# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper classes for tensor shape inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.util import compat from tensorflow.python.util.tf_export import tf_export @tf_export("Dimension") class Dimension(object): """Represents the value of one dimension in a TensorShape.""" def __init__(self, value): """Creates a new Dimension with the given value.""" if value is None: self._value = None elif isinstance(value, dtypes.DType): raise TypeError("Cannot convert %s to Dimension" % value) else: self._value = int(value) if (not isinstance(value, compat.bytes_or_text_types) and self._value != value): raise ValueError("Ambiguous dimension: %s" % value) if self._value < 0: raise ValueError("Dimension %d must be >= 0" % self._value) def __repr__(self): return "Dimension(%s)" % repr(self._value) def __str__(self): value = self._value return "?" if value is None else str(value) def __eq__(self, other): """Returns true if `other` has the same known value as this Dimension.""" try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return None return self._value == other.value def __ne__(self, other): """Returns true if `other` has a different known value from `self`.""" try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return None return self._value != other.value def __int__(self): return self._value # This is needed for Windows. # See https://github.com/tensorflow/tensorflow/pull/9780 def __long__(self): return self._value def __index__(self): # Allow use in Python 3 range return self._value @property def value(self): """The value of this dimension, or None if it is unknown.""" return self._value def is_compatible_with(self, other): """Returns true if `other` is compatible with this Dimension. Two known Dimensions are compatible if they have the same value. An unknown Dimension is compatible with all other Dimensions. Args: other: Another Dimension. Returns: True if this Dimension and `other` are compatible. """ other = as_dimension(other) return (self._value is None or other.value is None or self._value == other.value) def assert_is_compatible_with(self, other): """Raises an exception if `other` is not compatible with this Dimension. Args: other: Another Dimension. Raises: ValueError: If `self` and `other` are not compatible (see is_compatible_with). """ if not self.is_compatible_with(other): raise ValueError("Dimensions %s and %s are not compatible" % (self, other)) def merge_with(self, other): """Returns a Dimension that combines the information in `self` and `other`. Dimensions are combined as follows: ```python tf.Dimension(n) .merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(n) .merge_with(tf.Dimension(None)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(n)) == tf.Dimension(n) tf.Dimension(None).merge_with(tf.Dimension(None)) == tf.Dimension(None) tf.Dimension(n) .merge_with(tf.Dimension(m)) # raises ValueError for n != m ``` Args: other: Another Dimension. Returns: A Dimension containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not compatible (see is_compatible_with). """ other = as_dimension(other) self.assert_is_compatible_with(other) if self._value is None: return Dimension(other.value) else: return Dimension(self._value) def __add__(self, other): """Returns the sum of `self` and `other`. Dimensions are summed as follows: ```python tf.Dimension(m) + tf.Dimension(n) == tf.Dimension(m + n) tf.Dimension(m) + tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) + tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) + tf.Dimension(None) == tf.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the sum of `self` and `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value + other.value) def __radd__(self, other): """Returns the sum of `other` and `self`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the sum of `self` and `other`. """ return self + other def __sub__(self, other): """Returns the subtraction of `other` from `self`. Dimensions are subtracted as follows: ```python tf.Dimension(m) - tf.Dimension(n) == tf.Dimension(m - n) tf.Dimension(m) - tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) - tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) - tf.Dimension(None) == tf.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the subtraction of `other` from `self`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value - other.value) def __rsub__(self, other): """Returns the subtraction of `self` from `other`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the subtraction of `self` from `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(other.value - self._value) def __mul__(self, other): """Returns the product of `self` and `other`. Dimensions are summed as follows: ```python tf.Dimension(m) * tf.Dimension(n) == tf.Dimension(m * n) tf.Dimension(m) * tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) * tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) * tf.Dimension(None) == tf.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the product of `self` and `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value * other.value) def __rmul__(self, other): """Returns the product of `self` and `other`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is the product of `self` and `other`. """ return self * other def __floordiv__(self, other): """Returns the quotient of `self` and `other` rounded down. Dimensions are divided as follows: ```python tf.Dimension(m) // tf.Dimension(n) == tf.Dimension(m // n) tf.Dimension(m) // tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) // tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) // tf.Dimension(None) == tf.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value // other.value) def __rfloordiv__(self, other): """Returns the quotient of `other` and `self` rounded down. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ other = as_dimension(other) if self._value is None or other.value is None: return Dimension(None) else: return Dimension(other.value // self._value) def __div__(self, other): """DEPRECATED: Use `__floordiv__` via `x // y` instead. This function exists only for backwards compatibility purposes; new code should use `__floordiv__` via the syntax `x // y`. Using `x // y` communicates clearly that the result rounds down, and is forward compatible to Python 3. Args: other: Another `Dimension`. Returns: A `Dimension` whose value is the integer quotient of `self` and `other`. """ return self // other def __mod__(self, other): """Returns `self` modulo `other`. Dimension moduli are computed as follows: ```python tf.Dimension(m) % tf.Dimension(n) == tf.Dimension(m % n) tf.Dimension(m) % tf.Dimension(None) == tf.Dimension(None) tf.Dimension(None) % tf.Dimension(n) == tf.Dimension(None) tf.Dimension(None) % tf.Dimension(None) == tf.Dimension(None) ``` Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is `self` modulo `other`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented if self._value is None or other.value is None: return Dimension(None) else: return Dimension(self._value % other.value) def __rmod__(self, other): """Returns `other` modulo `self`. Args: other: Another Dimension, or a value accepted by `as_dimension`. Returns: A Dimension whose value is `other` modulo `self`. """ try: other = as_dimension(other) except (TypeError, ValueError): return NotImplemented return other % self def __lt__(self, other): """Returns True if `self` is known to be less than `other`. Dimensions are compared as follows: ```python (tf.Dimension(m) < tf.Dimension(n)) == (m < n) (tf.Dimension(m) < tf.Dimension(None)) == None (tf.Dimension(None) < tf.Dimension(n)) == None (tf.Dimension(None) < tf.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value < other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value < other.value def __le__(self, other): """Returns True if `self` is known to be less than or equal to `other`. Dimensions are compared as follows: ```python (tf.Dimension(m) <= tf.Dimension(n)) == (m <= n) (tf.Dimension(m) <= tf.Dimension(None)) == None (tf.Dimension(None) <= tf.Dimension(n)) == None (tf.Dimension(None) <= tf.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value <= other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value <= other.value def __gt__(self, other): """Returns True if `self` is known to be greater than `other`. Dimensions are compared as follows: ```python (tf.Dimension(m) > tf.Dimension(n)) == (m > n) (tf.Dimension(m) > tf.Dimension(None)) == None (tf.Dimension(None) > tf.Dimension(n)) == None (tf.Dimension(None) > tf.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value > other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value > other.value def __ge__(self, other): """Returns True if `self` is known to be greater than or equal to `other`. Dimensions are compared as follows: ```python (tf.Dimension(m) >= tf.Dimension(n)) == (m >= n) (tf.Dimension(m) >= tf.Dimension(None)) == None (tf.Dimension(None) >= tf.Dimension(n)) == None (tf.Dimension(None) >= tf.Dimension(None)) == None ``` Args: other: Another Dimension. Returns: The value of `self.value >= other.value` if both are known, otherwise None. """ other = as_dimension(other) if self._value is None or other.value is None: return None else: return self._value >= other.value def __reduce__(self): return Dimension, (self._value,) def as_dimension(value): """Converts the given value to a Dimension. A Dimension input will be returned unmodified. An input of `None` will be converted to an unknown Dimension. An integer input will be converted to a Dimension with that value. Args: value: The value to be converted. Returns: A Dimension corresponding to the given value. """ if isinstance(value, Dimension): return value else: return Dimension(value) @tf_export("TensorShape") class TensorShape(object): """Represents the shape of a `Tensor`. A `TensorShape` represents a possibly-partial shape specification for a `Tensor`. It may be one of the following: * *Fully-known shape:* has a known number of dimensions and a known size for each dimension. e.g. `TensorShape([16, 256])` * *Partially-known shape:* has a known number of dimensions, and an unknown size for one or more dimension. e.g. `TensorShape([None, 256])` * *Unknown shape:* has an unknown number of dimensions, and an unknown size in all dimensions. e.g. `TensorShape(None)` If a tensor is produced by an operation of type `"Foo"`, its shape may be inferred if there is a registered shape function for `"Foo"`. See [Shape functions](https://tensorflow.org/extend/adding_an_op#shape_functions_in_c) for details of shape functions and how to register them. Alternatively, the shape may be set explicitly using `tf.Tensor.set_shape`. """ def __init__(self, dims): """Creates a new TensorShape with the given dimensions. Args: dims: A list of Dimensions, or None if the shape is unspecified. DEPRECATED: A single integer is treated as a singleton list. Raises: TypeError: If dims cannot be converted to a list of dimensions. """ # TODO(irving): Eliminate the single integer special case. if dims is None: self._dims = None elif isinstance(dims, compat.bytes_or_text_types): raise TypeError("A string has ambiguous TensorShape, please wrap in a " "list or convert to an int: %s" % dims) elif isinstance(dims, tensor_shape_pb2.TensorShapeProto): if dims.unknown_rank: self._dims = None else: self._dims = [ # Protos store variable-size dimensions as -1 as_dimension(dim.size if dim.size != -1 else None) for dim in dims.dim ] elif isinstance(dims, TensorShape): self._dims = dims.dims else: try: dims_iter = iter(dims) except TypeError: # Treat as a singleton dimension self._dims = [as_dimension(dims)] else: # Got a list of dimensions self._dims = [as_dimension(d) for d in dims_iter] self._ndims = None def __repr__(self): return "TensorShape(%r)" % self._dims def __str__(self): if self.ndims is None: return "" elif self.ndims == 1: return "(%s,)" % self._dims[0] else: return "(%s)" % ", ".join(str(d) for d in self._dims) @property def dims(self): """Returns a list of Dimensions, or None if the shape is unspecified.""" return self._dims @dims.setter def dims(self, dims): self._dims = dims self._ndims = None @property def ndims(self): """Returns the rank of this shape, or None if it is unspecified.""" if self._dims is None: return None else: if self._ndims is None: self._ndims = len(self._dims) return self._ndims def __len__(self): """Returns the rank of this shape, or raises ValueError if unspecified.""" if self._dims is None: raise ValueError("Cannot take the length of Shape with unknown rank.") return self.ndims def __bool__(self): """Returns True if this shape contains non-zero information.""" return self._dims is not None # Python 3 wants __bool__, Python 2.7 wants __nonzero__ __nonzero__ = __bool__ def __iter__(self): """Returns `self.dims` if the rank is known, otherwise raises ValueError.""" if self._dims is None: raise ValueError("Cannot iterate over a shape with unknown rank.") else: return iter(self._dims) def __getitem__(self, key): """Returns the value of a dimension or a shape, depending on the key. Args: key: If `key` is an integer, returns the dimension at that index; otherwise if `key` is a slice, returns a TensorShape whose dimensions are those selected by the slice from `self`. Returns: A dimension if `key` is an integer, or a `TensorShape` if `key` is a slice. Raises: ValueError: If `key` is a slice and `self` is completely unknown and the step is set. """ if self._dims is not None: if isinstance(key, slice): return TensorShape(self._dims[key]) else: return self._dims[key] else: if isinstance(key, slice): start = key.start if key.start is not None else 0 stop = key.stop if key.step is not None: # TODO(mrry): Handle these maybe. raise ValueError("Steps are not yet handled") if stop is None: # NOTE(mrry): This implies that TensorShape(None) is compatible with # TensorShape(None)[1:], which is obviously not true. It would be # possible to track the number of dimensions symbolically, # and perhaps we should do that. return unknown_shape() elif start < 0 or stop < 0: # TODO(mrry): Handle this better, as it will be useful for handling # suffixes of otherwise unknown shapes. return unknown_shape() else: return unknown_shape(ndims=stop - start) else: return Dimension(None) def num_elements(self): """Returns the total number of elements, or none for incomplete shapes.""" if self.is_fully_defined(): size = 1 for dim in self._dims: size *= dim.value return size else: return None def merge_with(self, other): """Returns a `TensorShape` combining the information in `self` and `other`. The dimensions in `self` and `other` are merged elementwise, according to the rules defined for `Dimension.merge_with()`. Args: other: Another `TensorShape`. Returns: A `TensorShape` containing the combined information of `self` and `other`. Raises: ValueError: If `self` and `other` are not compatible. """ other = as_shape(other) if self._dims is None: return other else: try: self.assert_same_rank(other) new_dims = [] for i, dim in enumerate(self._dims): new_dims.append(dim.merge_with(other[i])) return TensorShape(new_dims) except ValueError: raise ValueError("Shapes %s and %s are not compatible" % (self, other)) def concatenate(self, other): """Returns the concatenation of the dimension in `self` and `other`. *N.B.* If either `self` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. Args: other: Another `TensorShape`. Returns: A `TensorShape` whose dimensions are the concatenation of the dimensions in `self` and `other`. """ # TODO(mrry): Handle the case where we concatenate a known shape with a # completely unknown shape, so that we can use the partial information. other = as_shape(other) if self._dims is None or other.dims is None: return unknown_shape() else: return TensorShape(self._dims + other.dims) def assert_same_rank(self, other): """Raises an exception if `self` and `other` do not have compatible ranks. Args: other: Another `TensorShape`. Raises: ValueError: If `self` and `other` do not represent shapes with the same rank. """ other = as_shape(other) if self.ndims is not None and other.ndims is not None: if self.ndims != other.ndims: raise ValueError("Shapes %s and %s must have the same rank" % (self, other)) def assert_has_rank(self, rank): """Raises an exception if `self` is not compatible with the given `rank`. Args: rank: An integer. Raises: ValueError: If `self` does not represent a shape with the given `rank`. """ if self.ndims not in (None, rank): raise ValueError("Shape %s must have rank %d" % (self, rank)) def with_rank(self, rank): """Returns a shape based on `self` with the given rank. This method promotes a completely unknown shape to one with a known rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with the given rank. Raises: ValueError: If `self` does not represent a shape with the given `rank`. """ try: return self.merge_with(unknown_shape(ndims=rank)) except ValueError: raise ValueError("Shape %s must have rank %d" % (self, rank)) def with_rank_at_least(self, rank): """Returns a shape based on `self` with at least the given rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with at least the given rank. Raises: ValueError: If `self` does not represent a shape with at least the given `rank`. """ if self.ndims is not None and self.ndims < rank: raise ValueError("Shape %s must have rank at least %d" % (self, rank)) else: return self def with_rank_at_most(self, rank): """Returns a shape based on `self` with at most the given rank. Args: rank: An integer. Returns: A shape that is at least as specific as `self` with at most the given rank. Raises: ValueError: If `self` does not represent a shape with at most the given `rank`. """ if self.ndims is not None and self.ndims > rank: raise ValueError("Shape %s must have rank at most %d" % (self, rank)) else: return self def is_compatible_with(self, other): """Returns True iff `self` is compatible with `other`. Two possibly-partially-defined shapes are compatible if there exists a fully-defined shape that both shapes can represent. Thus, compatibility allows the shape inference code to reason about partially-defined shapes. For example: * TensorShape(None) is compatible with all shapes. * TensorShape([None, None]) is compatible with all two-dimensional shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is not compatible with, for example, TensorShape([None]) or TensorShape([None, None, None]). * TensorShape([32, None]) is compatible with all two-dimensional shapes with size 32 in the 0th dimension, and also TensorShape([None, None]) and TensorShape(None). It is not compatible with, for example, TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]). * TensorShape([32, 784]) is compatible with itself, and also TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None, None]) and TensorShape(None). It is not compatible with, for example, TensorShape([32, 1, 784]) or TensorShape([None]). The compatibility relation is reflexive and symmetric, but not transitive. For example, TensorShape([32, 784]) is compatible with TensorShape(None), and TensorShape(None) is compatible with TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with TensorShape([4, 4]). Args: other: Another TensorShape. Returns: True iff `self` is compatible with `other`. """ other = as_shape(other) if self._dims is not None and other.dims is not None: if self.ndims != other.ndims: return False for x_dim, y_dim in zip(self._dims, other.dims): if not x_dim.is_compatible_with(y_dim): return False return True def assert_is_compatible_with(self, other): """Raises exception if `self` and `other` do not represent the same shape. This method can be used to assert that there exists a shape that both `self` and `other` represent. Args: other: Another TensorShape. Raises: ValueError: If `self` and `other` do not represent the same shape. """ if not self.is_compatible_with(other): raise ValueError("Shapes %s and %s are incompatible" % (self, other)) def most_specific_compatible_shape(self, other): """Returns the most specific TensorShape compatible with `self` and `other`. * TensorShape([None, 1]) is the most specific TensorShape compatible with both TensorShape([2, 1]) and TensorShape([5, 1]). Note that TensorShape(None) is also compatible with above mentioned TensorShapes. * TensorShape([1, 2, 3]) is the most specific TensorShape compatible with both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more less specific TensorShapes compatible with above mentioned TensorShapes, e.g. TensorShape([1, 2, None]), TensorShape(None). Args: other: Another `TensorShape`. Returns: A `TensorShape` which is the most specific compatible shape of `self` and `other`. """ other = as_shape(other) if self._dims is None or other.dims is None or self.ndims != other.ndims: return unknown_shape() dims = [(Dimension(None))] * self.ndims for i, (d1, d2) in enumerate(zip(self._dims, other.dims)): if d1 is not None and d2 is not None and d1 == d2: dims[i] = d1 return TensorShape(dims) def is_fully_defined(self): """Returns True iff `self` is fully defined in every dimension.""" return (self._dims is not None and all(dim.value is not None for dim in self._dims)) def assert_is_fully_defined(self): """Raises an exception if `self` is not fully defined in every dimension. Raises: ValueError: If `self` does not have a known value for every dimension. """ if not self.is_fully_defined(): raise ValueError("Shape %s is not fully defined" % self) def as_list(self): """Returns a list of integers or `None` for each dimension. Returns: A list of integers or `None` for each dimension. Raises: ValueError: If `self` is an unknown shape with an unknown rank. """ if self._dims is None: raise ValueError("as_list() is not defined on an unknown TensorShape.") return [dim.value for dim in self._dims] def as_proto(self): """Returns this shape as a `TensorShapeProto`.""" if self._dims is None: return tensor_shape_pb2.TensorShapeProto(unknown_rank=True) else: return tensor_shape_pb2.TensorShapeProto(dim=[ tensor_shape_pb2.TensorShapeProto.Dim(size=-1 if d.value is None else d.value) for d in self._dims ]) def __eq__(self, other): """Returns True if `self` is equivalent to `other`.""" try: other = as_shape(other) except TypeError: return NotImplemented return self._dims == other.dims def __ne__(self, other): """Returns True if `self` is known to be different from `other`.""" try: other = as_shape(other) except TypeError: return NotImplemented if self.ndims is None or other.ndims is None: raise ValueError("The inequality of unknown TensorShapes is undefined.") if self.ndims != other.ndims: return True return self._dims != other.dims def __reduce__(self): return TensorShape, (self._dims,) def as_shape(shape): """Converts the given object to a TensorShape.""" if isinstance(shape, TensorShape): return shape else: return TensorShape(shape) def unknown_shape(ndims=None): """Returns an unknown TensorShape, optionally with a known rank. Args: ndims: (Optional) If specified, the number of dimensions in the shape. Returns: An unknown TensorShape. """ if ndims is None: return TensorShape(None) else: return TensorShape([Dimension(None)] * ndims) _SCALAR_SHAPE = TensorShape([]) def scalar(): """Returns a shape representing a scalar.""" return _SCALAR_SHAPE def vector(length): """Returns a shape representing a vector. Args: length: The length of the vector, which may be None if unknown. Returns: A TensorShape representing a vector of the given length. """ return TensorShape([length]) def matrix(rows, cols): """Returns a shape representing a matrix. Args: rows: The number of rows in the matrix, which may be None if unknown. cols: The number of columns in the matrix, which may be None if unknown. Returns: A TensorShape representing a matrix of the given size. """ return TensorShape([rows, cols])