# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Gradients for operators defined in random_ops.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_random_ops from tensorflow.python.ops import math_ops def add_leading_unit_dimensions(x, num_dimensions): new_shape = array_ops.concat( [array_ops.ones([num_dimensions], dtype=dtypes.int32), array_ops.shape(x)], axis=0) return array_ops.reshape(x, new_shape) @ops.RegisterGradient("RandomGamma") def _RandomGammaGrad(op, grad): # pylint: disable=invalid-name """Returns the gradient of a Gamma sample w.r.t. alpha. The gradient is computed using implicit differentiation, see "Implicit Reparameterization Gradients" (https://arxiv.org/abs/1805.08498). Args: op: A `RandomGamma` operation. We assume that the inputs to the operation are `shape` and `alpha` tensors, and the output is the `sample` tensor. grad: The incoming gradient `dloss / dsample` of the same shape as `op.outputs[0]`. Returns: A `Tensor` with derivatives `dloss / dalpha` """ shape = op.inputs[0] alpha = op.inputs[1] sample = op.outputs[0] with ops.control_dependencies([grad]): # Make the parameters alpha broadcastable with samples by appending # unit dimensions. num_sample_dimensions = array_ops.shape(shape)[0] alpha_broadcastable = add_leading_unit_dimensions( alpha, num_sample_dimensions) partial_a = gen_random_ops.random_gamma_grad(alpha_broadcastable, sample) # The first input is shape; the second input is alpha. return (None, math_ops.reduce_sum( grad * partial_a, axis=math_ops.range(num_sample_dimensions)))