# pylint: disable=g-bad-file-header # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Removes parts of a graph that are only needed for training. There are several common transformations that can be applied to GraphDefs created to train a model, that help reduce the amount of computation needed when the network is used only for inference. These include: - Removing training-only operations like checkpoint saving. - Stripping out parts of the graph that are never reached. - Removing debug operations like CheckNumerics. - Folding batch normalization ops into the pre-calculated weights. - Fusing common operations into unified versions. This script takes a frozen GraphDef file (where the weight variables have been converted into constants by the freeze_graph script) and outputs a new GraphDef with the optimizations applied. An example of command-line usage is: bazel build tensorflow/python/tools:optimize_for_inference && \ bazel-bin/tensorflow/python/tools/optimize_for_inference \ --input_graph=some_graph_def.pb \ --output_graph=/tmp/optimized_graph.pb \ --input_names=Mul \ --output_names=softmax """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import re import numpy as np import tensorflow as tf from tensorflow.python.framework import graph_util from tensorflow.python.framework import tensor_util from tensorflow.python.tools import strip_unused_lib flags = tf.app.flags FLAGS = flags.FLAGS def optimize_for_inference(input_graph_def, input_node_names, output_node_names, placeholder_type_enum): """Applies a series of inference optimizations on the input graph. Args: input_graph_def: A GraphDef containing a training model. input_node_names: A list of names of the nodes that are fed inputs during inference. output_node_names: A list of names of the nodes that produce the final results. placeholder_type_enum: Data type of the placeholders used for inputs. Returns: An optimized version of the input graph. """ ensure_graph_is_valid(input_graph_def) optimized_graph_def = input_graph_def optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def, input_node_names, output_node_names, placeholder_type_enum) optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def) optimized_graph_def = fold_batch_norms(optimized_graph_def) optimized_graph_def = fuse_resize_and_conv(optimized_graph_def) ensure_graph_is_valid(optimized_graph_def) return optimized_graph_def def ensure_graph_is_valid(graph_def): """Makes sure that the graph is internally consistent. Checks basic properties of the graph def and raises an exception if there are input references to missing nodes, duplicated names, or other logic errors. Args: graph_def: Definition of a graph to be checked. Raises: ValueError: If the graph is incorrectly constructed. """ node_map = {} for node in graph_def.node: if node.name not in node_map.keys(): node_map[node.name] = node else: raise ValueError("Duplicate node names detected for ", node.name) for node in graph_def.node: for input_name in node.input: input_node_name = node_name_from_input(input_name) if input_node_name not in node_map.keys(): raise ValueError("Input for ", node.name, " not found: ", input_name) def node_name_from_input(node_name): """Strips off ports and other decorations to get the underlying node name.""" if node_name.startswith("^"): node_name = node_name[1:] m = re.search(r"(.*):\d+$", node_name) if m: node_name = m.group(1) return node_name def node_from_map(node_map, name): """Pulls a node def from a dictionary for a given name. Args: node_map: Dictionary containing an entry indexed by name for every node. name: Identifies the node we want to find. Returns: NodeDef of the node with the given name. Raises: ValueError: If the node isn't present in the dictionary. """ stripped_name = node_name_from_input(name) if stripped_name not in node_map: raise ValueError("No node named '%s' found in map." % name) return node_map[stripped_name] def values_from_const(node_def): """Extracts the values from a const NodeDef as a numpy ndarray. Args: node_def: Const NodeDef that has the values we want to access. Returns: Numpy ndarray containing the values. Raises: ValueError: If the node isn't a Const. """ if node_def.op != "Const": raise ValueError( "Node named '%s' should be a Const op for values_from_const." % node_def.name) input_tensor = node_def.attr["value"].tensor tensor_value = tensor_util.MakeNdarray(input_tensor) return tensor_value def fold_batch_norms(input_graph_def): """Removes batch normalization ops by folding them into convolutions. Batch normalization during training has multiple dynamic parameters that are updated, but once the graph is finalized these become constants. That means there's an opportunity to reduce the computations down to a scale and addition, rather than the more expensive multiple ops, and even bake the scaling into the convolution weights. This function identifies the typical pattern of batch normalization subgraphs, and performs the transformation to fold the computations down into a simpler form. It currently only spots batch normalization that's performed by the BatchNormWithGlobalNormalization op, and will need to be extended in the future to handle the newer style. Args: input_graph_def: A GraphDef containing a model. Returns: Modified graph with BN ops removed, and modified weights. Raises: ValueError: If the graph is badly formed with duplicate node names. """ input_node_map = {} for node in input_graph_def.node: if node.name not in input_node_map.keys(): input_node_map[node.name] = node else: raise ValueError("Duplicate node names detected for ", node.name) nodes_to_skip = {} new_ops = [] for node in input_graph_def.node: if node.op != "BatchNormWithGlobalNormalization": continue conv_op = node_from_map(input_node_map, node.input[0]) if conv_op.op != "Conv2D": tf.logging.warning("Didn't find expected Conv2D input to '%s'" % node.name) continue weights_op = node_from_map(input_node_map, conv_op.input[1]) if weights_op.op != "Const": tf.logging.warning("Didn't find expected conv Constant input to '%s'," " found %s instead. Maybe because freeze_graph wasn't" " run first?" % (conv_op.name, weights_op)) continue weights = values_from_const(weights_op) channel_count = weights.shape[3] mean_op = node_from_map(input_node_map, node.input[1]) if mean_op.op != "Const": tf.logging.warning("Didn't find expected mean Constant input to '%s'," " found %s instead. Maybe because freeze_graph wasn't" " run first?" % (node.name, mean_op)) continue mean_value = values_from_const(mean_op) if mean_value.shape != (channel_count,): tf.logging.warning("Incorrect shape for mean, found %s, expected %s," " for node %s" % (str(mean_value.shape), str((channel_count,)), node.name)) continue var_op = node_from_map(input_node_map, node.input[2]) if var_op.op != "Const": tf.logging.warning("Didn't find expected var Constant input to '%s'," " found %s instead. Maybe because freeze_graph wasn't" " run first?" % (node.name, var_op)) continue var_value = values_from_const(var_op) if var_value.shape != (channel_count,): tf.logging.warning("Incorrect shape for var, found %s, expected %s," " for node %s" % (str(var_value.shape), str((channel_count,)), node.name)) continue beta_op = node_from_map(input_node_map, node.input[3]) if beta_op.op != "Const": tf.logging.warning("Didn't find expected beta Constant input to '%s'," " found %s instead. Maybe because freeze_graph wasn't" " run first?" % (node.name, beta_op)) continue beta_value = values_from_const(beta_op) if beta_value.shape != (channel_count,): tf.logging.warning("Incorrect shape for beta, found %s, expected %s," " for node %s" % (str(beta_value.shape), str((channel_count,)), node.name)) continue gamma_op = node_from_map(input_node_map, node.input[4]) if gamma_op.op != "Const": tf.logging.warning("Didn't find expected gamma Constant input to '%s'," " found %s instead. Maybe because freeze_graph wasn't" " run first?" % (node.name, gamma_op)) continue gamma_value = values_from_const(gamma_op) if gamma_value.shape != (channel_count,): tf.logging.warning("Incorrect shape for gamma, found %s, expected %s," " for node %s" % (str(gamma_value.shape), str((channel_count,)), node.name)) continue variance_epsilon_value = node.attr["variance_epsilon"].f scale_after_normalization = node.attr["scale_after_normalization"].b nodes_to_skip[node.name] = True nodes_to_skip[weights_op.name] = True nodes_to_skip[mean_op.name] = True nodes_to_skip[var_op.name] = True nodes_to_skip[beta_op.name] = True nodes_to_skip[gamma_op.name] = True nodes_to_skip[conv_op.name] = True if scale_after_normalization: scale_value = ((1.0 / np.vectorize(math.sqrt) (var_value + variance_epsilon_value)) * gamma_value) else: scale_value = (1.0 / np.vectorize(math.sqrt) (var_value + variance_epsilon_value)) offset_value = (-mean_value * scale_value) + beta_value scaled_weights = np.copy(weights) it = np.nditer(scaled_weights, flags=["multi_index"], op_flags=["readwrite"]) while not it.finished: current_scale = scale_value[it.multi_index[3]] it[0] *= current_scale it.iternext() scaled_weights_op = tf.NodeDef() scaled_weights_op.op = "Const" scaled_weights_op.name = weights_op.name scaled_weights_op.attr["dtype"].CopyFrom(weights_op.attr["dtype"]) scaled_weights_op.attr["value"].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto( scaled_weights, weights.dtype.type, weights.shape))) new_conv_op = tf.NodeDef() new_conv_op.CopyFrom(conv_op) offset_op = tf.NodeDef() offset_op.op = "Const" offset_op.name = conv_op.name + "_bn_offset" offset_op.attr["dtype"].CopyFrom(mean_op.attr["dtype"]) offset_op.attr["value"].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto( offset_value, mean_value.dtype.type, offset_value.shape))) bias_add_op = tf.NodeDef() bias_add_op.op = "BiasAdd" bias_add_op.name = node.name bias_add_op.attr["T"].CopyFrom(conv_op.attr["T"]) bias_add_op.input.extend([new_conv_op.name, offset_op.name]) new_ops.extend([scaled_weights_op, new_conv_op, offset_op, bias_add_op]) result_graph_def = tf.GraphDef() for node in input_graph_def.node: if node.name in nodes_to_skip: continue new_node = tf.NodeDef() new_node.CopyFrom(node) result_graph_def.node.extend([new_node]) result_graph_def.node.extend(new_ops) return result_graph_def def fuse_resize_and_conv(input_graph_def): """Merges preceding resize and mirror pad ops into a specialized convolution. There's a common pattern of enlarging the input to a convolution using a resize operation, and also using MirrorPad to extend the boundaries to that zero edge pixels don't bleed inwards when convolving. This routine looks for that pattern of operations, and fuses them together into a Conv2DWithResizeOp. Args: input_graph_def: A GraphDef containing a model. Returns: Modified graph with resize and pad ops merged. Raises: ValueError: If the graph is badly formed with duplicate node names. """ input_node_map = {} for node in input_graph_def.node: if node.name not in input_node_map.keys(): input_node_map[node.name] = node else: raise ValueError("Duplicate node names detected for ", node.name) nodes_to_skip = {} new_ops = [] for node in input_graph_def.node: if node.op != "Conv2D": continue conv_op = node input_op = node_from_map(input_node_map, conv_op.input[0]) if input_op.op == "MirrorPad": mirror_pad_op = input_op resize_op = node_from_map(input_node_map, mirror_pad_op.input[0]) else: mirror_pad_op = None resize_op = input_op if resize_op.op != "ResizeBilinear": continue nodes_to_skip[conv_op.name] = True if mirror_pad_op: nodes_to_skip[mirror_pad_op.name] = True nodes_to_skip[resize_op.name] = True fused_conv_op = tf.NodeDef() fused_conv_op.op = "FusedResizeAndPadConv2D" fused_conv_op.name = conv_op.name if mirror_pad_op: mirror_paddings_name = mirror_pad_op.input[1] mirror_paddings_mode = mirror_pad_op.attr["mode"] else: # If there was no MirrorPad op, then create settings that make the padding # stage of the fused operation a no-op. paddings_op = tf.NodeDef() paddings_op.op = "Const" paddings_op.name = conv_op.name + "_dummy_paddings" paddings_op.attr["dtype"].CopyFrom(tf.AttrValue( type=tf.int32.as_datatype_enum)) paddings_op.attr["value"].CopyFrom(tf.AttrValue( tensor=tensor_util.make_tensor_proto( [0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2]))) new_ops.extend([paddings_op]) mirror_paddings_name = paddings_op.name mirror_paddings_mode = tf.AttrValue(s=b"REFLECT") fused_conv_op.input.extend([resize_op.input[0], resize_op.input[1], mirror_paddings_name, conv_op.input[1]]) fused_conv_op.attr["T"].CopyFrom(conv_op.attr["T"]) fused_conv_op.attr["resize_align_corners"].CopyFrom( resize_op.attr["align_corners"]) fused_conv_op.attr["mode"].CopyFrom(mirror_paddings_mode) fused_conv_op.attr["strides"].CopyFrom(conv_op.attr["strides"]) fused_conv_op.attr["padding"].CopyFrom(conv_op.attr["padding"]) new_ops.extend([fused_conv_op]) result_graph_def = tf.GraphDef() for node in input_graph_def.node: if node.name in nodes_to_skip: continue new_node = tf.NodeDef() new_node.CopyFrom(node) result_graph_def.node.extend([new_node]) result_graph_def.node.extend(new_ops) return result_graph_def