CHECK-fails if !this->ok(). // // Note: for value types that are cheap to copy, prefer simple code: // // T value = statusor.ValueOrDie(); // // Otherwise, if the value type is expensive to copy, but can be left // in the StatusOr, simply assign to a reference: // // T& value = statusor.ValueOrDie(); // or `const T&` // // Otherwise, if the value type supports an efficient move, it can be // used as follows: // // T value = std::move(statusor).ValueOrDie(); // // The std::move on statusor instead of on the whole expression enables // warnings about possible uses of the statusor object after the move. // C++ style guide waiver for ref-qualified overloads granted in cl/143176389 // See go/ref-qualifiers for more details on such overloads. const T& ValueOrDie() const &; T& ValueOrDie() &; const T&& ValueOrDie() const &&; T&& ValueOrDie() &&; T ConsumeValueOrDie() { return std::move(ValueOrDie()); } // Ignores any errors. This method does nothing except potentially suppress // complaints from any tools that are checking that errors are not dropped on // the floor. void IgnoreError() const; }; //////////////////////////////////////////////////////////////////////////////// // Implementation details for StatusOr template StatusOr::StatusOr() : Base(Status(tensorflow::error::UNKNOWN, "")) {} template StatusOr::StatusOr(const T& value) : Base(value) {} template StatusOr::StatusOr(const Status& status) : Base(status) {} template StatusOr& StatusOr::operator=(const Status& status) { this->Assign(status); return *this; } template StatusOr::StatusOr(T&& value) : Base(std::move(value)) {} template StatusOr::StatusOr(Status&& status) : Base(std::move(status)) {} template StatusOr& StatusOr::operator=(Status&& status) { this->Assign(std::move(status)); return *this; } template template ::value>::type*> inline StatusOr::StatusOr(const StatusOr& other) : Base(static_cast::Base&>(other)) {} template template ::value>::type*> inline StatusOr& StatusOr::operator=(const StatusOr& other) { if (other.ok()) this->Assign(other.ValueOrDie()); else this->Assign(other.status()); return *this; } template template ::value>::type*> inline StatusOr::StatusOr(StatusOr&& other) : Base(static_cast::Base&&>(other)) {} template template ::value>::type*> inline StatusOr& StatusOr::operator=(StatusOr&& other) { if (other.ok()) { this->Assign(std::move(other).ValueOrDie()); } else { this->Assign(std::move(other).status()); } return *this; } template const Status& StatusOr::status() const & { return this->status_; } template Status StatusOr::status() && { return ok() ? Status::OK() : std::move(this->status_); } template const T& StatusOr::ValueOrDie() const & { this->EnsureOk(); return this->data_; } template T& StatusOr::ValueOrDie() & { this->EnsureOk(); return this->data_; } template const T&& StatusOr::ValueOrDie() const && { this->EnsureOk(); return std::move(this->data_); } template T&& StatusOr::ValueOrDie() && { this->EnsureOk(); return std::move(this->data_); } template void StatusOr::IgnoreError() const { // no-op } } // namespace port } // namespace stream_executor #endif // TENSORFLOW_STREAM_EXECUTOR_LIB_STATUSOR_H_