# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import """Built-in loss functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.python.keras import backend as K from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.util.tf_export import tf_export @tf_export('keras.metrics.mean_squared_error', 'keras.metrics.mse', 'keras.metrics.MSE', 'keras.losses.mean_squared_error', 'keras.losses.mse', 'keras.losses.MSE') def mean_squared_error(y_true, y_pred): return K.mean(math_ops.square(y_pred - y_true), axis=-1) @tf_export('keras.metrics.mean_absolute_error', 'keras.metrics.mae', 'keras.metrics.MAE', 'keras.losses.mean_absolute_error', 'keras.losses.mae', 'keras.losses.MAE') def mean_absolute_error(y_true, y_pred): return K.mean(math_ops.abs(y_pred - y_true), axis=-1) @tf_export('keras.metrics.mean_absolute_percentage_error', 'keras.metrics.mape', 'keras.metrics.MAPE', 'keras.losses.mean_absolute_percentage_error', 'keras.losses.mape', 'keras.losses.MAPE') def mean_absolute_percentage_error(y_true, y_pred): diff = math_ops.abs( (y_true - y_pred) / K.clip(math_ops.abs(y_true), K.epsilon(), None)) return 100. * K.mean(diff, axis=-1) @tf_export('keras.metrics.mean_squared_logarithmic_error', 'keras.metrics.msle', 'keras.metrics.MSLE', 'keras.losses.mean_squared_logarithmic_error', 'keras.losses.msle', 'keras.losses.MSLE') def mean_squared_logarithmic_error(y_true, y_pred): first_log = math_ops.log(K.clip(y_pred, K.epsilon(), None) + 1.) second_log = math_ops.log(K.clip(y_true, K.epsilon(), None) + 1.) return K.mean(math_ops.square(first_log - second_log), axis=-1) @tf_export('keras.metrics.squared_hinge', 'keras.losses.squared_hinge') def squared_hinge(y_true, y_pred): return K.mean( math_ops.square(math_ops.maximum(1. - y_true * y_pred, 0.)), axis=-1) @tf_export('keras.metrics.hinge', 'keras.losses.hinge') def hinge(y_true, y_pred): return K.mean(math_ops.maximum(1. - y_true * y_pred, 0.), axis=-1) @tf_export('keras.losses.categorical_hinge') def categorical_hinge(y_true, y_pred): pos = math_ops.reduce_sum(y_true * y_pred, axis=-1) neg = math_ops.reduce_max((1. - y_true) * y_pred, axis=-1) return math_ops.maximum(0., neg - pos + 1.) @tf_export('keras.losses.logcosh') def logcosh(y_true, y_pred): """Logarithm of the hyperbolic cosine of the prediction error. `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly like the mean squared error, but will not be so strongly affected by the occasional wildly incorrect prediction. Arguments: y_true: tensor of true targets. y_pred: tensor of predicted targets. Returns: Tensor with one scalar loss entry per sample. """ def _logcosh(x): return x + nn.softplus(-2. * x) - math_ops.log(2.) return K.mean(_logcosh(y_pred - y_true), axis=-1) @tf_export('keras.metrics.categorical_crossentropy', 'keras.losses.categorical_crossentropy') def categorical_crossentropy(y_true, y_pred): return K.categorical_crossentropy(y_true, y_pred) @tf_export('keras.metrics.sparse_categorical_crossentropy', 'keras.losses.sparse_categorical_crossentropy') def sparse_categorical_crossentropy(y_true, y_pred): return K.sparse_categorical_crossentropy(y_true, y_pred) @tf_export('keras.metrics.binary_crossentropy', 'keras.losses.binary_crossentropy') def binary_crossentropy(y_true, y_pred): return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1) @tf_export('keras.metrics.kullback_leibler_divergence', 'keras.metrics.kld', 'keras.metrics.KLD', 'keras.losses.kullback_leibler_divergence', 'keras.losses.kld', 'keras.losses.KLD') def kullback_leibler_divergence(y_true, y_pred): y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) return math_ops.reduce_sum(y_true * math_ops.log(y_true / y_pred), axis=-1) @tf_export('keras.metrics.poisson', 'keras.losses.poisson') def poisson(y_true, y_pred): return K.mean(y_pred - y_true * math_ops.log(y_pred + K.epsilon()), axis=-1) @tf_export('keras.metrics.cosine_proximity', 'keras.metrics.cosine', 'keras.losses.cosine_proximity', 'keras.losses.cosine') def cosine_proximity(y_true, y_pred): y_true = nn.l2_normalize(y_true, axis=-1) y_pred = nn.l2_normalize(y_pred, axis=-1) return -math_ops.reduce_sum(y_true * y_pred, axis=-1) # Aliases. mse = MSE = mean_squared_error mae = MAE = mean_absolute_error mape = MAPE = mean_absolute_percentage_error msle = MSLE = mean_squared_logarithmic_error kld = KLD = kullback_leibler_divergence cosine = cosine_proximity @tf_export('keras.losses.serialize') def serialize(loss): return serialize_keras_object(loss) @tf_export('keras.losses.deserialize') def deserialize(name, custom_objects=None): return deserialize_keras_object( name, module_objects=globals(), custom_objects=custom_objects, printable_module_name='loss function') @tf_export('keras.losses.get') def get(identifier): if identifier is None: return None if isinstance(identifier, six.string_types): identifier = str(identifier) return deserialize(identifier) if isinstance(identifier, dict): return deserialize(identifier) elif callable(identifier): return identifier else: raise ValueError('Could not interpret ' 'loss function identifier:', identifier)