# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of the Keras training engine related to plain array data. """ # pylint: disable=protected-access from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import errors from tensorflow.python.keras import backend as K from tensorflow.python.keras import callbacks as cbks from tensorflow.python.keras.engine import training_utils from tensorflow.python.keras.utils.generic_utils import make_batches from tensorflow.python.keras.utils.generic_utils import Progbar from tensorflow.python.keras.utils.generic_utils import slice_arrays from tensorflow.python.platform import tf_logging as logging try: from scipy.sparse import issparse # pylint: disable=g-import-not-at-top except ImportError: issparse = None def fit_loop(model, inputs, targets, sample_weights=None, batch_size=None, epochs=100, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Abstract fit function for arrays of data. Arguments: model: Keras Model instance. inputs: Either a list of arrays or a dictionary. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training val_inputs: List of input arrays. val_targets: List of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. Returns: `History` object. Raises: ValueError: in case of invalid arguments. """ model._make_train_function() f = model.train_function sample_weights = sample_weights or [] val_sample_weights = val_sample_weights or [] inputs = training_utils.ModelInputs(inputs).as_list() if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [1] else: ins = inputs + targets + sample_weights do_validation = False if val_inputs: do_validation = True if (steps_per_epoch is None and verbose and inputs and hasattr(inputs[0], 'shape') and hasattr(val_inputs[0], 'shape')): print('Train on %d samples, validate on %d samples' % (inputs[0].shape[0], val_inputs[0].shape[0])) if validation_steps: do_validation = True if steps_per_epoch is None: raise ValueError('Can only use `validation_steps` ' 'when doing step-wise ' 'training, i.e. `steps_per_epoch` ' 'must be set.') num_train_samples = training_utils.check_num_samples( ins, batch_size, steps_per_epoch, 'steps_per_epoch') count_mode = 'steps' if steps_per_epoch else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, val_inputs=val_inputs, val_targets=val_targets, val_sample_weights=val_sample_weights, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_train_samples, validation_steps=validation_steps, verbose=verbose, count_mode=count_mode) if num_train_samples is not None: index_array = np.arange(num_train_samples) # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse(ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) callbacks.on_train_begin() for epoch in range(initial_epoch, epochs): # Reset stateful metrics for m in model.stateful_metric_functions: m.reset_states() # Update callbacks callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: # Step-wise fit loop. for step_index in range(steps_per_epoch): batch_logs = {'batch': step_index, 'size': 1} callbacks.on_batch_begin(step_index, batch_logs) try: outs = f(ins) except errors.OutOfRangeError: logging.warning('Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your dataset ' 'can generate at least `steps_per_epoch * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % steps_per_epoch * epochs) break if not isinstance(outs, list): outs = [outs] for l, o in zip(model.metrics_names, outs): batch_logs[l] = o callbacks.on_batch_end(step_index, batch_logs) if callbacks.model.stop_training: break if do_validation: val_outs = test_loop( model, val_inputs, val_targets, sample_weights=val_sample_weights, steps=validation_steps, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(model.metrics_names, val_outs): epoch_logs['val_' + l] = o else: # Sample-wise fit loop. if shuffle == 'batch': index_array = training_utils.batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_train_samples, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] try: if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') batch_logs = {} batch_logs['batch'] = batch_index batch_logs['size'] = len(batch_ids) callbacks.on_batch_begin(batch_index, batch_logs) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() outs = f(ins_batch) if not isinstance(outs, list): outs = [outs] for l, o in zip(model.metrics_names, outs): batch_logs[l] = o callbacks.on_batch_end(batch_index, batch_logs) if callbacks.model.stop_training: break if batch_index == len(batches) - 1: # Last batch. if do_validation: val_outs = test_loop( model, val_inputs, val_targets, sample_weights=val_sample_weights, batch_size=batch_size, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(model.metrics_names, val_outs): epoch_logs['val_' + l] = o callbacks.on_epoch_end(epoch, epoch_logs) if callbacks.model.stop_training: break callbacks.on_train_end() return model.history def predict_loop(model, inputs, batch_size=32, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: list of tensors to be fed to `f`. batch_size: integer batch size. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ model._make_predict_function() f = model.predict_function inputs = training_utils.ModelInputs(inputs).as_list() if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + [0] else: ins = inputs num_samples = training_utils.check_num_samples( inputs, batch_size, steps, 'steps') if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) indices_for_conversion_to_dense = [] for i in range(len(model._feed_inputs)): if (issparse is not None and issparse(inputs[i]) and not K.is_sparse(model._feed_inputs[i])): indices_for_conversion_to_dense.append(i) if steps is not None: # Step-based predictions. # Since we do not know how many samples # we will see, we cannot pre-allocate # the returned Numpy arrays. # Instead, we store one array per batch seen # and concatenate them upon returning. unconcatenated_outs = [] for step in range(steps): batch_outs = f(ins) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: for batch_out in batch_outs: unconcatenated_outs.append([]) for i, batch_out in enumerate(batch_outs): unconcatenated_outs[i].append(batch_out) if verbose == 1: progbar.update(step + 1) if len(unconcatenated_outs) == 1: return np.concatenate(unconcatenated_outs[0], axis=0) return [ np.concatenate(unconcatenated_outs[i], axis=0) for i in range(len(unconcatenated_outs)) ] else: # Sample-based predictions. outs = [] batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: shape = (num_samples,) + batch_out.shape[1:] outs.append(np.zeros(shape, dtype=batch_out.dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs def test_loop(model, inputs, targets, sample_weights=None, batch_size=None, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: model: Keras Model instance. inputs: List of input arrays. targets: List of target arrays. sample_weights: Optional list of sample weight arrays. batch_size: integer batch size or `None`. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ model._make_test_function() f = model.test_function sample_weights = sample_weights or [] inputs = training_utils.ModelInputs(inputs).as_list() if model.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = inputs + targets + sample_weights + [0] else: ins = inputs + targets + sample_weights if hasattr(model, 'metrics'): for m in model.stateful_metric_functions: m.reset_states() stateful_metric_indices = [ i for i, name in enumerate(model.metrics_names) if str(name) in model.stateful_metric_names ] else: stateful_metric_indices = [] num_samples = training_utils.check_num_samples( ins, batch_size, steps, 'steps') outs = [] if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) # To prevent a slowdown, we find beforehand the arrays that need conversion. feed = model._feed_inputs + model._feed_targets + model._feed_sample_weights indices_for_conversion_to_dense = [] for i in range(len(feed)): if issparse is not None and issparse(ins[i]) and not K.is_sparse(feed[i]): indices_for_conversion_to_dense.append(i) if steps is not None: for step in range(steps): batch_outs = f(ins) if isinstance(batch_outs, list): if step == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out else: if step == 0: outs.append(0.) outs[0] += batch_outs if verbose == 1: progbar.update(step + 1) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= steps else: batches = make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() batch_outs = f(ins_batch) if isinstance(batch_outs, list): if batch_index == 0: outs.extend([0.] * len(batch_outs)) for i, batch_out in enumerate(batch_outs): if i in stateful_metric_indices: outs[i] = batch_out else: outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): if i not in stateful_metric_indices: outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs