# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to create TensorProtos.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.python.platform import numpy as np import six from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.python.util import compat # TODO(opensource): Add support for pyx_library in the open-source build. # For now, we use the slow versions that fast_tensor_util replaces. # pylint: disable=g-import-not-at-top try: from tensorflow.python.framework import fast_tensor_util _FAST_TENSOR_UTIL_AVAILABLE = True except ImportError: _FAST_TENSOR_UTIL_AVAILABLE = False from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops # pylint: enable=g-import-not-at-top if _FAST_TENSOR_UTIL_AVAILABLE: _NP_TO_APPEND_FN = { np.float32: fast_tensor_util.AppendFloat32ArrayToTensorProto, np.float64: fast_tensor_util.AppendFloat64ArrayToTensorProto, np.int32: fast_tensor_util.AppendInt32ArrayToTensorProto, np.int64: fast_tensor_util.AppendInt64ArrayToTensorProto, np.uint8: fast_tensor_util.AppendUInt8ArrayToTensorProto, np.int16: fast_tensor_util.AppendInt16ArrayToTensorProto, np.int8: fast_tensor_util.AppendInt8ArrayToTensorProto, np.complex64: fast_tensor_util.AppendComplex64ArrayToTensorProto, np.complex128: fast_tensor_util.AppendComplex128ArrayToTensorProto, np.object: fast_tensor_util.AppendObjectArrayToTensorProto, np.bool: fast_tensor_util.AppendBoolArrayToTensorProto, dtypes.qint8.as_numpy_dtype: fast_tensor_util.AppendInt8ArrayToTensorProto, dtypes.quint8.as_numpy_dtype: fast_tensor_util.AppendUInt8ArrayToTensorProto, dtypes.qint32.as_numpy_dtype: fast_tensor_util.AppendInt32ArrayToTensorProto, # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16. } else: def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.float_val.extend([np.asscalar(x) for x in proto_values]) def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.double_val.extend([np.asscalar(x) for x in proto_values]) def SlowAppendIntArrayToTensorProto(tensor_proto, proto_values): tensor_proto.int_val.extend([np.asscalar(x) for x in proto_values]) def SlowAppendInt64ArrayToTensorProto(tensor_proto, proto_values): tensor_proto.int64_val.extend([np.asscalar(x) for x in proto_values]) def SlowAppendComplexArrayToTensorProto(tensor_proto, proto_values): tensor_proto.scomplex_val.extend([np.asscalar(v) for x in proto_values for v in [x.real, x.imag]]) def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values): tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) def SlowAppendBoolArrayToTensorProto(tensor_proto, proto_values): tensor_proto.bool_val.extend([np.asscalar(x) for x in proto_values]) _NP_TO_APPEND_FN = { np.float32: SlowAppendFloat32ArrayToTensorProto, np.float64: SlowAppendFloat64ArrayToTensorProto, np.int32: SlowAppendIntArrayToTensorProto, np.int64: SlowAppendInt64ArrayToTensorProto, np.uint8: SlowAppendIntArrayToTensorProto, np.int16: SlowAppendIntArrayToTensorProto, np.int8: SlowAppendIntArrayToTensorProto, np.complex64: SlowAppendComplexArrayToTensorProto, np.complex128: SlowAppendComplexArrayToTensorProto, np.object: SlowAppendObjectArrayToTensorProto, np.bool: SlowAppendBoolArrayToTensorProto, dtypes.qint8.as_numpy_dtype: SlowAppendIntArrayToTensorProto, dtypes.quint8.as_numpy_dtype: SlowAppendIntArrayToTensorProto, dtypes.qint32.as_numpy_dtype: SlowAppendIntArrayToTensorProto, # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16. } def GetFromNumpyDTypeDict(dtype_dict, dtype): # NOTE: dtype_dict.get(dtype) always returns None. for key, val in six.iteritems(dtype_dict): if key == dtype: return val return None def GetNumpyAppendFn(dtype): # numpy dtype for strings are variable length. We can not compare # dtype with a single constant (np.string does not exist) to decide # dtype is a "string" type. We need to compare the dtype.type to be # sure it's a string type. if dtype.type == np.string_ or dtype.type == np.unicode_: if _FAST_TENSOR_UTIL_AVAILABLE: return fast_tensor_util.AppendObjectArrayToTensorProto else: return SlowAppendObjectArrayToTensorProto return GetFromNumpyDTypeDict(_NP_TO_APPEND_FN, dtype) def MakeTensorShapeProto(shape): """Create a TensorShapeProto. Args: shape: List of integers representing the dimensions of the tensor. Returns: A TensorShapeProto. """ return tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=x) for x in shape]) def TensorShapeProtoToList(shape): """Convert a TensorShape to a list. Args: shape: A TensorShapeProto. Returns: List of integers representing the dimensions of the tensor. """ return [dim.size for dim in shape.dim] def _GetDenseDimensions(list_of_lists): """Returns the inferred dense dimensions of a list of lists.""" if not isinstance(list_of_lists, (list, tuple)): return [] elif not list_of_lists: return [0] else: return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0]) def _FlattenToStrings(nested_strings): if isinstance(nested_strings, list): for inner in nested_strings: for flattened_string in _FlattenToStrings(inner): yield flattened_string else: yield nested_strings _TENSOR_CONTENT_TYPES = frozenset([ dtypes.float32, dtypes.float64, dtypes.int32, dtypes.uint8, dtypes.int16, dtypes.int8, dtypes.int64 ]) class _Message(object): def __init__(self, message): self._message = message def __repr__(self): return self._message def _FirstNotNone(l): for x in l: if x is not None: if isinstance(x, ops.Tensor): return _Message("list containing Tensors") else: return x return None def _NotNone(v): if v is None: return _Message("None") else: return v def _FilterInt(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterInt(x) for x in v]) return None if isinstance(v, compat.integral_types) else _NotNone(v) def _FilterFloat(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterFloat(x) for x in v]) return None if isinstance(v, compat.real_types) else _NotNone(v) def _FilterComplex(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterComplex(x) for x in v]) return None if isinstance(v, compat.complex_types) else _NotNone(v) def _FilterStr(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterStr(x) for x in v]) if isinstance(v, compat.bytes_or_text_types): return None else: return _NotNone(v) def _FilterBool(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterBool(x) for x in v]) return None if isinstance(v, bool) else _NotNone(v) def _FilterNotTensor(v): if isinstance(v, (list, tuple)): return _FirstNotNone([_FilterNotTensor(x) for x in v]) return str(v) if isinstance(v, ops.Tensor) else None _TF_TO_IS_OK = { dtypes.float32: _FilterFloat, dtypes.float64: _FilterFloat, dtypes.int32: _FilterInt, dtypes.uint8: _FilterInt, dtypes.int16: _FilterInt, dtypes.int8: _FilterInt, dtypes.string: _FilterStr, dtypes.complex64: _FilterComplex, dtypes.int64: _FilterInt, dtypes.bool: _FilterBool, dtypes.qint32: _FilterInt, dtypes.quint8: _FilterInt, dtypes.qint8: _FilterInt, } def _AssertCompatible(values, dtype): fn = _TF_TO_IS_OK.get(dtype, _FilterNotTensor) mismatch = fn(values) if mismatch is not None: if dtype is None: raise TypeError("List of Tensors when single Tensor expected") else: raise TypeError("Expected %s, got %s of type '%s' instead." % (dtype.name, repr(mismatch), type(mismatch).__name__)) def make_tensor_proto(values, dtype=None, shape=None): """Create a TensorProto. Args: values: Values to put in the TensorProto. dtype: Optional tensor_pb2 DataType value. shape: List of integers representing the dimensions of tensor. Returns: A TensorProto. Depending on the type, it may contain data in the "tensor_content" attribute, which is not directly useful to Python programs. To access the values you should convert the proto back to a numpy ndarray with tensor_util.MakeNdarray(proto). Raises: TypeError: if unsupported types are provided. ValueError: if arguments have inappropriate values. make_tensor_proto accepts "values" of a python scalar, a python list, a numpy ndarray, or a numpy scalar. If "values" is a python scalar or a python list, make_tensor_proto first convert it to numpy ndarray. If dtype is None, the conversion tries its best to infer the right numpy data type. Otherwise, the resulting numpy array has a compatible data type with the given dtype. In either case above, the numpy ndarray (either the caller provided or the auto converted) must have the compatible type with dtype. make_tensor_proto then converts the numpy array to a tensor proto. If "shape" is None, the resulting tensor proto represents the numpy array precisely. Otherwise, "shape" specifies the tensor's shape and the numpy array can not have more elements than what "shape" specifies. """ if dtype: dtype = dtypes.as_dtype(dtype) # We first convert value to a numpy array or scalar. if isinstance(values, (np.ndarray, np.generic)): if dtype: nparray = values.astype(dtype.as_numpy_dtype) else: nparray = values else: if values is None: raise ValueError("None values not supported.") # if dtype is provided, forces numpy array to be the type # provided if possible. np_dt = dtype.as_numpy_dtype if dtype else None if np.prod(shape) == 0: nparray = np.empty(shape, dtype=np_dt) else: _AssertCompatible(values, dtype) nparray = np.array(values, dtype=np_dt) if list(nparray.shape) != _GetDenseDimensions(values): raise ValueError("Argument must be a dense tensor: %s" % values) # python/numpy default float type is float64. We prefer float32 instead. if (nparray.dtype == np.float64) and dtype is None: nparray = nparray.astype(np.float32) # python/numpy default int type is int64. We prefer int32 instead. elif (nparray.dtype == np.int64) and dtype is None: nparray = nparray.astype(np.int32) # if dtype is provided, it must be compatible with what numpy # conversion says. numpy_dtype = dtypes.as_dtype(nparray.dtype) if numpy_dtype is None: raise TypeError("Unrecognized data type: %s" % nparray.dtype) # If dtype was specified and is a quantized type, we convert # numpy_dtype back into the quantized version. if dtype in [dtypes.qint8, dtypes.quint8, dtypes.qint32]: numpy_dtype = dtype if dtype is not None and not dtype.base_dtype == numpy_dtype.base_dtype: raise TypeError("Incompatible types: %s vs. %s" % (dtype, nparray.dtype)) # If shape is not given, get the shape from the numpy array. if shape is None: shape = nparray.shape is_same_size = True shape_size = nparray.size else: shape = [int(dim) for dim in shape] shape_size = np.prod(shape) is_same_size = shape_size == nparray.size if nparray.size > shape_size: raise ValueError( "Too many elements provided. Needed at most %d, but received %d" % (shape_size, nparray.size)) tensor_proto = tensor_pb2.TensorProto( dtype=numpy_dtype.as_datatype_enum, tensor_shape=MakeTensorShapeProto(shape)) if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1: tensor_proto.tensor_content = nparray.tostring() return tensor_proto # If we were not given values as a numpy array, compute the proto_values # from the given values directly, to avoid numpy trimming nulls from the # strings. Since values could be a list of strings, or a multi-dimensional # list of lists that might or might not correspond to the given shape, # we flatten it conservatively. if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray): proto_values = _FlattenToStrings(values) tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values]) return tensor_proto # TensorFlow expects C order (a.k.a., eigen row major). proto_values = nparray.ravel() append_fn = GetNumpyAppendFn(proto_values.dtype) if append_fn is None: raise TypeError("Element type not supported in TensorProto: %s" % numpy_dtype.name) append_fn(tensor_proto, proto_values) return tensor_proto def MakeNdarray(tensor): """Create a numpy ndarray from a tensor. Create a numpy ndarray with the same shape and data as the tensor. Args: tensor: A TensorProto. Returns: A numpy array with the tensor contents. Raises: TypeError: if tensor has unsupported type. """ shape = [d.size for d in tensor.tensor_shape.dim] num_elements = np.prod(shape) tensor_dtype = dtypes.as_dtype(tensor.dtype) dtype = tensor_dtype.as_numpy_dtype if tensor.tensor_content: return np.fromstring(tensor.tensor_content, dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.float32: if len(tensor.float_val) == 1: return np.repeat(np.array(tensor.float_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.fromiter(tensor.float_val, dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.float64: if len(tensor.double_val) == 1: return np.repeat(np.array(tensor.double_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.fromiter(tensor.double_val, dtype=dtype).reshape(shape) elif tensor_dtype in [dtypes.int32, dtypes.uint8, dtypes.int16, dtypes.int8, dtypes.qint32, dtypes.quint8, dtypes.qint8, dtypes.bfloat16]: if len(tensor.int_val) == 1: return np.repeat(np.array(tensor.int_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.fromiter(tensor.int_val, dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.int64: if len(tensor.int64_val) == 1: return np.repeat(np.array(tensor.int64_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.fromiter(tensor.int64_val, dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.string: if len(tensor.string_val) == 1: return np.repeat(np.array(tensor.string_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.array([x for x in tensor.string_val], dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.complex64: it = iter(tensor.scomplex_val) if len(tensor.scomplex_val) == 2: return np.repeat(np.array(complex(tensor.scomplex_val[0], tensor.scomplex_val[1]), dtype=dtype), num_elements).reshape(shape) else: return np.array([complex(x[0], x[1]) for x in zip(it, it)], dtype=dtype).reshape(shape) elif tensor_dtype == dtypes.bool: if len(tensor.bool_val) == 1: return np.repeat(np.array(tensor.bool_val[0], dtype=dtype), num_elements).reshape(shape) else: return np.fromiter(tensor.bool_val, dtype=dtype).reshape(shape) else: raise TypeError("Unsupported tensor type: %s" % tensor.dtype) def ShapeEquals(tensor_proto, shape): """Returns True if "tensor_proto" has the given "shape". Args: tensor_proto: A TensorProto. shape: A tensor shape, expressed as a TensorShape, list, or tuple. Returns: True if "tensor_proto" has the given "shape", otherwise False. Raises: TypeError: If "tensor_proto" is not a TensorProto, or shape is not a TensorShape, list, or tuple. """ if not isinstance(tensor_proto, tensor_pb2.TensorProto): raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object") if isinstance(shape, tensor_shape_pb2.TensorShapeProto): shape = [d.size for d in shape.dim] elif not isinstance(shape, (list, tuple)): raise TypeError("shape is not a list or tuple") tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim] return all(x == y for x, y in zip(tensor_shape_list, shape)) def ConstantValue(tensor): """Returns the constant value of the given tensor, if efficiently calculable. This function attempts to partially evaluate the given tensor, and returns its value as a numpy ndarray if this succeeds. TODO(mrry): Consider whether this function should use a registration mechanism like gradients and ShapeFunctions, so that it is easily extensible. Args: tensor: The Tensor to be evaluated. Returns: A numpy ndarray containing the constant value of the given `tensor`, or None if it cannot be calculated. Raises: TypeError: if tensor is not an ops.Tensor. """ # TODO(touts): Support Variables? if not isinstance(tensor, ops.Tensor): raise TypeError("tensor is not a Tensor") if tensor.op.type == "Const": return MakeNdarray(tensor.op.get_attr("value")) elif tensor.op.type == "Shape": input_shape = tensor.op.inputs[0].get_shape() if input_shape.is_fully_defined(): return np.array([dim.value for dim in input_shape.dims], dtype=tensor.dtype.as_numpy_dtype) else: return None elif tensor.op.type == "Size": input_shape = tensor.op.inputs[0].get_shape() if input_shape.is_fully_defined(): return np.array([np.prod([dim.value for dim in input_shape.dims])], dtype=tensor.dtype.as_numpy_dtype) else: return None elif tensor.op.type == "Rank": input_shape = tensor.op.inputs[0].get_shape() if input_shape.ndims is not None: return np.array([input_shape.ndims], dtype=tensor.dtype.as_numpy_dtype) else: return None elif tensor.op.type == "Range": start = ConstantValue(tensor.op.inputs[0]) if start is None: return None limit = ConstantValue(tensor.op.inputs[1]) if limit is None: return None delta = ConstantValue(tensor.op.inputs[2]) if delta is None: return None return np.arange(start, limit, delta, dtype=tensor.dtype.as_numpy_dtype) else: return None