# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark for Transpose op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test def build_graph(device, input_shape, perm, datatype, num_iters): """builds a graph containing a sequence of conv2d operations. Args: device: String, the device to run on. input_shape: Shape of the input tensor. perm: A list of ints with the same length as input tensor's dimension. datatype: numpy data type of the input tensor. num_iters: number of iterations to run transpose. Returns: An array of tensors to run() """ with ops.device("/%s:0" % device): total_size = np.prod(input_shape) inp = np.arange(1, total_size + 1, dtype=datatype).reshape(input_shape) t = constant_op.constant(inp, shape=input_shape) outputs = [] transpose_op = array_ops.transpose(t, perm) outputs.append(transpose_op) for _ in range(1, num_iters): with ops.control_dependencies([transpose_op]): transpose_op = array_ops.transpose(t, perm) outputs.append(transpose_op) return control_flow_ops.group(*outputs) class TransposeBenchmark(test.Benchmark): """Benchmark transpose!""" def _run_graph(self, device, input_shape, perm, num_iters, datatype): """runs the graph and print its execution time. Args: device: String, the device to run on. input_shape: Shape of the input tensor. perm: A list of ints with the same length as input tensor's dimension. num_iters: Number of iterations to run the benchmark. datatype: numpy data type of the input tensor. Returns: The duration of the run in seconds. """ graph = ops.Graph() with graph.as_default(): outputs = build_graph(device, input_shape, perm, datatype, num_iters) with session_lib.Session(graph=graph) as session: variables.global_variables_initializer().run() # warmup runs session.run(outputs) start_time = time.time() session.run(outputs) duration = (time.time() - start_time) / num_iters throughput = np.prod( np.array(input_shape)) * datatype().itemsize * 2 / duration / 1e9 print("%s %s inputshape:%s perm:%s %d %.6fsec, %.4fGB/s." % (device, str(datatype), str(input_shape).replace(" ", ""), str(perm).replace(" ", ""), num_iters, duration, throughput)) name_template = ( "transpose_{device}_{dtype}_input_shape_{inputshape}_perm_{perm}") self.report_benchmark( name=name_template.format( device=device, dtype=str(datatype).replace(" ", ""), inputshape=str(input_shape).replace(" ", ""), perm=str(perm).replace(" ", "")).replace(" ", ""), iters=num_iters, wall_time=duration) return duration def benchmark_transpose(self): print("transpose benchmark:") datatypes = [np.complex128, np.float64, np.float32, np.float16, np.int8] small_shapes = [[2, 20, 20, 20, 16], [2, 16, 20, 20, 20]] * 2 small_shapes += [[2, 100, 100, 16], [2, 16, 100, 100]] * 2 small_shapes += [[2, 5000, 16], [2, 16, 5000]] * 2 small_perms = [[0, 4, 1, 2, 3], [0, 2, 3, 4, 1]] + [[4, 1, 2, 3, 0]] * 2 small_perms += [[0, 3, 1, 2], [0, 2, 3, 1]] + [[3, 1, 2, 0]] * 2 small_perms += [[0, 2, 1]] * 2 + [[2, 1, 0]] * 2 large_shapes = [[2, 40, 40, 40, 32], [2, 40, 40, 40, 64]] * 2 + [[ 2, 300, 300, 32 ], [2, 300, 300, 64]] * 2 + [[2, 100000, 32], [2, 100000, 64]] * 2 large_perms = [[0, 4, 1, 2, 3], [0, 2, 3, 4, 1]] + [[4, 1, 2, 3, 0]] * 2 + [ [0, 3, 1, 2], [0, 2, 3, 1] ] + [[3, 1, 2, 0]] * 2 + [[0, 2, 1]] * 2 + [[2, 1, 0]] * 2 num_iters = 40 for datatype in datatypes: for ishape, perm in zip(small_shapes, small_perms): self._run_graph("gpu", ishape, perm, num_iters, datatype) if datatype is not np.complex128: if datatype is not np.float16: for ishape, perm in zip(large_shapes, large_perms): self._run_graph("gpu", ishape, perm, num_iters, datatype) small_dim_large_shapes = [[2, 10000, 3], [2, 3, 10000], [2, 10000, 8], [2, 8, 10000]] small_dim_small_shapes = [[2, 5000, 3], [2, 3, 5000], [2, 5000, 8], [2, 8, 5000]] small_dim_perms = [[0, 2, 1]] * 4 num_iters = 320 small_dim_large_shape_datatypes = [np.float64, np.float32, np.int8] for datatype in small_dim_large_shape_datatypes: for ishape, perm in zip(small_dim_large_shapes, small_dim_perms): self._run_graph("gpu", ishape, perm, num_iters, datatype) small_dim_small_shape_datatypes = [np.complex128, np.float16] for datatype in small_dim_small_shape_datatypes: for ishape, perm in zip(small_dim_small_shapes, small_dim_perms): self._run_graph("gpu", ishape, perm, num_iters, datatype) if __name__ == "__main__": test.main()