# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """cond_v2 and gradient. This is a version of cond that emits a single If op, as well as the gradient function for If ops produced by cond_v2. This will eventually replace the current tf.cond implementation once it reaches feature and performance parity. NOTE: most users of cond_v2 should import cond_v2, not this module! This module does not contain all the necessary imports to prevent circular dependencies, while cond_v2 does. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.core.framework import attr_value_pb2 from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import gen_functional_ops # The following modules cannot be imported directly because they cause circular # dependencies. These are set in each corresponding module. _function = None _function_def_to_graph = None _gradients_impl = None # NOTE(skyewm): TensorFlow uses protected class methods and fields to signify # that they aren't part of the official public API. These protected members # often need to be used by implementation code however. Rather than litter the # code with pylint comments, we ignore protected access violations for # readability. # pylint: disable=protected-access def cond_v2(pred, true_fn, false_fn, name="cond"): """Like tf.cond, except emits a single If op.""" if not name: name = "cond" with ops.name_scope(name) as scope: with ops.name_scope(None): # Find the outer most graph for uniquing function names. # TODO(jpienaar): Make this work in eager mode. graph = ops.get_default_graph() while isinstance(graph, _function.FuncGraph): graph = graph.outer_graph true_name = graph.unique_name(("%strue" % scope).replace("/", "_")) false_name = graph.unique_name(("%sfalse" % scope).replace("/", "_")) true_graph = _function.func_graph_from_py_func( true_name, true_fn, [], {}) false_graph = _function.func_graph_from_py_func( false_name, false_fn, [], {}) _check_same_outputs(true_graph, false_graph) # Add inputs to true_graph and false_graph to make them match. Note that # this modifies true_graph and false_graph. cond_inputs = _make_inputs_match(true_graph, false_graph, true_graph.external_captures, false_graph.external_captures) # Add all intermediate tensors as function outputs so they're available for # the gradient computation. true_intermediates = _get_intermediates(true_graph) false_intermediates = _get_intermediates(false_graph) # Save the original number of outputs to return to the caller. num_cond_outputs = len(true_graph.outputs) # Make the number/type of new intermediate outputs match. extra_true_outputs, extra_false_outputs = _pad_params( true_graph, false_graph, true_intermediates, false_intermediates) true_graph.outputs.extend(extra_true_outputs) false_graph.outputs.extend(extra_false_outputs) # Create the If op. tensors = gen_functional_ops._if( # pylint: disable=protected-access pred, cond_inputs, [t.dtype for t in true_graph.outputs], _create_new_tf_function(true_graph), _create_new_tf_function(false_graph), output_shapes=_get_output_shapes(true_graph.outputs, false_graph.outputs), name=scope) # Set the flag to enable lowering on the `if` op if necessary # Lowering allows cond_v2 to avoid some of the limitations of Functions, # allowing users to specify devices & colocation inside of cond_v2 branches, # and enabling non-strict evaluation & partial pruning of cond_v2 branches. # This brings cond_v2 closer to feature parity with tf.cond. # # However, we do not lower `If` in the XLA context because it is easier for # XLA to apply its own optimizations when dealing with un-lowered `If` # operators than with lowered switch/merge control flow. # # TODO(b/110167197) this approach requires cond_v2 to have at least 1 output if_op = tensors[0].op if not control_flow_util.IsInXLAContext(if_op): # pylint: disable=protected-access if_op._set_attr("_lower_using_switch_merge", attr_value_pb2.AttrValue(b=True)) # pylint: enable=protected-access result = tuple(tensors[:num_cond_outputs]) if len(result) == 1: return result[0] else: return result @ops.RegisterGradient("If") def _IfGrad(op, *grads): # pylint: disable=invalid-name """The gradient of an If op produced by cond_v2.""" true_graph, false_graph = _get_func_graphs(op) # Note: op.graph != ops.get_default_graph() when we are computing the gradient # of a nested cond. assert true_graph.outer_graph == op.graph assert false_graph.outer_graph == op.graph # Create grad functions that compute the gradient of the true/false forward # graphs. These functions will capture tensors from the forward pass # functions. true_grad_graph = _create_grad_func( true_graph, grads, _get_grad_fn_name(true_graph)) false_grad_graph = _create_grad_func( false_graph, grads, _get_grad_fn_name(false_graph)) assert ([t.dtype for t in true_grad_graph.outputs] == [t.dtype for t in false_grad_graph.outputs]) # Resolve references to forward graph tensors in grad graphs and ensure # they are in-scope, i.e., belong to one of outer graphs of the grad graph. true_grad_inputs = _resolve_grad_inputs(true_graph, true_grad_graph) false_grad_inputs = _resolve_grad_inputs(false_graph, false_grad_graph) # Make the inputs to true_grad_graph and false_grad_graph match. Note that # this modifies true_grad_graph and false_grad_graph. grad_inputs = _make_inputs_match(true_grad_graph, false_grad_graph, true_grad_inputs, false_grad_inputs) # Add all intermediate tensors as function outputs so they're available for # higher-order gradient computations. true_grad_intermediates = _get_intermediates(true_grad_graph) false_grad_intermediates = _get_intermediates(false_grad_graph) # Save the original number of gradient outputs to return. num_grad_outputs = len(true_grad_graph.outputs) # Make the number/type of new intermediate outputs match. extra_true_grad_outputs, extra_false_grad_outputs = _pad_params( true_grad_graph, false_grad_graph, true_grad_intermediates, false_grad_intermediates) true_grad_graph.outputs.extend(extra_true_grad_outputs) false_grad_graph.outputs.extend(extra_false_grad_outputs) # Create the gradient If op. tensors = gen_functional_ops._if( op.inputs[0], grad_inputs, [t.dtype for t in true_grad_graph.outputs], _create_new_tf_function(true_grad_graph), _create_new_tf_function(false_grad_graph), output_shapes=_get_output_shapes(true_grad_graph.outputs, false_grad_graph.outputs)) # The predicate has no gradient. return [None] + tensors[:num_grad_outputs] def _get_func_graphs(if_op): """Returns `FuncGraph`s for the input op branches. Args: if_op: The _If Operation. Returns: A 2-tuple of the `FuncGraph`s of the then_branch and else_branch. """ def _get_func_graph_for_branch(branch_name): """Generates and returns a FuncGraph for the given branch.""" inputs = if_op.inputs[1:] # First input is pred. input_shapes = [t.shape for t in inputs] func_name = if_op.get_attr(branch_name).name fdef = if_op.graph._get_function(func_name).definition # `if_op.graph` may not be the same as `ops.get_default_graph()` e.g. # in the case of nested if ops or when the gradient is being computed # from inside a Defun. We build the `func_graph` with `if_op.graph` as its # `outer_graph`. This resembles how the `FuncGraph` was built in the # forward pass. We need this so that we can resolve references to tensors # in `func_graph` from its gradient graph in `_resolve_grad_inputs`. with if_op.graph.as_default(): func_graph = _function_def_to_graph.function_def_to_graph( fdef, input_shapes) func_graph.captures = collections.OrderedDict(zip(inputs, func_graph.inputs)) # Set the if op so that the gradient code can use it. func_graph._if = if_op return func_graph return (_get_func_graph_for_branch("then_branch"), _get_func_graph_for_branch("else_branch")) def _grad_fn(func_graph, grads): """The gradient function for each conditional branch. This function builds the gradient graph of the corresponding forward-pass conditional branch in `func_graph`. This is done by differentiating func_graph's outputs w.r.t. its inputs. Args: func_graph: function.FuncGraph. The corresponding forward-pass function. grads: The list of input gradient Tensors. Returns: The output gradient Tensors. """ # Filter out untrainable function outputs. # NOTE(skyewm): If we don't do this, the untrainable tensors can sometimes # cause _GradientsHelper to raise an exception (e.g. the implementation # doesn't expect 'ys' to contain boolean tensors). assert len(func_graph.outputs) == len(grads) ys = [] grad_ys = [] for y, grad_y in zip(func_graph.outputs, grads): if not _gradients_impl._IsTrainable(y): continue ys.append(y) grad_ys.append(grad_y) # Build the gradient graph. Note that this builds the gradient computation of # func_graph in the current graph, which requires capturing tensors from # func_graph. The captured func_graph tensors are resolved to external tensors # in _resolve_grad_inputs. result = _gradients_impl._GradientsHelper( ys, func_graph.inputs, grad_ys=grad_ys, src_graph=func_graph) # Functions can't return None; replace Nones with zero tensors. # TODO(b/80444525): don't return anything here and make _IfGrad return None if # both branches have zero gradient. for i in range(len(result)): if result[i] is None: result[i] = array_ops.zeros_like(func_graph.inputs[i]) return result def _create_grad_func(func_graph, grads, name): """Returns the FuncGraph representation of _grad_fn.""" return _function.func_graph_from_py_func( name, lambda: _grad_fn(func_graph, grads), [], {}) def _resolve_grad_inputs(cond_graph, grad_graph): """Returns the tensors to pass as inputs to `grad_graph`. The `grad_graph` may have external references to 1. Its outer graph containing the input gradients. These references are kept as is. 2. Tensors in the forward pass graph. These tensors may not be "live" when the gradient is being computed. We replace such references by their corresponding tensor in `cond_graph.outer_graph`. In the case of nested control flow or functions, the gradient logic handling `grad_graph.outer_graph` will make sure the tensor from `cond_graph.outer_graph` is also correctly captured. Args: cond_graph: function.FuncGraph. The forward-pass function. grad_graph: function.FuncGraph. The gradients function. Returns: A list of inputs tensors to be passed to grad_graph. """ new_inputs = [] for t in grad_graph.external_captures: # `t` must either be in `grad_graph.outer_graph` or in the forward # `cond_graph`. if t.graph != grad_graph.outer_graph: assert t.graph == cond_graph # `internal_captures` are not treated as intermediates and hence not added # to If op outputs. So we get the outer tensor corresponding to those # from the list of `external_captures`. try: t = t.graph._if.outputs[t.graph.outputs.index(t)] except ValueError: index = t.graph.internal_captures.index(t) t = t.graph.external_captures[index] # Note: We rely on the capturing logic of the gradient If op graph to # correctly capture the tensors in `cond_graph.outer_graph`. Both cond_v2 # and while_v2 handle this while building their gradient functions. assert t.graph == cond_graph.outer_graph new_inputs.append(t) return new_inputs def _create_new_tf_function(func_graph): """Converts func_graph to a TF_Function and adds it to the current graph. Args: func_graph: function.FuncGraph Returns: The name of the new TF_Function. """ func = _function._EagerDefinedFunction( func_graph.name, func_graph, func_graph.inputs, func_graph.outputs, {}) func.add_to_graph(func_graph.outer_graph) return func_graph.name def _get_intermediates(func_graph): """Returns all tensors in `func_graph` that aren't inputs or outputs.""" intermediates = [] for op in func_graph.get_operations(): for t in op.outputs: if t in func_graph.inputs: continue if t in func_graph.outputs: continue intermediates.append(t) return intermediates def _separate_unique_inputs(true_inputs, false_inputs): """Separates tensors appearing only in true_inputs or false_inputs, or both. Args: true_inputs: list of Tensors false_inputs: list of Tensors Returns: Three lists of Tensors: 1. The tensors that appear in both true_inputs and false_inputs 2. The tensors that only appear in true_inputs 3. The tensors that only appear in false_inputs """ true_inputs = set(true_inputs) false_inputs = set(false_inputs) shared_inputs = true_inputs.intersection(false_inputs) true_only_inputs = true_inputs - false_inputs false_only_inputs = false_inputs - true_inputs return list(shared_inputs), list(true_only_inputs), list(false_only_inputs) def _pad_params(true_graph, false_graph, true_params, false_params): """Returns new param lists that have matching signatures. This is done by mirroring each param list in the other using dummy params. There is no merging of params. Args: true_graph: function.FuncGraph false_graph: function.FuncGraph true_params: a list of Tensors from true_graph false_params: a list of Tensors from false_graph Returns: A new list of Tensors in true_graph and a new list of Tensors in false_graph. The two lists have the same number of Tensors, with matching types and shapes across the lists. """ new_true_params = (true_params + _create_dummy_params(true_graph, false_params)) new_false_inputs = (_create_dummy_params(false_graph, true_params) + false_params) return new_true_params, new_false_inputs def _make_inputs_match(true_graph, false_graph, true_inputs, false_inputs): """Modifies true_graph and false_graph so they have the same input signature. This method reorders and/or adds parameters to true_graph and false_graph so they have the same input signature, and updates the 'inputs' and 'captured' fields of both graphs accordingly. It uses the input tensors from the outer graph to avoid duplicating shared arguments. Args: true_graph: function.FuncGraph false_graph: function.FuncGraph true_inputs: a list of Tensors in the outer graph. The inputs for true_graph. false_inputs: a list of Tensors in the outer graph. The inputs for false_graph. Returns: A new list of Tensors from the outer graph that are the new inputs for both true_graph and false_graph. This is a deduped version of true_inputs + false_inputs. """ shared_inputs, true_only_inputs, false_only_inputs = _separate_unique_inputs( true_inputs, false_inputs) new_inputs = shared_inputs + true_only_inputs + false_only_inputs true_input_to_param = dict(zip(true_inputs, true_graph.inputs)) false_input_to_param = dict(zip(false_inputs, false_graph.inputs)) true_graph.inputs = ( [true_input_to_param[t] for t in shared_inputs] + [true_input_to_param[t] for t in true_only_inputs] + _create_dummy_params(true_graph, false_only_inputs)) false_graph.inputs = ( [false_input_to_param[t] for t in shared_inputs] + _create_dummy_params(false_graph, true_only_inputs) + [false_input_to_param[t] for t in false_only_inputs]) # Rewrite the FuncGraphs' state to reflect the new inputs. true_graph.captures = collections.OrderedDict(zip(new_inputs, true_graph.inputs)) false_graph.captures = collections.OrderedDict(zip(new_inputs, false_graph.inputs)) return new_inputs def _create_dummy_params(func_graph, template_tensors): """Creates tensors in func_graph to represent template_tensors. Args: func_graph: function.FuncGraph. template_tensors: a list of tensors in the outer graph. Returns: A list of tensors in func_graph. """ with func_graph.as_default(): return [gen_functional_ops.fake_param(dtype=t.dtype, shape=t.shape) for t in template_tensors] def _get_grad_fn_name(func_graph): """Returns a unique name to use for the grad function of `func_graph`. Ensures this name is unique in the entire hierarchy. Args: func_graph: The FuncGraph. Returns: A string, the name to use for the gradient function. """ name = "%s_grad" % func_graph.name outer_most_graph = func_graph while isinstance(outer_most_graph, _function.FuncGraph): outer_most_graph = outer_most_graph.outer_graph return outer_most_graph.unique_name(name) def _check_same_outputs(true_graph, false_graph): """Raises an error if true_graph and false_graph have different outputs.""" true_output_types = [t.dtype for t in true_graph.outputs] false_output_types = [t.dtype for t in false_graph.outputs] if (len(true_graph.outputs) != len(false_graph.outputs) or true_output_types != false_output_types): raise ValueError( "true_fn() and false_fn() must return the same number and type of " "arguments, got:\n" " true_fn: %s\n" " false_fn: %s" % (true_output_types, false_output_types)) def _get_output_shapes(true_graph_outputs, false_graph_outputs): output_shapes = [ t_out.shape.most_specific_compatible_shape(f_out.shape) for t_out, f_out in zip(true_graph_outputs, false_graph_outputs) ] return output_shapes