# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for convolution related functionality in tensorflow.ops.nn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test class Conv2DTransposeTest(test.TestCase): def testConv2DTransposeSingleStride(self): with self.cached_session(): strides = [1, 1, 1, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 6, 4, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") value = output.eval() # We count the number of cells being added at the locations in the output. # At the center, #cells=kernel_height * kernel_width # At the corners, #cells=ceil(kernel_height/2) * ceil(kernel_width/2) # At the borders, #cells=ceil(kernel_height/2)*kernel_width or # kernel_height * ceil(kernel_width/2) for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[2]): for h in xrange(y_shape[1]): target = 4 * 3.0 h_in = h > 0 and h < y_shape[1] - 1 w_in = w > 0 and w < y_shape[2] - 1 if h_in and w_in: target += 5 * 3.0 elif h_in or w_in: target += 2 * 3.0 self.assertAllClose(target, value[n, h, w, k]) def testConv2DTransposeSame(self): with self.cached_session(): strides = [1, 2, 2, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 12, 8, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[2]): for h in xrange(y_shape[1]): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[1] == 0 and h > 0 and h < y_shape[1] - 1 w_in = w % strides[2] == 0 and w > 0 and w < y_shape[2] - 1 if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 self.assertAllClose(target, value[n, h, w, k]) def testConv2DTransposeValid(self): with self.cached_session(): strides = [1, 2, 2, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 13, 9, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="VALID") value = output.eval() cache_values = np.zeros(y_shape, dtype=np.float32) # The amount of padding added pad = 1 for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(pad, y_shape[2] - pad): for h in xrange(pad, y_shape[1] - pad): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[1] == 0 and h > pad and h < y_shape[ 1] - 1 - pad w_in = w % strides[2] == 0 and w > pad and w < y_shape[ 2] - 1 - pad if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 cache_values[n, h, w, k] = target # copy values in the border cache_values[n, :, 0, k] = cache_values[n, :, 1, k] cache_values[n, :, -1, k] = cache_values[n, :, -2, k] cache_values[n, 0, :, k] = cache_values[n, 1, :, k] cache_values[n, -1, :, k] = cache_values[n, -2, :, k] self.assertAllClose(cache_values, value) def testGradient(self): x_shape = [2, 6, 4, 3] f_shape = [3, 3, 2, 3] y_shape = [2, 12, 8, 2] strides = [1, 2, 2, 1] np.random.seed(1) # Make it reproducible. x_val = np.random.random_sample(x_shape).astype(np.float64) f_val = np.random.random_sample(f_shape).astype(np.float64) with self.cached_session(): x = constant_op.constant(x_val, name="x", dtype=dtypes.float32) f = constant_op.constant(f_val, name="f", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape], output, y_shape) print("conv2d_transpose gradient err = %g " % err) err_tolerance = 0.0005 self.assertLess(err, err_tolerance) def testConv2DTransposeSingleStrideNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 1, 1] # Input, output: [batch, depth, height, width, depth] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 6, 4] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[3]): for h in xrange(y_shape[2]): target = 4 * 3.0 h_in = h > 0 and h < y_shape[2] - 1 w_in = w > 0 and w < y_shape[3] - 1 if h_in and w_in: target += 5 * 3.0 elif h_in or w_in: target += 2 * 3.0 self.assertAllClose(target, value[n, k, h, w]) def testConv2DTransposeSameNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 2, 2] # Input, output: [batch, depth, height, width] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 12, 8] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[3]): for h in xrange(y_shape[2]): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[2] == 0 and h > 0 and h < y_shape[2] - 1 w_in = w % strides[3] == 0 and w > 0 and w < y_shape[3] - 1 if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 self.assertAllClose(target, value[n, k, h, w]) def testConv2DTransposeValidNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 2, 2] # Input, output: [batch, depth, height, width] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 13, 9] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="VALID", data_format="NCHW") value = output.eval() cache_values = np.zeros(y_shape, dtype=np.float32) # The amount of padding added pad = 1 for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(pad, y_shape[3] - pad): for h in xrange(pad, y_shape[2] - pad): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[2] == 0 and h > pad and h < y_shape[ 2] - 1 - pad w_in = w % strides[3] == 0 and w > pad and w < y_shape[ 3] - 1 - pad if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 cache_values[n, k, h, w] = target # copy values in the border cache_values[n, k, :, 0] = cache_values[n, k, :, 1] cache_values[n, k, :, -1] = cache_values[n, k, :, -2] cache_values[n, k, 0, :] = cache_values[n, k, 1, :] cache_values[n, k, -1, :] = cache_values[n, k, -2, :] self.assertAllClose(cache_values, value) @test_util.enable_c_shapes def testConv2DTransposeShapeInference(self): # Test case for 8972 initializer = random_ops.truncated_normal( [3, 3, 5, 1], mean=0.0, stddev=0.01, dtype=dtypes.float32) x = variables.Variable(random_ops.random_normal([3, 10, 5, 1])) f = variable_scope.get_variable("f", initializer=initializer) f_shape = array_ops.stack([array_ops.shape(x)[0], 10, 5, 5]) output = nn_ops.conv2d_transpose( x, f, f_shape, strides=[1, 1, 1, 1], padding="SAME") self.assertEqual(output.get_shape().as_list(), [3, 10, 5, 5]) if __name__ == "__main__": test.main()