# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for DepthToSpace op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging class DepthToSpaceTest(test.TestCase): def _testOne(self, inputs, block_size, outputs, dtype=dtypes.float32): input_nhwc = math_ops.cast(inputs, dtype) with self.test_session(use_gpu=False): # test NHWC (default) on CPU x_tf = array_ops.depth_to_space(input_nhwc, block_size) self.assertAllEqual(x_tf.eval(), outputs) if test.is_gpu_available(): with self.test_session(use_gpu=True): # test NHWC (default) on GPU x_tf = array_ops.depth_to_space(input_nhwc, block_size) self.assertAllEqual(x_tf.eval(), outputs) # test NCHW on GPU input_nchw = test_util.NHWCToNCHW(input_nhwc) output_nchw = array_ops.depth_to_space( input_nchw, block_size, data_format="NCHW") output_nhwc = test_util.NCHWToNHWC(output_nchw) self.assertAllEqual(output_nhwc.eval(), outputs) def testBasic(self): x_np = [[[[1, 2, 3, 4]]]] block_size = 2 x_out = [[[[1], [2]], [[3], [4]]]] self._testOne(x_np, block_size, x_out) def testBasicFloat16(self): x_np = [[[[1, 2, 3, 4]]]] block_size = 2 x_out = [[[[1], [2]], [[3], [4]]]] self._testOne(x_np, block_size, x_out, dtype=dtypes.float16) # Tests for larger input dimensions. To make sure elements are # correctly ordered spatially. def testBlockSize2(self): x_np = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]] block_size = 2 x_out = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]] self._testOne(x_np, block_size, x_out) def testBlockSize2Batch10(self): block_size = 2 def batch_input_elt(i): return [[[1 * i, 2 * i, 3 * i, 4 * i], [5 * i, 6 * i, 7 * i, 8 * i]], [[9 * i, 10 * i, 11 * i, 12 * i], [13 * i, 14 * i, 15 * i, 16 * i]]] def batch_output_elt(i): return [[[1 * i], [2 * i], [5 * i], [6 * i]], [[3 * i], [4 * i], [7 * i], [8 * i]], [[9 * i], [10 * i], [13 * i], [14 * i]], [[11 * i], [12 * i], [15 * i], [16 * i]]] batch_size = 10 x_np = [batch_input_elt(i) for i in range(batch_size)] x_out = [batch_output_elt(i) for i in range(batch_size)] self._testOne(x_np, block_size, x_out) def testBatchSize0(self): block_size = 2 batch_size = 0 input_nhwc = array_ops.ones([batch_size, 2, 3, 12]) x_out = array_ops.ones([batch_size, 4, 6, 3]) with self.test_session(use_gpu=False): # test NHWC (default) on CPU x_tf = array_ops.depth_to_space(input_nhwc, block_size) self.assertAllEqual(x_tf.shape, x_out.shape) x_tf.eval() if test.is_gpu_available(): with self.test_session(use_gpu=True): # test NHWC (default) on GPU x_tf = array_ops.depth_to_space(input_nhwc, block_size) self.assertAllEqual(x_tf.shape, x_out.shape) x_tf.eval() # Tests for different width and height. def testNonSquare(self): x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]], [[5, 50, 6, 60, 7, 70, 8, 80]], [[9, 90, 10, 100, 11, 110, 12, 120]]]] block_size = 2 x_out = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]], [[5, 50], [6, 60]], [[7, 70], [8, 80]], [[9, 90], [10, 100]], [[11, 110], [12, 120]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input dimensions. To make sure elements are # correctly ordered spatially. def testBlockSize4FlatInput(self): x_np = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]] block_size = 4 x_out = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input depths. # To make sure elements are properly interleaved in depth. def testDepthInterleaved(self): x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]] block_size = 2 x_out = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input depths. Here an odd depth. # To make sure elements are properly interleaved in depth. def testDepthInterleavedDepth3(self): x_np = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] block_size = 2 x_out = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input depths. # To make sure elements are properly interleaved in depth. def testDepthInterleavedLarger(self): x_np = [[[[1, 10, 2, 20, 3, 30, 4, 40], [5, 50, 6, 60, 7, 70, 8, 80]], [[9, 90, 10, 100, 11, 110, 12, 120], [13, 130, 14, 140, 15, 150, 16, 160]]]] block_size = 2 x_out = [[[[1, 10], [2, 20], [5, 50], [6, 60]], [[3, 30], [4, 40], [7, 70], [8, 80]], [[9, 90], [10, 100], [13, 130], [14, 140]], [[11, 110], [12, 120], [15, 150], [16, 160]]]] self._testOne(x_np, block_size, x_out) # Error handling: # Tests for a block larger for the depth. In this case should raise an # exception. def testBlockSizeTooLarge(self): x_np = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]] block_size = 4 # Raise an exception, since th depth is only 4 and needs to be # divisible by 16. with self.assertRaises(ValueError): out_tf = array_ops.depth_to_space(x_np, block_size) out_tf.eval() # Test when the block size is 0. def testBlockSize0(self): x_np = [[[[1], [2]], [[3], [4]]]] block_size = 0 with self.assertRaises(ValueError): out_tf = array_ops.depth_to_space(x_np, block_size) out_tf.eval() # Test when the block size is 1. The block size should be > 1. def testBlockSizeOne(self): x_np = [[[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]]] block_size = 1 with self.assertRaises(ValueError): out_tf = array_ops.depth_to_space(x_np, block_size) out_tf.eval() def testBlockSizeLargerThanInput(self): # The block size is too large for this input. x_np = [[[[1], [2]], [[3], [4]]]] block_size = 10 with self.assertRaises(ValueError): out_tf = array_ops.space_to_depth(x_np, block_size) out_tf.eval() def testBlockSizeNotDivisibleDepth(self): # The depth is not divisible by the square of the block size. x_np = [[[[1, 1, 1, 1], [2, 2, 2, 2]], [[3, 3, 3, 3], [4, 4, 4, 4]]]] block_size = 3 with self.assertRaises(ValueError): _ = array_ops.space_to_depth(x_np, block_size) def testUnknownShape(self): t = array_ops.depth_to_space( array_ops.placeholder(dtypes.float32), block_size=4) self.assertEqual(4, t.get_shape().ndims) def depthToSpaceUsingTranspose(self, tensor, block_size, data_format): block_size_sq = block_size * block_size if data_format == "NHWC": b, ih, iw, ic = tensor.shape.as_list() assert ic % block_size_sq == 0, (ic, block_size_sq) ow, oh, oc = iw * block_size, ih * block_size, ic // block_size_sq tensor = array_ops.reshape(tensor, [b, ih, iw, block_size, block_size, oc]) tensor = array_ops.transpose(tensor, [0, 1, 3, 2, 4, 5]) tensor = array_ops.reshape(tensor, [b, oh, ow, oc]) elif data_format == "NCHW": b, ic, ih, iw = tensor.shape.as_list() assert ic % block_size_sq == 0, (ic, block_size_sq) ow, oh, oc = iw * block_size, ih * block_size, ic // block_size_sq tensor = array_ops.reshape(tensor, [b, block_size, block_size, oc, ih, iw]) tensor = array_ops.transpose(tensor, [0, 3, 4, 1, 5, 2]) tensor = array_ops.reshape(tensor, [b, oc, oh, ow]) return tensor def compareToTranspose(self, batch_size, in_height, in_width, out_channels, block_size, data_format, use_gpu): in_channels = out_channels * block_size * block_size nhwc_input_shape = [batch_size, in_height, in_width, in_channels] nchw_input_shape = [batch_size, in_channels, in_height, in_width] total_size = np.prod(nhwc_input_shape) if data_format == "NCHW_VECT_C": # Initialize the input tensor with qint8 values that circle -127..127. x = [((f + 128) % 255) - 127 for f in range(total_size)] t = constant_op.constant(x, shape=nhwc_input_shape, dtype=dtypes.float32) expected = self.depthToSpaceUsingTranspose(t, block_size, "NHWC") t = test_util.NHWCToNCHW_VECT_C(t) t, _, _ = gen_array_ops.quantize_v2(t, -128.0, 127.0, dtypes.qint8) t = array_ops.depth_to_space(t, block_size, data_format="NCHW_VECT_C") t = gen_array_ops.dequantize(t, -128, 127) actual = test_util.NCHW_VECT_CToNHWC(t) else: # Initialize the input tensor with ascending whole numbers as floats. x = [f * 1.0 for f in range(total_size)] shape = nchw_input_shape if data_format == "NCHW" else nhwc_input_shape t = constant_op.constant(x, shape=shape, dtype=dtypes.float32) expected = self.depthToSpaceUsingTranspose(t, block_size, data_format) actual = array_ops.depth_to_space(t, block_size, data_format=data_format) with self.test_session(use_gpu=use_gpu) as sess: actual_vals, expected_vals = sess.run([actual, expected]) self.assertTrue(np.array_equal(actual_vals, expected_vals)) def testAgainstTranspose(self): self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", False) self.compareToTranspose(3, 2, 3, 2, 2, "NHWC", False) self.compareToTranspose(1, 2, 3, 2, 3, "NHWC", False) if not test.is_gpu_available(): tf_logging.info("skipping gpu tests since gpu not available") return self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", True) self.compareToTranspose(3, 2, 3, 2, 2, "NHWC", True) self.compareToTranspose(3, 2, 3, 1, 2, "NCHW", True) self.compareToTranspose(3, 2, 3, 2, 2, "NCHW", True) self.compareToTranspose(3, 2, 3, 1, 3, "NCHW", True) self.compareToTranspose(3, 2, 3, 2, 3, "NCHW", True) self.compareToTranspose(5, 7, 11, 3, 2, "NCHW", True) self.compareToTranspose(3, 200, 300, 32, 2, "NCHW", True) self.compareToTranspose(3, 2, 3, 8, 2, "NCHW_VECT_C", True) self.compareToTranspose(3, 2, 3, 4, 3, "NCHW_VECT_C", True) self.compareToTranspose(3, 2, 3, 8, 3, "NCHW_VECT_C", True) self.compareToTranspose(5, 7, 11, 12, 2, "NCHW_VECT_C", True) self.compareToTranspose(3, 200, 300, 32, 2, "NCHW_VECT_C", True) class DepthToSpaceGradientTest(test.TestCase): # Check the gradients. def _checkGrad(self, x, block_size, data_format): # NCHW is implemented for only GPU. if data_format == "NCHW" and not test.is_gpu_available(): return assert 4 == x.ndim with self.test_session(use_gpu=True): tf_x = ops.convert_to_tensor(x) tf_y = array_ops.depth_to_space(tf_x, block_size, data_format=data_format) epsilon = 1e-2 ((x_jacob_t, x_jacob_n)) = gradient_checker.compute_gradient( tf_x, x.shape, tf_y, tf_y.get_shape().as_list(), x_init_value=x, delta=epsilon) self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon) # Tests a gradient for depth_to_space of x which is a four dimensional # tensor of shape [b, h, w, d * block_size * block_size]. def _compare(self, b, h, w, d, block_size, data_format): block_size_sq = block_size * block_size data = np.random.normal(0, 1, b * h * w * d * block_size_sq).astype( np.float32) if data_format == "NHWC": x = data.reshape([b, h, w, d * block_size_sq]) else: x = data.reshape([b, d * block_size_sq, h, w]) self._checkGrad(x, block_size, data_format) # Don't use very large numbers as dimensions here, as the result is tensor # with cartesian product of the dimensions. def testSmall(self): block_size = 2 self._compare(3, 2, 5, 3, block_size, "NHWC") self._compare(3, 2, 5, 3, block_size, "NCHW") def testSmall2(self): block_size = 3 self._compare(1, 2, 3, 2, block_size, "NHWC") self._compare(1, 2, 3, 2, block_size, "NCHW") if __name__ == "__main__": test.main()