# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This API defines FeatureColumn abstraction. FeatureColumns provide a high level abstraction for ingesting and representing features. FeatureColumns are also the primary way of encoding features for canned `tf.estimator.Estimator`s. When using FeatureColumns with `Estimators`, the type of feature column you should choose depends on (1) the feature type and (2) the model type. 1. Feature type: * Continuous features can be represented by `numeric_column`. * Categorical features can be represented by any `categorical_column_with_*` column: - `categorical_column_with_vocabulary_list` - `categorical_column_with_vocabulary_file` - `categorical_column_with_hash_bucket` - `categorical_column_with_identity` - `weighted_categorical_column` 2. Model type: * Deep neural network models (`DNNClassifier`, `DNNRegressor`). Continuous features can be directly fed into deep neural network models. age_column = numeric_column("age") To feed sparse features into DNN models, wrap the column with `embedding_column` or `indicator_column`. `indicator_column` is recommended for features with only a few possible values. For features with many possible values, to reduce the size of your model, `embedding_column` is recommended. embedded_dept_column = embedding_column( categorical_column_with_vocabulary_list( "department", ["math", "philosophy", ...]), dimension=10) * Wide (aka linear) models (`LinearClassifier`, `LinearRegressor`). Sparse features can be fed directly into linear models. They behave like an indicator column but with an efficient implementation. dept_column = categorical_column_with_vocabulary_list("department", ["math", "philosophy", "english"]) It is recommended that continuous features be bucketized before being fed into linear models. bucketized_age_column = bucketized_column( source_column=age_column, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) Sparse features can be crossed (also known as conjuncted or combined) in order to form non-linearities, and then fed into linear models. cross_dept_age_column = crossed_column( columns=["department", bucketized_age_column], hash_bucket_size=1000) Example of building canned `Estimator`s using FeatureColumns: ```python # Define features and transformations deep_feature_columns = [age_column, embedded_dept_column] wide_feature_columns = [dept_column, bucketized_age_column, cross_dept_age_column] # Build deep model estimator = DNNClassifier( feature_columns=deep_feature_columns, hidden_units=[500, 250, 50]) estimator.train(...) # Or build a wide model estimator = LinearClassifier( feature_columns=wide_feature_columns) estimator.train(...) # Or build a wide and deep model! estimator = DNNLinearCombinedClassifier( linear_feature_columns=wide_feature_columns, dnn_feature_columns=deep_feature_columns, dnn_hidden_units=[500, 250, 50]) estimator.train(...) ``` FeatureColumns can also be transformed into a generic input layer for custom models using `input_layer`. Example of building model using FeatureColumns, this can be used in a `model_fn` which is given to the {tf.estimator.Estimator}: ```python # Building model via layers deep_feature_columns = [age_column, embedded_dept_column] columns_to_tensor = parse_feature_columns_from_examples( serialized=my_data, feature_columns=deep_feature_columns) first_layer = input_layer( features=columns_to_tensor, feature_columns=deep_feature_columns) second_layer = fully_connected(first_layer, ...) ``` NOTE: Functions prefixed with "_" indicate experimental or private parts of the API subject to change, and should not be relied upon! """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import math import numpy as np import six from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib from tensorflow.python.framework import tensor_shape from tensorflow.python.keras.engine import training from tensorflow.python.layers import base from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import template from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_utils from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export def _internal_input_layer(features, feature_columns, weight_collections=None, trainable=True, cols_to_vars=None, scope=None, cols_to_output_tensors=None, from_template=False): """See input_layer. `scope` is a name or variable scope to use.""" feature_columns = _normalize_feature_columns(feature_columns) for column in feature_columns: if not isinstance(column, _DenseColumn): raise ValueError( 'Items of feature_columns must be a _DenseColumn. ' 'You can wrap a categorical column with an ' 'embedding_column or indicator_column. Given: {}'.format(column)) weight_collections = list(weight_collections or []) if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) if ops.GraphKeys.MODEL_VARIABLES not in weight_collections: weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) def _get_logits(): # pylint: disable=missing-docstring builder = _LazyBuilder(features) output_tensors = [] ordered_columns = [] for column in sorted(feature_columns, key=lambda x: x.name): ordered_columns.append(column) with variable_scope.variable_scope( None, default_name=column._var_scope_name): # pylint: disable=protected-access tensor = column._get_dense_tensor( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access batch_size = array_ops.shape(tensor)[0] output_tensor = array_ops.reshape( tensor, shape=(batch_size, num_elements)) output_tensors.append(output_tensor) if cols_to_vars is not None: # Retrieve any variables created (some _DenseColumn's don't create # variables, in which case an empty list is returned). cols_to_vars[column] = ops.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope=variable_scope.get_variable_scope().name) if cols_to_output_tensors is not None: cols_to_output_tensors[column] = output_tensor _verify_static_batch_size_equality(output_tensors, ordered_columns) return array_ops.concat(output_tensors, 1) # If we're constructing from the `make_template`, that by default adds a # variable scope with the name of the layer. In that case, we dont want to # add another `variable_scope` as that would break checkpoints. if from_template: return _get_logits() else: with variable_scope.variable_scope( scope, default_name='input_layer', values=features.values()): return _get_logits() @tf_export('feature_column.input_layer') def input_layer(features, feature_columns, weight_collections=None, trainable=True, cols_to_vars=None, cols_to_output_tensors=None): """Returns a dense `Tensor` as input layer based on given `feature_columns`. Generally a single example in training data is described with FeatureColumns. At the first layer of the model, this column oriented data should be converted to a single `Tensor`. Example: ```python price = numeric_column('price') keywords_embedded = embedding_column( categorical_column_with_hash_bucket("keywords", 10K), dimensions=16) columns = [price, keywords_embedded, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) for units in [128, 64, 32]: dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu) prediction = tf.layers.dense(dense_tensor, 1) ``` Args: features: A mapping from key to tensors. `_FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values can be a `SparseTensor` or a `Tensor` depends on corresponding `_FeatureColumn`. feature_columns: An iterable containing the FeatureColumns to use as inputs to your model. All items should be instances of classes derived from `_DenseColumn` such as `numeric_column`, `embedding_column`, `bucketized_column`, `indicator_column`. If you have categorical features, you can wrap them with an `embedding_column` or `indicator_column`. weight_collections: A list of collection names to which the Variable will be added. Note that variables will also be added to collections `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). cols_to_vars: If not `None`, must be a dictionary that will be filled with a mapping from `_FeatureColumn` to list of `Variable`s. For example, after the call, we might have cols_to_vars = {_EmbeddingColumn( categorical_column=_HashedCategoricalColumn( key='sparse_feature', hash_bucket_size=5, dtype=tf.string), dimension=10): [], 'bias': [], _NumericColumn( key='numeric_feature2', shape=(2,)): []} If a column creates no variables, its value will be an empty list. Note that cols_to_vars will also contain a string key 'bias' that maps to a list of Variables. Returns: A `Tensor` which represents predictions/logits of a linear model. Its shape is (batch_size, units) and its dtype is `float32`. Raises: ValueError: if an item in `feature_columns` is neither a `_DenseColumn` nor `_CategoricalColumn`. """ with variable_scope.variable_scope(None, 'linear_model') as vs: model_name = _strip_leading_slashes(vs.name) linear_model_layer = _LinearModel( feature_columns=feature_columns, units=units, sparse_combiner=sparse_combiner, weight_collections=weight_collections, trainable=trainable, name=model_name) retval = linear_model_layer(features) # pylint: disable=not-callable if cols_to_vars is not None: cols_to_vars.update(linear_model_layer.cols_to_vars()) return retval def _add_to_collections(var, weight_collections): """Adds a var to the list of weight_collections provided. Handles the case for partitioned and non-partitioned variables. Args: var: A variable or Partitioned Variable. weight_collections: List of collections to add variable to. """ for weight_collection in weight_collections: # The layer self.add_variable call already adds it to GLOBAL_VARIABLES. if weight_collection == ops.GraphKeys.GLOBAL_VARIABLES: continue # TODO(rohanj): Explore adding a _get_variable_list method on `Variable` # so that we don't have to do this check. if isinstance(var, variables.PartitionedVariable): for constituent_var in list(var): ops.add_to_collection(weight_collection, constituent_var) else: ops.add_to_collection(weight_collection, var) class _FCLinearWrapper(base.Layer): """Wraps a _FeatureColumn in a layer for use in a linear model. See `linear_model` above. """ def __init__(self, feature_column, units=1, sparse_combiner='sum', weight_collections=None, trainable=True, name=None, **kwargs): super(_FCLinearWrapper, self).__init__( trainable=trainable, name=name, **kwargs) self._feature_column = feature_column self._units = units self._sparse_combiner = sparse_combiner self._weight_collections = weight_collections def build(self, _): if isinstance(self._feature_column, _CategoricalColumn): weight = self.add_variable( name='weights', shape=(self._feature_column._num_buckets, self._units), # pylint: disable=protected-access initializer=init_ops.zeros_initializer(), trainable=self.trainable) else: num_elements = self._feature_column._variable_shape.num_elements() # pylint: disable=protected-access weight = self.add_variable( name='weights', shape=[num_elements, self._units], initializer=init_ops.zeros_initializer(), trainable=self.trainable) _add_to_collections(weight, self._weight_collections) self._weight_var = weight self.built = True def call(self, builder): weighted_sum = _create_weighted_sum( column=self._feature_column, builder=builder, units=self._units, sparse_combiner=self._sparse_combiner, weight_collections=self._weight_collections, trainable=self.trainable, weight_var=self._weight_var) return weighted_sum class _BiasLayer(base.Layer): """A layer for the bias term. """ def __init__(self, units=1, trainable=True, weight_collections=None, name=None, **kwargs): super(_BiasLayer, self).__init__(trainable=trainable, name=name, **kwargs) self._units = units self._weight_collections = weight_collections def build(self, _): self._bias_variable = self.add_variable( 'bias_weights', shape=[self._units], initializer=init_ops.zeros_initializer(), trainable=self.trainable) _add_to_collections(self._bias_variable, self._weight_collections) self.built = True def call(self, _): return self._bias_variable def _get_expanded_variable_list(variable): if (isinstance(variable, variables.Variable) or resource_variable_ops.is_resource_variable(variable)): return [variable] # Single variable case. else: # Must be a PartitionedVariable, so convert into a list. return list(variable) def _strip_leading_slashes(name): return name.rsplit('/', 1)[-1] class _LinearModel(training.Model): """Creates a linear model using feature columns. See `linear_model` for details. """ def __init__(self, feature_columns, units=1, sparse_combiner='sum', weight_collections=None, trainable=True, name=None, **kwargs): super(_LinearModel, self).__init__(name=name, **kwargs) self._feature_columns = _normalize_feature_columns( feature_columns) self._weight_collections = list(weight_collections or []) if ops.GraphKeys.GLOBAL_VARIABLES not in self._weight_collections: self._weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) if ops.GraphKeys.MODEL_VARIABLES not in self._weight_collections: self._weight_collections.append(ops.GraphKeys.MODEL_VARIABLES) column_layers = {} for column in sorted(self._feature_columns, key=lambda x: x.name): with variable_scope.variable_scope( None, default_name=column._var_scope_name) as vs: # pylint: disable=protected-access # Having the fully expressed variable scope name ends up doubly # expressing the outer scope (scope with which this method was called) # in the name of the variable that would get created. column_name = _strip_leading_slashes(vs.name) column_layer = _FCLinearWrapper(column, units, sparse_combiner, self._weight_collections, trainable, column_name, **kwargs) column_layers[column_name] = column_layer self._column_layers = self._add_layers(column_layers) self._bias_layer = _BiasLayer( units=units, trainable=trainable, weight_collections=self._weight_collections, name='bias_layer', **kwargs) self._cols_to_vars = {} def cols_to_vars(self): """Returns a dict mapping _FeatureColumns to variables. See `linear_model` for more information. This is not populated till `call` is called i.e. layer is built. """ return self._cols_to_vars def call(self, features): with variable_scope.variable_scope(self.name): for column in self._feature_columns: if not isinstance(column, (_DenseColumn, _CategoricalColumn)): raise ValueError( 'Items of feature_columns must be either a ' '_DenseColumn or _CategoricalColumn. Given: {}'.format(column)) weighted_sums = [] ordered_columns = [] builder = _LazyBuilder(features) for layer in sorted(self._column_layers.values(), key=lambda x: x.name): column = layer._feature_column # pylint: disable=protected-access ordered_columns.append(column) weighted_sum = layer(builder) weighted_sums.append(weighted_sum) self._cols_to_vars[column] = ops.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope=layer.scope_name) _verify_static_batch_size_equality(weighted_sums, ordered_columns) predictions_no_bias = math_ops.add_n( weighted_sums, name='weighted_sum_no_bias') predictions = nn_ops.bias_add( predictions_no_bias, self._bias_layer( # pylint: disable=not-callable builder, scope=variable_scope.get_variable_scope()), # pylint: disable=not-callable name='weighted_sum') bias = self._bias_layer.variables[0] self._cols_to_vars['bias'] = _get_expanded_variable_list(bias) return predictions def _add_layers(self, layers): # "Magic" required for keras.Model classes to track all the variables in # a list of layers.Layer objects. # TODO(ashankar): Figure out API so user code doesn't have to do this. for name, layer in layers.items(): setattr(self, 'layer-%s' % name, layer) return layers def _transform_features(features, feature_columns): """Returns transformed features based on features columns passed in. Please note that most probably you would not need to use this function. Please check `input_layer` and `linear_model` to see whether they will satisfy your use case or not. Example: ```python # Define features and transformations crosses_a_x_b = crossed_column( columns=["sparse_feature_a", "sparse_feature_b"], hash_bucket_size=10000) price_buckets = bucketized_column( source_column=numeric_column("price"), boundaries=[...]) columns = [crosses_a_x_b, price_buckets] features = tf.parse_example(..., features=make_parse_example_spec(columns)) transformed = transform_features(features=features, feature_columns=columns) assertCountEqual(columns, transformed.keys()) ``` Args: features: A mapping from key to tensors. `_FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values can be a `SparseTensor` or a `Tensor` depends on corresponding `_FeatureColumn`. feature_columns: An iterable containing all the `_FeatureColumn`s. Returns: A `dict` mapping `_FeatureColumn` to `Tensor` and `SparseTensor` values. """ feature_columns = _normalize_feature_columns(feature_columns) outputs = {} with ops.name_scope( None, default_name='transform_features', values=features.values()): builder = _LazyBuilder(features) for column in sorted(feature_columns, key=lambda x: x.name): with ops.name_scope(None, default_name=column.name): outputs[column] = builder.get(column) return outputs @tf_export('feature_column.make_parse_example_spec') def make_parse_example_spec(feature_columns): """Creates parsing spec dictionary from input feature_columns. The returned dictionary can be used as arg 'features' in `tf.parse_example`. Typical usage example: ```python # Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns)) ``` For the above example, make_parse_example_spec would return the dict: ```python { "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) } ``` Args: feature_columns: An iterable containing all feature columns. All items should be instances of classes derived from `_FeatureColumn`. Returns: A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature` value. Raises: ValueError: If any of the given `feature_columns` is not a `_FeatureColumn` instance. """ result = {} for column in feature_columns: if not isinstance(column, _FeatureColumn): raise ValueError( 'All feature_columns must be _FeatureColumn instances. ' 'Given: {}'.format(column)) config = column._parse_example_spec # pylint: disable=protected-access for key, value in six.iteritems(config): if key in result and value != result[key]: raise ValueError( 'feature_columns contain different parse_spec for key ' '{}. Given {} and {}'.format(key, value, result[key])) result.update(config) return result @tf_export('feature_column.embedding_column') def embedding_column( categorical_column, dimension, combiner='mean', initializer=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True): """`_DenseColumn` that converts from sparse, categorical input. Use this when your inputs are sparse, but you want to convert them to a dense representation (e.g., to feed to a DNN). Inputs must be a `_CategoricalColumn` created by any of the `categorical_column_*` function. Here is an example of using `embedding_column` with `DNNClassifier`: ```python video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [embedding_column(video_id, 9),...] estimator = tf.estimator.DNNClassifier(feature_columns=columns, ...) label_column = ... def input_fn(): features = tf.parse_example( ..., features=make_parse_example_spec(columns + [label_column])) labels = features.pop(label_column.name) return features, labels estimator.train(input_fn=input_fn, steps=100) ``` Here is an example using `embedding_column` with model_fn: ```python def model_fn(features, ...): video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [embedding_column(video_id, 9),...] dense_tensor = input_layer(features, columns) # Form DNN layers, calculate loss, and return EstimatorSpec. ... ``` Args: categorical_column: A `_CategoricalColumn` created by a `categorical_column_with_*` function. This column produces the sparse IDs that are inputs to the embedding lookup. dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see `tf.embedding_lookup_sparse`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. ckpt_to_load_from: String representing checkpoint name/pattern from which to restore column weights. Required if `tensor_name_in_ckpt` is not `None`. tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`. max_norm: If not `None`, embedding values are l2-normalized to this value. trainable: Whether or not the embedding is trainable. Default is True. Returns: `_DenseColumn` that converts from sparse input. Raises: ValueError: if `dimension` not > 0. ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt` is specified. ValueError: if `initializer` is specified and is not callable. RuntimeError: If eager execution is enabled. """ if (dimension is None) or (dimension < 1): raise ValueError('Invalid dimension {}.'.format(dimension)) if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None): raise ValueError('Must specify both `ckpt_to_load_from` and ' '`tensor_name_in_ckpt` or none of them.') if (initializer is not None) and (not callable(initializer)): raise ValueError('initializer must be callable if specified. ' 'Embedding of column_name: {}'.format( categorical_column.name)) if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1 / math.sqrt(dimension)) embedding_shape = categorical_column._num_buckets, dimension # pylint: disable=protected-access def _creator(weight_collections, scope): embedding_column_layer = _EmbeddingColumnLayer( embedding_shape=embedding_shape, initializer=initializer, weight_collections=weight_collections, trainable=trainable, name='embedding_column_layer') return embedding_column_layer(None, scope=scope) # pylint: disable=not-callable return _EmbeddingColumn( categorical_column=categorical_column, dimension=dimension, combiner=combiner, layer_creator=_creator, ckpt_to_load_from=ckpt_to_load_from, tensor_name_in_ckpt=tensor_name_in_ckpt, max_norm=max_norm, trainable=trainable) @tf_export('feature_column.shared_embedding_columns') def shared_embedding_columns( categorical_columns, dimension, combiner='mean', initializer=None, shared_embedding_collection_name=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True): """List of dense columns that convert from sparse, categorical input. This is similar to `embedding_column`, except that it produces a list of embedding columns that share the same embedding weights. Use this when your inputs are sparse and of the same type (e.g. watched and impression video IDs that share the same vocabulary), and you want to convert them to a dense representation (e.g., to feed to a DNN). Inputs must be a list of categorical columns created by any of the `categorical_column_*` function. They must all be of the same type and have the same arguments except `key`. E.g. they can be categorical_column_with_vocabulary_file with the same vocabulary_file. Some or all columns could also be weighted_categorical_column. Here is an example embedding of two features for a DNNClassifier model: ```python watched_video_id = categorical_column_with_vocabulary_file( 'watched_video_id', video_vocabulary_file, video_vocabulary_size) impression_video_id = categorical_column_with_vocabulary_file( 'impression_video_id', video_vocabulary_file, video_vocabulary_size) columns = shared_embedding_columns( [watched_video_id, impression_video_id], dimension=10) estimator = tf.estimator.DNNClassifier(feature_columns=columns, ...) label_column = ... def input_fn(): features = tf.parse_example( ..., features=make_parse_example_spec(columns + [label_column])) labels = features.pop(label_column.name) return features, labels estimator.train(input_fn=input_fn, steps=100) ``` Here is an example using `shared_embedding_columns` with model_fn: ```python def model_fn(features, ...): watched_video_id = categorical_column_with_vocabulary_file( 'watched_video_id', video_vocabulary_file, video_vocabulary_size) impression_video_id = categorical_column_with_vocabulary_file( 'impression_video_id', video_vocabulary_file, video_vocabulary_size) columns = shared_embedding_columns( [watched_video_id, impression_video_id], dimension=10) dense_tensor = input_layer(features, columns) # Form DNN layers, calculate loss, and return EstimatorSpec. ... ``` Args: categorical_columns: List of categorical columns created by a `categorical_column_with_*` function. These columns produce the sparse IDs that are inputs to the embedding lookup. All columns must be of the same type and have the same arguments except `key`. E.g. they can be categorical_column_with_vocabulary_file with the same vocabulary_file. Some or all columns could also be weighted_categorical_column. dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see `tf.embedding_lookup_sparse`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. shared_embedding_collection_name: Optional name of the collection where shared embedding weights are added. If not given, a reasonable name will be chosen based on the names of `categorical_columns`. This is also used in `variable_scope` when creating shared embedding weights. ckpt_to_load_from: String representing checkpoint name/pattern from which to restore column weights. Required if `tensor_name_in_ckpt` is not `None`. tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from which to restore the column weights. Required if `ckpt_to_load_from` is not `None`. max_norm: If not `None`, each embedding is clipped if its l2-norm is larger than this value, before combining. trainable: Whether or not the embedding is trainable. Default is True. Returns: A list of dense columns that converts from sparse input. The order of results follows the ordering of `categorical_columns`. Raises: ValueError: if `dimension` not > 0. ValueError: if any of the given `categorical_columns` is of different type or has different arguments than the others. ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt` is specified. ValueError: if `initializer` is specified and is not callable. RuntimeError: if eager execution is enabled. """ if context.executing_eagerly(): raise RuntimeError('shared_embedding_columns are not supported when eager ' 'execution is enabled.') if (dimension is None) or (dimension < 1): raise ValueError('Invalid dimension {}.'.format(dimension)) if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None): raise ValueError('Must specify both `ckpt_to_load_from` and ' '`tensor_name_in_ckpt` or none of them.') if (initializer is not None) and (not callable(initializer)): raise ValueError('initializer must be callable if specified.') if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1. / math.sqrt(dimension)) # Sort the columns so the default collection name is deterministic even if the # user passes columns from an unsorted collection, such as dict.values(). sorted_columns = sorted(categorical_columns, key=lambda x: x.name) c0 = sorted_columns[0] num_buckets = c0._num_buckets # pylint: disable=protected-access if not isinstance(c0, _CategoricalColumn): raise ValueError( 'All categorical_columns must be subclasses of _CategoricalColumn. ' 'Given: {}, of type: {}'.format(c0, type(c0))) if isinstance(c0, _WeightedCategoricalColumn): c0 = c0.categorical_column for c in sorted_columns[1:]: if isinstance(c, _WeightedCategoricalColumn): c = c.categorical_column if not isinstance(c, type(c0)): raise ValueError( 'To use shared_embedding_column, all categorical_columns must have ' 'the same type, or be weighted_categorical_column of the same type. ' 'Given column: {} of type: {} does not match given column: {} of ' 'type: {}'.format(c0, type(c0), c, type(c))) if num_buckets != c._num_buckets: # pylint: disable=protected-access raise ValueError( 'To use shared_embedding_column, all categorical_columns must have ' 'the same number of buckets. Given column: {} with buckets: {} does ' 'not match column: {} with buckets: {}'.format( c0, num_buckets, c, c._num_buckets)) # pylint: disable=protected-access if not shared_embedding_collection_name: shared_embedding_collection_name = '_'.join(c.name for c in sorted_columns) shared_embedding_collection_name += '_shared_embedding' result = [] for column in categorical_columns: result.append( _SharedEmbeddingColumn( categorical_column=column, initializer=initializer, dimension=dimension, combiner=combiner, shared_embedding_collection_name=shared_embedding_collection_name, ckpt_to_load_from=ckpt_to_load_from, tensor_name_in_ckpt=tensor_name_in_ckpt, max_norm=max_norm, trainable=trainable)) return result @tf_export('feature_column.numeric_column') def numeric_column(key, shape=(1,), default_value=None, dtype=dtypes.float32, normalizer_fn=None): """Represents real valued or numerical features. Example: ```python price = numeric_column('price') columns = [price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) # or bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. shape: An iterable of integers specifies the shape of the `Tensor`. An integer can be given which means a single dimension `Tensor` with given width. The `Tensor` representing the column will have the shape of [batch_size] + `shape`. default_value: A single value compatible with `dtype` or an iterable of values compatible with `dtype` which the column takes on during `tf.Example` parsing if data is missing. A default value of `None` will cause `tf.parse_example` to fail if an example does not contain this column. If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the `default_value` should be equal to the given `shape`. dtype: defines the type of values. Default value is `tf.float32`. Must be a non-quantized, real integer or floating point type. normalizer_fn: If not `None`, a function that can be used to normalize the value of the tensor after `default_value` is applied for parsing. Normalizer function takes the input `Tensor` as its argument, and returns the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that even though the most common use case of this function is normalization, it can be used for any kind of Tensorflow transformations. Returns: A `_NumericColumn`. Raises: TypeError: if any dimension in shape is not an int ValueError: if any dimension in shape is not a positive integer TypeError: if `default_value` is an iterable but not compatible with `shape` TypeError: if `default_value` is not compatible with `dtype`. ValueError: if `dtype` is not convertible to `tf.float32`. """ shape = _check_shape(shape, key) if not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype must be convertible to float. ' 'dtype: {}, key: {}'.format(dtype, key)) default_value = _check_default_value(shape, default_value, dtype, key) if normalizer_fn is not None and not callable(normalizer_fn): raise TypeError( 'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn)) _assert_key_is_string(key) return _NumericColumn( key, shape=shape, default_value=default_value, dtype=dtype, normalizer_fn=normalizer_fn) @tf_export('feature_column.bucketized_column') def bucketized_column(source_column, boundaries): """Represents discretized dense input. Buckets include the left boundary, and exclude the right boundary. Namely, `boundaries=[0., 1., 2.]` generates buckets `(-inf, 0.)`, `[0., 1.)`, `[1., 2.)`, and `[2., +inf)`. For example, if the inputs are ```python boundaries = [0, 10, 100] input tensor = [[-5, 10000] [150, 10] [5, 100]] ``` then the output will be ```python output = [[0, 3] [3, 2] [1, 3]] ``` Example: ```python price = numeric_column('price') bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` `bucketized_column` can also be crossed with another categorical column using `crossed_column`: ```python price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) # 'keywords' is a string feature. price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K) columns = [price_x_keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Args: source_column: A one-dimensional dense column which is generated with `numeric_column`. boundaries: A sorted list or tuple of floats specifying the boundaries. Returns: A `_BucketizedColumn`. Raises: ValueError: If `source_column` is not a numeric column, or if it is not one-dimensional. ValueError: If `boundaries` is not a sorted list or tuple. """ if not isinstance(source_column, _NumericColumn): raise ValueError( 'source_column must be a column generated with numeric_column(). ' 'Given: {}'.format(source_column)) if len(source_column.shape) > 1: raise ValueError( 'source_column must be one-dimensional column. ' 'Given: {}'.format(source_column)) if (not boundaries or not (isinstance(boundaries, list) or isinstance(boundaries, tuple))): raise ValueError('boundaries must be a sorted list.') for i in range(len(boundaries) - 1): if boundaries[i] >= boundaries[i + 1]: raise ValueError('boundaries must be a sorted list.') return _BucketizedColumn(source_column, tuple(boundaries)) def _assert_string_or_int(dtype, prefix): if (dtype != dtypes.string) and (not dtype.is_integer): raise ValueError( '{} dtype must be string or integer. dtype: {}.'.format(prefix, dtype)) def _assert_key_is_string(key): if not isinstance(key, six.string_types): raise ValueError( 'key must be a string. Got: type {}. Given key: {}.'.format( type(key), key)) @tf_export('feature_column.categorical_column_with_hash_bucket') def categorical_column_with_hash_bucket(key, hash_bucket_size, dtype=dtypes.string): """Represents sparse feature where ids are set by hashing. Use this when your sparse features are in string or integer format, and you want to distribute your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string) % bucket_size for string type input. For int type input, the value is converted to its string representation first and then hashed by the same formula. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string, which will be dropped by this feature column. Example: ```python keywords = categorical_column_with_hash_bucket("keywords", 10K) columns = [keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or keywords_embedded = embedding_column(keywords, 16) columns = [keywords_embedded, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. hash_bucket_size: An int > 1. The number of buckets. dtype: The type of features. Only string and integer types are supported. Returns: A `_HashedCategoricalColumn`. Raises: ValueError: `hash_bucket_size` is not greater than 1. ValueError: `dtype` is neither string nor integer. """ if hash_bucket_size is None: raise ValueError('hash_bucket_size must be set. ' 'key: {}'.format(key)) if hash_bucket_size < 1: raise ValueError('hash_bucket_size must be at least 1. ' 'hash_bucket_size: {}, key: {}'.format( hash_bucket_size, key)) _assert_key_is_string(key) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) return _HashedCategoricalColumn(key, hash_bucket_size, dtype) @tf_export('feature_column.categorical_column_with_vocabulary_file') def categorical_column_with_vocabulary_file(key, vocabulary_file, vocabulary_size=None, num_oov_buckets=0, default_value=None, dtype=dtypes.string): """A `_CategoricalColumn` with a vocabulary file. Use this when your inputs are in string or integer format, and you have a vocabulary file that maps each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of `num_oov_buckets` and `default_value` to specify how to include out-of-vocabulary values. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string, which will be dropped by this feature column. Example with `num_oov_buckets`: File '/us/states.txt' contains 50 lines, each with a 2-character U.S. state abbreviation. All inputs with values in that file are assigned an ID 0-49, corresponding to its line number. All other values are hashed and assigned an ID 50-54. ```python states = categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=50, num_oov_buckets=5) columns = [states, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` Example with `default_value`: File '/us/states.txt' contains 51 lines - the first line is 'XX', and the other 50 each have a 2-character U.S. state abbreviation. Both a literal 'XX' in input, and other values missing from the file, will be assigned ID 0. All others are assigned the corresponding line number 1-50. ```python states = categorical_column_with_vocabulary_file( key='states', vocabulary_file='/us/states.txt', vocabulary_size=51, default_value=0) columns = [states, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` And to make an embedding with either: ```python columns = [embedding_column(states, 3),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. vocabulary_file: The vocabulary file name. vocabulary_size: Number of the elements in the vocabulary. This must be no greater than length of `vocabulary_file`, if less than length, later values are ignored. If None, it is set to the length of `vocabulary_file`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. dtype: The type of features. Only string and integer types are supported. Returns: A `_CategoricalColumn` with a vocabulary file. Raises: ValueError: `vocabulary_file` is missing or cannot be opened. ValueError: `vocabulary_size` is missing or < 1. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: `dtype` is neither string nor integer. """ if not vocabulary_file: raise ValueError('Missing vocabulary_file in {}.'.format(key)) if vocabulary_size is None: if not gfile.Exists(vocabulary_file): raise ValueError('vocabulary_file in {} does not exist.'.format(key)) with gfile.GFile(vocabulary_file) as f: vocabulary_size = sum(1 for _ in f) logging.info( 'vocabulary_size = %d in %s is inferred from the number of elements ' 'in the vocabulary_file %s.', vocabulary_size, key, vocabulary_file) # `vocabulary_size` isn't required for lookup, but it is for `_num_buckets`. if vocabulary_size < 1: raise ValueError('Invalid vocabulary_size in {}.'.format(key)) if num_oov_buckets: if default_value is not None: raise ValueError( 'Can\'t specify both num_oov_buckets and default_value in {}.'.format( key)) if num_oov_buckets < 0: raise ValueError('Invalid num_oov_buckets {} in {}.'.format( num_oov_buckets, key)) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) _assert_key_is_string(key) return _VocabularyFileCategoricalColumn( key=key, vocabulary_file=vocabulary_file, vocabulary_size=vocabulary_size, num_oov_buckets=0 if num_oov_buckets is None else num_oov_buckets, default_value=-1 if default_value is None else default_value, dtype=dtype) @tf_export('feature_column.categorical_column_with_vocabulary_list') def categorical_column_with_vocabulary_list( key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0): """A `_CategoricalColumn` with in-memory vocabulary. Use this when your inputs are in string or integer format, and you have an in-memory vocabulary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of `num_oov_buckets` and `default_value` to specify how to include out-of-vocabulary values. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string, which will be dropped by this feature column. Example with `num_oov_buckets`: In the following example, each input in `vocabulary_list` is assigned an ID 0-3 corresponding to its index (e.g., input 'B' produces output 2). All other inputs are hashed and assigned an ID 4-5. ```python colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('R', 'G', 'B', 'Y'), num_oov_buckets=2) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` Example with `default_value`: In the following example, each input in `vocabulary_list` is assigned an ID 0-4 corresponding to its index (e.g., input 'B' produces output 3). All other inputs are assigned `default_value` 0. ```python colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` And to make an embedding with either: ```python columns = [embedding_column(colors, 3),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. vocabulary_list: An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in `vocabulary_list`. Must be castable to `dtype`. dtype: The type of features. Only string and integer types are supported. If `None`, it will be inferred from `vocabulary_list`. default_value: The integer ID value to return for out-of-vocabulary feature values, defaults to `-1`. This can not be specified with a positive `num_oov_buckets`. num_oov_buckets: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a hash of the input value. A positive `num_oov_buckets` can not be specified with `default_value`. Returns: A `_CategoricalColumn` with in-memory vocabulary. Raises: ValueError: if `vocabulary_list` is empty, or contains duplicate keys. ValueError: `num_oov_buckets` is a negative integer. ValueError: `num_oov_buckets` and `default_value` are both specified. ValueError: if `dtype` is not integer or string. """ if (vocabulary_list is None) or (len(vocabulary_list) < 1): raise ValueError( 'vocabulary_list {} must be non-empty, column_name: {}'.format( vocabulary_list, key)) if len(set(vocabulary_list)) != len(vocabulary_list): raise ValueError( 'Duplicate keys in vocabulary_list {}, column_name: {}'.format( vocabulary_list, key)) vocabulary_dtype = dtypes.as_dtype(np.array(vocabulary_list).dtype) if num_oov_buckets: if default_value != -1: raise ValueError( 'Can\'t specify both num_oov_buckets and default_value in {}.'.format( key)) if num_oov_buckets < 0: raise ValueError('Invalid num_oov_buckets {} in {}.'.format( num_oov_buckets, key)) _assert_string_or_int( vocabulary_dtype, prefix='column_name: {} vocabulary'.format(key)) if dtype is None: dtype = vocabulary_dtype elif dtype.is_integer != vocabulary_dtype.is_integer: raise ValueError( 'dtype {} and vocabulary dtype {} do not match, column_name: {}'.format( dtype, vocabulary_dtype, key)) _assert_string_or_int(dtype, prefix='column_name: {}'.format(key)) _assert_key_is_string(key) return _VocabularyListCategoricalColumn( key=key, vocabulary_list=tuple(vocabulary_list), dtype=dtype, default_value=default_value, num_oov_buckets=num_oov_buckets) @tf_export('feature_column.categorical_column_with_identity') def categorical_column_with_identity(key, num_buckets, default_value=None): """A `_CategoricalColumn` that returns identity values. Use this when your inputs are integers in the range `[0, num_buckets)`, and you want to use the input value itself as the categorical ID. Values outside this range will result in `default_value` if specified, otherwise it will fail. Typically, this is used for contiguous ranges of integer indexes, but it doesn't have to be. This might be inefficient, however, if many of IDs are unused. Consider `categorical_column_with_hash_bucket` in that case. For input dictionary `features`, `features[key]` is either `Tensor` or `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int and `''` for string, which will be dropped by this feature column. In the following examples, each input in the range `[0, 1000000)` is assigned the same value. All other inputs are assigned `default_value` 0. Note that a literal 0 in inputs will result in the same default ID. Linear model: ```python video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [video_id, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` Embedding for a DNN model: ```python columns = [embedding_column(video_id, 9),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) ``` Args: key: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature `Tensor` objects, and feature columns. num_buckets: Range of inputs and outputs is `[0, num_buckets)`. default_value: If `None`, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range `[0, num_buckets)`, and will replace inputs in that range. Returns: A `_CategoricalColumn` that returns identity values. Raises: ValueError: if `num_buckets` is less than one. ValueError: if `default_value` is not in range `[0, num_buckets)`. """ if num_buckets < 1: raise ValueError( 'num_buckets {} < 1, column_name {}'.format(num_buckets, key)) if (default_value is not None) and ( (default_value < 0) or (default_value >= num_buckets)): raise ValueError( 'default_value {} not in range [0, {}), column_name {}'.format( default_value, num_buckets, key)) _assert_key_is_string(key) return _IdentityCategoricalColumn( key=key, num_buckets=num_buckets, default_value=default_value) @tf_export('feature_column.indicator_column') def indicator_column(categorical_column): """Represents multi-hot representation of given categorical column. - For DNN model, `indicator_column` can be used to wrap any `categorical_column_*` (e.g., to feed to DNN). Consider to Use `embedding_column` if the number of buckets/unique(values) are large. - For Wide (aka linear) model, `indicator_column` is the internal representation for categorical column when passing categorical column directly (as any element in feature_columns) to `linear_model`. See `linear_model` for details. ```python name = indicator_column(categorical_column_with_vocabulary_list( 'name', ['bob', 'george', 'wanda']) columns = [name, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"] dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"] dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"] ``` Args: categorical_column: A `_CategoricalColumn` which is created by `categorical_column_with_*` or `crossed_column` functions. Returns: An `_IndicatorColumn`. """ return _IndicatorColumn(categorical_column) @tf_export('feature_column.weighted_categorical_column') def weighted_categorical_column( categorical_column, weight_feature_key, dtype=dtypes.float32): """Applies weight values to a `_CategoricalColumn`. Use this when each of your sparse inputs has both an ID and a value. For example, if you're representing text documents as a collection of word frequencies, you can provide 2 parallel sparse input features ('terms' and 'frequencies' below). Example: Input `tf.Example` objects: ```proto [ features { feature { key: "terms" value {bytes_list {value: "very" value: "model"}} } feature { key: "frequencies" value {float_list {value: 0.3 value: 0.1}} } }, features { feature { key: "terms" value {bytes_list {value: "when" value: "course" value: "human"}} } feature { key: "frequencies" value {float_list {value: 0.4 value: 0.1 value: 0.2}} } } ] ``` ```python categorical_column = categorical_column_with_hash_bucket( column_name='terms', hash_bucket_size=1000) weighted_column = weighted_categorical_column( categorical_column=categorical_column, weight_feature_key='frequencies') columns = [weighted_column, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns) ``` This assumes the input dictionary contains a `SparseTensor` for key 'terms', and a `SparseTensor` for key 'frequencies'. These 2 tensors must have the same indices and dense shape. Args: categorical_column: A `_CategoricalColumn` created by `categorical_column_with_*` functions. weight_feature_key: String key for weight values. dtype: Type of weights, such as `tf.float32`. Only float and integer weights are supported. Returns: A `_CategoricalColumn` composed of two sparse features: one represents id, the other represents weight (value) of the id feature in that example. Raises: ValueError: if `dtype` is not convertible to float. """ if (dtype is None) or not (dtype.is_integer or dtype.is_floating): raise ValueError('dtype {} is not convertible to float.'.format(dtype)) return _WeightedCategoricalColumn( categorical_column=categorical_column, weight_feature_key=weight_feature_key, dtype=dtype) @tf_export('feature_column.crossed_column') def crossed_column(keys, hash_bucket_size, hash_key=None): """Returns a column for performing crosses of categorical features. Crossed features will be hashed according to `hash_bucket_size`. Conceptually, the transformation can be thought of as: Hash(cartesian product of features) % `hash_bucket_size` For example, if the input features are: * SparseTensor referred by first key: ```python shape = [2, 2] { [0, 0]: "a" [1, 0]: "b" [1, 1]: "c" } ``` * SparseTensor referred by second key: ```python shape = [2, 1] { [0, 0]: "d" [1, 0]: "e" } ``` then crossed feature will look like: ```python shape = [2, 2] { [0, 0]: Hash64("d", Hash64("a")) % hash_bucket_size [1, 0]: Hash64("e", Hash64("b")) % hash_bucket_size [1, 1]: Hash64("e", Hash64("c")) % hash_bucket_size } ``` Here is an example to create a linear model with crosses of string features: ```python keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` You could also use vocabulary lookup before crossing: ```python keywords = categorical_column_with_vocabulary_file( 'keywords', '/path/to/vocabulary/file', vocabulary_size=1K) keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K) columns = [keywords_x_doc_terms, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` If an input feature is of numeric type, you can use `categorical_column_with_identity`, or `bucketized_column`, as in the example: ```python # vertical_id is an integer categorical feature. vertical_id = categorical_column_with_identity('vertical_id', 10K) price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) columns = [vertical_id_x_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) ``` To use crossed column in DNN model, you need to add it in an embedding column as in this example: ```python vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K) vertical_id_x_price_embedded = embedding_column(vertical_id_x_price, 10) dense_tensor = input_layer(features, [vertical_id_x_price_embedded, ...]) ``` Args: keys: An iterable identifying the features to be crossed. Each element can be either: * string: Will use the corresponding feature which must be of string type. * `_CategoricalColumn`: Will use the transformed tensor produced by this column. Does not support hashed categorical column. hash_bucket_size: An int > 1. The number of buckets. hash_key: Specify the hash_key that will be used by the `FingerprintCat64` function to combine the crosses fingerprints on SparseCrossOp (optional). Returns: A `_CrossedColumn`. Raises: ValueError: If `len(keys) < 2`. ValueError: If any of the keys is neither a string nor `_CategoricalColumn`. ValueError: If any of the keys is `_HashedCategoricalColumn`. ValueError: If `hash_bucket_size < 1`. """ if not hash_bucket_size or hash_bucket_size < 1: raise ValueError('hash_bucket_size must be > 1. ' 'hash_bucket_size: {}'.format(hash_bucket_size)) if not keys or len(keys) < 2: raise ValueError( 'keys must be a list with length > 1. Given: {}'.format(keys)) for key in keys: if (not isinstance(key, six.string_types) and not isinstance(key, _CategoricalColumn)): raise ValueError( 'Unsupported key type. All keys must be either string, or ' 'categorical column except _HashedCategoricalColumn. ' 'Given: {}'.format(key)) if isinstance(key, _HashedCategoricalColumn): raise ValueError( 'categorical_column_with_hash_bucket is not supported for crossing. ' 'Hashing before crossing will increase probability of collision. ' 'Instead, use the feature name as a string. Given: {}'.format(key)) return _CrossedColumn( keys=tuple(keys), hash_bucket_size=hash_bucket_size, hash_key=hash_key) # TODO(rohanj): Clearly define semantics of this layer. class _EmbeddingColumnLayer(base.Layer): """A layer that stores all the state required for a embedding column.""" def __init__(self, embedding_shape, initializer, weight_collections=None, trainable=True, name=None, **kwargs): """Constructor. Args: embedding_shape: Shape of the embedding variable used for lookup. initializer: A variable initializer function to be used in embedding variable initialization. weight_collections: A list of collection names to which the Variable will be added. Note that, variables will also be added to collections `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`. trainable: If `True` also add the variable to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: Name of the layer **kwargs: keyword named properties. """ super(_EmbeddingColumnLayer, self).__init__( trainable=trainable, name=name, **kwargs) self._embedding_shape = embedding_shape self._initializer = initializer self._weight_collections = weight_collections def set_weight_collections(self, weight_collections): """Sets the weight collections for the layer. Args: weight_collections: A list of collection names to which the Variable will be added. """ self._weight_collections = weight_collections def build(self, _): self._embedding_weight_var = self.add_variable( name='embedding_weights', shape=self._embedding_shape, dtype=dtypes.float32, initializer=self._initializer, trainable=self.trainable) if self._weight_collections and not context.executing_eagerly(): _add_to_collections(self._embedding_weight_var, self._weight_collections) self.built = True def call(self, _): return self._embedding_weight_var class _FeatureColumn(object): """Represents a feature column abstraction. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. To distinguish the concept of a feature family and a specific binary feature within a family, we refer to a feature family like "country" as a feature column. Following is an example feature in a `tf.Example` format: {key: "country", value: [ "US" ]} In this example the value of feature is "US" and "country" refers to the column of the feature. This class is an abstract class. User should not create instances of this. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def name(self): """Returns string. Used for naming and for name_scope.""" pass @property def _var_scope_name(self): """Returns string. Used for variable_scope. Defaults to self.name.""" return self.name @abc.abstractmethod def _transform_feature(self, inputs): """Returns intermediate representation (usually a `Tensor`). Uses `inputs` to create an intermediate representation (usually a `Tensor`) that other feature columns can use. Example usage of `inputs`: Let's say a Feature column depends on raw feature ('raw') and another `_FeatureColumn` (input_fc). To access corresponding `Tensor`s, inputs will be used as follows: ```python raw_tensor = inputs.get('raw') fc_tensor = inputs.get(input_fc) ``` Args: inputs: A `_LazyBuilder` object to access inputs. Returns: Transformed feature `Tensor`. """ pass @abc.abstractproperty def _parse_example_spec(self): """Returns a `tf.Example` parsing spec as dict. It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other supported objects. Please check documentation of `tf.parse_example` for all supported spec objects. Let's say a Feature column depends on raw feature ('raw') and another `_FeatureColumn` (input_fc). One possible implementation of _parse_example_spec is as follows: ```python spec = {'raw': tf.FixedLenFeature(...)} spec.update(input_fc._parse_example_spec) return spec ``` """ pass def _reset_config(self): """Resets the configuration in the column. Some feature columns e.g. embedding or shared embedding columns might have some state that is needed to be reset sometimes. Use this method in that scenario. """ class _DenseColumn(_FeatureColumn): """Represents a column which can be represented as `Tensor`. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. Some examples of this type are: numeric_column, embedding_column, indicator_column. """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def _variable_shape(self): """`TensorShape` of `_get_dense_tensor`, without batch dimension.""" pass @abc.abstractmethod def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns a `Tensor`. The output of this function will be used by model-builder-functions. For example the pseudo code of `input_layer` will be like: ```python def input_layer(features, feature_columns, ...): outputs = [fc._get_dense_tensor(...) for fc in feature_columns] return tf.concat(outputs) ``` Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: List of graph collections to which Variables (if any will be created) are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). Returns: `Tensor` of shape [batch_size] + `_variable_shape`. """ pass def _create_weighted_sum(column, builder, units, sparse_combiner, weight_collections, trainable, weight_var=None): """Creates a weighted sum for a dense/categorical column for linear_model.""" if isinstance(column, _CategoricalColumn): return _create_categorical_column_weighted_sum( column=column, builder=builder, units=units, sparse_combiner=sparse_combiner, weight_collections=weight_collections, trainable=trainable, weight_var=weight_var) else: return _create_dense_column_weighted_sum( column=column, builder=builder, units=units, weight_collections=weight_collections, trainable=trainable, weight_var=weight_var) def _create_dense_column_weighted_sum(column, builder, units, weight_collections, trainable, weight_var=None): """Create a weighted sum of a dense column for linear_model.""" tensor = column._get_dense_tensor( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access batch_size = array_ops.shape(tensor)[0] tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements)) if weight_var is not None: weight = weight_var else: weight = variable_scope.get_variable( name='weights', shape=[num_elements, units], initializer=init_ops.zeros_initializer(), trainable=trainable, collections=weight_collections) return math_ops.matmul(tensor, weight, name='weighted_sum') class _CategoricalColumn(_FeatureColumn): """Represents a categorical feature. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. A categorical feature typically handled with a `tf.SparseTensor` of IDs. """ __metaclass__ = abc.ABCMeta IdWeightPair = collections.namedtuple( # pylint: disable=invalid-name 'IdWeightPair', ['id_tensor', 'weight_tensor']) @abc.abstractproperty def _num_buckets(self): """Returns number of buckets in this sparse feature.""" pass @abc.abstractmethod def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): """Returns an IdWeightPair. `IdWeightPair` is a pair of `SparseTensor`s which represents ids and weights. `IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets` `SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a `SparseTensor` of `float` or `None` to indicate all weights should be taken to be 1. If specified, `weight_tensor` must have exactly the same shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing output of a `VarLenFeature` which is a ragged matrix. Args: inputs: A `LazyBuilder` as a cache to get input tensors required to create `IdWeightPair`. weight_collections: List of graph collections to which variables (if any will be created) are added. trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.get_variable`). """ pass def _create_categorical_column_weighted_sum(column, builder, units, sparse_combiner, weight_collections, trainable, weight_var=None): # pylint: disable=g-doc-return-or-yield,g-doc-args """Create a weighted sum of a categorical column for linear_model. Note to maintainer: As implementation details, the weighted sum is implemented via embedding_lookup_sparse toward efficiency. Mathematically, they are the same. To be specific, conceptually, categorical column can be treated as multi-hot vector. Say: ```python x = [0 0 1] # categorical column input w = [a b c] # weights ``` The weighted sum is `c` in this case, which is same as `w[2]`. Another example is ```python x = [0 1 1] # categorical column input w = [a b c] # weights ``` The weighted sum is `b + c` in this case, which is same as `w[2] + w[3]`. For both cases, we can implement weighted sum via embedding_lookup with sparse_combiner = "sum". """ sparse_tensors = column._get_sparse_tensors( # pylint: disable=protected-access builder, weight_collections=weight_collections, trainable=trainable) id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [ array_ops.shape(sparse_tensors.id_tensor)[0], -1 ]) weight_tensor = sparse_tensors.weight_tensor if weight_tensor is not None: weight_tensor = sparse_ops.sparse_reshape( weight_tensor, [array_ops.shape(weight_tensor)[0], -1]) if weight_var is not None: weight = weight_var else: weight = variable_scope.get_variable( name='weights', shape=(column._num_buckets, units), # pylint: disable=protected-access initializer=init_ops.zeros_initializer(), trainable=trainable, collections=weight_collections) return embedding_ops.safe_embedding_lookup_sparse( weight, id_tensor, sparse_weights=weight_tensor, combiner=sparse_combiner, name='weighted_sum') class _SequenceDenseColumn(_FeatureColumn): """Represents dense sequence data.""" __metaclass__ = abc.ABCMeta TensorSequenceLengthPair = collections.namedtuple( # pylint: disable=invalid-name 'TensorSequenceLengthPair', ['dense_tensor', 'sequence_length']) @abc.abstractmethod def _get_sequence_dense_tensor( self, inputs, weight_collections=None, trainable=None): """Returns a `TensorSequenceLengthPair`.""" pass class _LazyBuilder(object): """Handles caching of transformations while building the model. `_FeatureColumn` specifies how to digest an input column to the network. Some feature columns require data transformations. This class caches those transformations. Some features may be used in more than one place. For example, one can use a bucketized feature by itself and a cross with it. In that case we should create only one bucketization op instead of creating ops for each feature column separately. To handle re-use of transformed columns, `_LazyBuilder` caches all previously transformed columns. Example: We're trying to use the following `_FeatureColumn`s: ```python bucketized_age = fc.bucketized_column(fc.numeric_column("age"), ...) keywords = fc.categorical_column_with_hash_buckets("keywords", ...) age_X_keywords = fc.crossed_column([bucketized_age, "keywords"]) ... = linear_model(features, [bucketized_age, keywords, age_X_keywords] ``` If we transform each column independently, then we'll get duplication of bucketization (one for cross, one for bucketization itself). The `_LazyBuilder` eliminates this duplication. """ def __init__(self, features): """Creates a `_LazyBuilder`. Args: features: A mapping from feature column to objects that are `Tensor` or `SparseTensor`, or can be converted to same via `sparse_tensor.convert_to_tensor_or_sparse_tensor`. A `string` key signifies a base feature (not-transformed). A `_FeatureColumn` key means that this `Tensor` is the output of an existing `_FeatureColumn` which can be reused. """ self._features = features.copy() self._feature_tensors = {} def get(self, key): """Returns a `Tensor` for the given key. A `str` key is used to access a base feature (not-transformed). When a `_FeatureColumn` is passed, the transformed feature is returned if it already exists, otherwise the given `_FeatureColumn` is asked to provide its transformed output, which is then cached. Args: key: a `str` or a `_FeatureColumn`. Returns: The transformed `Tensor` corresponding to the `key`. Raises: ValueError: if key is not found or a transformed `Tensor` cannot be computed. """ if key in self._feature_tensors: # FeatureColumn is already transformed or converted. return self._feature_tensors[key] if key in self._features: feature_tensor = self._get_raw_feature_as_tensor(key) self._feature_tensors[key] = feature_tensor return feature_tensor if isinstance(key, six.string_types): raise ValueError('Feature {} is not in features dictionary.'.format(key)) if not isinstance(key, _FeatureColumn): raise TypeError('"key" must be either a "str" or "_FeatureColumn". ' 'Provided: {}'.format(key)) column = key logging.debug('Transforming feature_column %s.', column) transformed = column._transform_feature(self) # pylint: disable=protected-access if transformed is None: raise ValueError('Column {} is not supported.'.format(column.name)) self._feature_tensors[column] = transformed return transformed def _get_raw_feature_as_tensor(self, key): """Gets the raw_feature (keyed by `key`) as `tensor`. The raw feature is converted to (sparse) tensor and maybe expand dim. For both `Tensor` and `SparseTensor`, the rank will be expanded (to 2) if the rank is 1. This supports dynamic rank also. For rank 0 raw feature, will error out as it is not supported. Args: key: A `str` key to access the raw feature. Returns: A `Tensor` or `SparseTensor`. Raises: ValueError: if the raw feature has rank 0. """ raw_feature = self._features[key] feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( raw_feature) def expand_dims(input_tensor): # Input_tensor must have rank 1. if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): return sparse_ops.sparse_reshape( input_tensor, [array_ops.shape(input_tensor)[0], 1]) else: return array_ops.expand_dims(input_tensor, -1) rank = feature_tensor.get_shape().ndims if rank is not None: if rank == 0: raise ValueError( 'Feature (key: {}) cannot have rank 0. Give: {}'.format( key, feature_tensor)) return feature_tensor if rank != 1 else expand_dims(feature_tensor) # Handle dynamic rank. with ops.control_dependencies([ check_ops.assert_positive( array_ops.rank(feature_tensor), message='Feature (key: {}) cannot have rank 0. Given: {}'.format( key, feature_tensor))]): return control_flow_ops.cond( math_ops.equal(1, array_ops.rank(feature_tensor)), lambda: expand_dims(feature_tensor), lambda: feature_tensor) # TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py def _shape_offsets(shape): """Returns moving offset for each dimension given shape.""" offsets = [] for dim in reversed(shape): if offsets: offsets.append(dim * offsets[-1]) else: offsets.append(dim) offsets.reverse() return offsets # TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py def _to_sparse_input_and_drop_ignore_values(input_tensor, ignore_value=None): """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells. If `input_tensor` is already a `SparseTensor`, just return it. Args: input_tensor: A string or integer `Tensor`. ignore_value: Entries in `dense_tensor` equal to this value will be absent from the resulting `SparseTensor`. If `None`, default value of `dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`). Returns: A `SparseTensor` with the same shape as `input_tensor`. Raises: ValueError: when `input_tensor`'s rank is `None`. """ input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( input_tensor) if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): return input_tensor with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)): if ignore_value is None: if input_tensor.dtype == dtypes.string: # Exception due to TF strings are converted to numpy objects by default. ignore_value = '' elif input_tensor.dtype.is_integer: ignore_value = -1 # -1 has a special meaning of missing feature else: # NOTE: `as_numpy_dtype` is a property, so with the parentheses this is # constructing a new numpy object of the given type, which yields the # default value for that type. ignore_value = input_tensor.dtype.as_numpy_dtype() ignore_value = math_ops.cast( ignore_value, input_tensor.dtype, name='ignore_value') indices = array_ops.where( math_ops.not_equal(input_tensor, ignore_value), name='indices') return sparse_tensor_lib.SparseTensor( indices=indices, values=array_ops.gather_nd(input_tensor, indices, name='values'), dense_shape=array_ops.shape( input_tensor, out_type=dtypes.int64, name='dense_shape')) def _normalize_feature_columns(feature_columns): """Normalizes the `feature_columns` input. This method converts the `feature_columns` to list type as best as it can. In addition, verifies the type and other parts of feature_columns, required by downstream library. Args: feature_columns: The raw feature columns, usually passed by users. Returns: The normalized feature column list. Raises: ValueError: for any invalid inputs, such as empty, duplicated names, etc. """ if isinstance(feature_columns, _FeatureColumn): feature_columns = [feature_columns] if isinstance(feature_columns, collections.Iterator): feature_columns = list(feature_columns) if isinstance(feature_columns, dict): raise ValueError('Expected feature_columns to be iterable, found dict.') for column in feature_columns: if not isinstance(column, _FeatureColumn): raise ValueError('Items of feature_columns must be a _FeatureColumn. ' 'Given (type {}): {}.'.format(type(column), column)) if not feature_columns: raise ValueError('feature_columns must not be empty.') name_to_column = dict() for column in feature_columns: if column.name in name_to_column: raise ValueError('Duplicate feature column name found for columns: {} ' 'and {}. This usually means that these columns refer to ' 'same base feature. Either one must be discarded or a ' 'duplicated but renamed item must be inserted in ' 'features dict.'.format(column, name_to_column[column.name])) name_to_column[column.name] = column return feature_columns class _NumericColumn(_DenseColumn, collections.namedtuple('_NumericColumn', [ 'key', 'shape', 'default_value', 'dtype', 'normalizer_fn' ])): """see `numeric_column`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return { self.key: parsing_ops.FixedLenFeature(self.shape, self.dtype, self.default_value) } def _transform_feature(self, inputs): input_tensor = inputs.get(self.key) if isinstance(input_tensor, sparse_tensor_lib.SparseTensor): raise ValueError( 'The corresponding Tensor of numerical column must be a Tensor. ' 'SparseTensor is not supported. key: {}'.format(self.key)) if self.normalizer_fn is not None: input_tensor = self.normalizer_fn(input_tensor) return math_ops.to_float(input_tensor) @property def _variable_shape(self): return tensor_shape.TensorShape(self.shape) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns dense `Tensor` representing numeric feature. Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: Unused `weight_collections` since no variables are created in this function. trainable: Unused `trainable` bool since no variables are created in this function. Returns: Dense `Tensor` created within `_transform_feature`. """ # Do nothing with weight_collections and trainable since no variables are # created in this function. del weight_collections del trainable # Feature has been already transformed. Return the intermediate # representation created by _transform_feature. return inputs.get(self) class _BucketizedColumn(_DenseColumn, _CategoricalColumn, collections.namedtuple('_BucketizedColumn', [ 'source_column', 'boundaries'])): """See `bucketized_column`.""" @property def name(self): return '{}_bucketized'.format(self.source_column.name) @property def _parse_example_spec(self): return self.source_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): source_tensor = inputs.get(self.source_column) return math_ops._bucketize( # pylint: disable=protected-access source_tensor, boundaries=self.boundaries) @property def _variable_shape(self): return tensor_shape.TensorShape( tuple(self.source_column.shape) + (len(self.boundaries) + 1,)) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): del weight_collections del trainable input_tensor = inputs.get(self) return array_ops.one_hot( indices=math_ops.to_int64(input_tensor), depth=len(self.boundaries) + 1, on_value=1., off_value=0.) @property def _num_buckets(self): # By construction, source_column is always one-dimensional. return (len(self.boundaries) + 1) * self.source_column.shape[0] def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): """Converts dense inputs to SparseTensor so downstream code can use it.""" input_tensor = inputs.get(self) batch_size = array_ops.shape(input_tensor)[0] # By construction, source_column is always one-dimensional. source_dimension = self.source_column.shape[0] i1 = array_ops.reshape( array_ops.tile( array_ops.expand_dims(math_ops.range(0, batch_size), 1), [1, source_dimension]), (-1,)) i2 = array_ops.tile(math_ops.range(0, source_dimension), [batch_size]) # Flatten the bucket indices and unique them across dimensions # E.g. 2nd dimension indices will range from k to 2*k-1 with k buckets bucket_indices = ( array_ops.reshape(input_tensor, (-1,)) + (len(self.boundaries) + 1) * i2) indices = math_ops.to_int64(array_ops.transpose(array_ops.stack((i1, i2)))) dense_shape = math_ops.to_int64(array_ops.stack( [batch_size, source_dimension])) sparse_tensor = sparse_tensor_lib.SparseTensor( indices=indices, values=bucket_indices, dense_shape=dense_shape) return _CategoricalColumn.IdWeightPair(sparse_tensor, None) class _EmbeddingColumn( _DenseColumn, _SequenceDenseColumn, collections.namedtuple( '_EmbeddingColumn', ('categorical_column', 'dimension', 'combiner', 'layer_creator', 'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable'))): """See `embedding_column`.""" @property def name(self): if not hasattr(self, '_name'): self._name = '{}_embedding'.format(self.categorical_column.name) return self._name @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): return inputs.get(self.categorical_column) @property def _variable_shape(self): if not hasattr(self, '_shape'): self._shape = tensor_shape.vector(self.dimension) return self._shape def _get_dense_tensor_internal(self, inputs, weight_collections=None, trainable=None): """Private method that follows the signature of _get_dense_tensor.""" # Get sparse IDs and weights. sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access inputs, weight_collections=weight_collections, trainable=trainable) sparse_ids = sparse_tensors.id_tensor sparse_weights = sparse_tensors.weight_tensor embedding_weights = self.layer_creator( weight_collections=weight_collections, scope=variable_scope.get_variable_scope()) if self.ckpt_to_load_from is not None: to_restore = embedding_weights if isinstance(to_restore, variables.PartitionedVariable): to_restore = to_restore._get_variable_list() # pylint: disable=protected-access checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, { self.tensor_name_in_ckpt: to_restore }) # Return embedding lookup result. return embedding_ops.safe_embedding_lookup_sparse( embedding_weights=embedding_weights, sparse_ids=sparse_ids, sparse_weights=sparse_weights, combiner=self.combiner, name='%s_weights' % self.name, max_norm=self.max_norm) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): if isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In embedding_column: {}. ' 'categorical_column must not be of type _SequenceCategoricalColumn. ' 'Suggested fix A: If you wish to use input_layer, use a ' 'non-sequence categorical_column_with_*. ' 'Suggested fix B: If you wish to create sequence input, use ' 'sequence_input_layer instead of input_layer. ' 'Given (type {}): {}'.format( self.name, type(self.categorical_column), self.categorical_column)) return self._get_dense_tensor_internal( inputs=inputs, weight_collections=weight_collections, trainable=trainable) def _get_sequence_dense_tensor( self, inputs, weight_collections=None, trainable=None): if not isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In embedding_column: {}. ' 'categorical_column must be of type _SequenceCategoricalColumn ' 'to use sequence_input_layer. ' 'Suggested fix: Use one of sequence_categorical_column_with_*. ' 'Given (type {}): {}'.format( self.name, type(self.categorical_column), self.categorical_column)) dense_tensor = self._get_dense_tensor_internal( # pylint: disable=protected-access inputs=inputs, weight_collections=weight_collections, trainable=trainable) sparse_tensors = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access sequence_length = _sequence_length_from_sparse_tensor( sparse_tensors.id_tensor) return _SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=dense_tensor, sequence_length=sequence_length) def _get_graph_for_variable(var): if isinstance(var, variables.PartitionedVariable): return list(var)[0].graph else: return var.graph class _SharedEmbeddingColumn( _DenseColumn, _SequenceDenseColumn, collections.namedtuple( '_SharedEmbeddingColumn', ('categorical_column', 'dimension', 'combiner', 'initializer', 'shared_embedding_collection_name', 'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable'))): """See `embedding_column`.""" @property def name(self): if not hasattr(self, '_name'): self._name = '{}_shared_embedding'.format(self.categorical_column.name) return self._name @property def _var_scope_name(self): return self.shared_embedding_collection_name @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): return inputs.get(self.categorical_column) @property def _variable_shape(self): if not hasattr(self, '_shape'): self._shape = tensor_shape.vector(self.dimension) return self._shape def _get_dense_tensor_internal(self, inputs, weight_collections=None, trainable=None): """Private method that follows the signature of _get_dense_tensor.""" # This method is called from a variable_scope with name _var_scope_name, # which is shared among all shared embeddings. Open a name_scope here, so # that the ops for different columns have distinct names. with ops.name_scope(None, default_name=self.name): # Get sparse IDs and weights. sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access inputs, weight_collections=weight_collections, trainable=trainable) sparse_ids = sparse_tensors.id_tensor sparse_weights = sparse_tensors.weight_tensor embedding_shape = (self.categorical_column._num_buckets, self.dimension) # pylint: disable=protected-access shared_embedding_collection = ops.get_collection( self.shared_embedding_collection_name) if shared_embedding_collection: if len(shared_embedding_collection) > 1: raise ValueError( 'Collection {} can only contain one variable. ' 'Suggested fix A: Choose a unique name for this collection. ' 'Suggested fix B: Do not add any variables to this collection. ' 'The feature_column library already adds a variable under the ' 'hood.'.format(shared_embedding_collection)) embedding_weights = shared_embedding_collection[0] if embedding_weights.get_shape() != embedding_shape: raise ValueError( 'Shared embedding collection {} contains variable {} of ' 'unexpected shape {}. Expected shape is {}. ' 'Suggested fix A: Choose a unique name for this collection. ' 'Suggested fix B: Do not add any variables to this collection. ' 'The feature_column library already adds a variable under the ' 'hood.'.format(self.shared_embedding_collection_name, embedding_weights.name, embedding_weights.get_shape(), embedding_shape)) else: embedding_weights = variable_scope.get_variable( name='embedding_weights', shape=embedding_shape, dtype=dtypes.float32, initializer=self.initializer, trainable=self.trainable and trainable, collections=weight_collections) ops.add_to_collection(self.shared_embedding_collection_name, embedding_weights) if self.ckpt_to_load_from is not None: to_restore = embedding_weights if isinstance(to_restore, variables.PartitionedVariable): to_restore = to_restore._get_variable_list() # pylint: disable=protected-access checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, { self.tensor_name_in_ckpt: to_restore }) # Return embedding lookup result. return embedding_ops.safe_embedding_lookup_sparse( embedding_weights=embedding_weights, sparse_ids=sparse_ids, sparse_weights=sparse_weights, combiner=self.combiner, name='%s_weights' % self.name, max_norm=self.max_norm) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): if isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In embedding_column: {}. ' 'categorical_column must not be of type _SequenceCategoricalColumn. ' 'Suggested fix A: If you wish to use input_layer, use a ' 'non-sequence categorical_column_with_*. ' 'Suggested fix B: If you wish to create sequence input, use ' 'sequence_input_layer instead of input_layer. ' 'Given (type {}): {}'.format(self.name, type(self.categorical_column), self.categorical_column)) return self._get_dense_tensor_internal( inputs=inputs, weight_collections=weight_collections, trainable=trainable) def _get_sequence_dense_tensor(self, inputs, weight_collections=None, trainable=None): if not isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In embedding_column: {}. ' 'categorical_column must be of type _SequenceCategoricalColumn ' 'to use sequence_input_layer. ' 'Suggested fix: Use one of sequence_categorical_column_with_*. ' 'Given (type {}): {}'.format(self.name, type(self.categorical_column), self.categorical_column)) dense_tensor = self._get_dense_tensor_internal( # pylint: disable=protected-access inputs=inputs, weight_collections=weight_collections, trainable=trainable) sparse_tensors = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access sequence_length = _sequence_length_from_sparse_tensor( sparse_tensors.id_tensor) return _SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=dense_tensor, sequence_length=sequence_length) def _create_tuple(shape, value): """Returns a tuple with given shape and filled with value.""" if shape: return tuple([_create_tuple(shape[1:], value) for _ in range(shape[0])]) return value def _as_tuple(value): if not nest.is_sequence(value): return value return tuple([_as_tuple(v) for v in value]) def _check_shape(shape, key): """Returns shape if it's valid, raises error otherwise.""" assert shape is not None if not nest.is_sequence(shape): shape = [shape] shape = tuple(shape) for dimension in shape: if not isinstance(dimension, six.integer_types): raise TypeError('shape dimensions must be integer. ' 'shape: {}, key: {}'.format(shape, key)) if dimension < 1: raise ValueError('shape dimensions must be greater than 0. ' 'shape: {}, key: {}'.format(shape, key)) return shape def _is_shape_and_default_value_compatible(default_value, shape): """Verifies compatibility of shape and default_value.""" # Invalid condition: # * if default_value is not a scalar and shape is empty # * or if default_value is an iterable and shape is not empty if nest.is_sequence(default_value) != bool(shape): return False if not shape: return True if len(default_value) != shape[0]: return False for i in range(shape[0]): if not _is_shape_and_default_value_compatible(default_value[i], shape[1:]): return False return True def _check_default_value(shape, default_value, dtype, key): """Returns default value as tuple if it's valid, otherwise raises errors. This function verifies that `default_value` is compatible with both `shape` and `dtype`. If it is not compatible, it raises an error. If it is compatible, it casts default_value to a tuple and returns it. `key` is used only for error message. Args: shape: An iterable of integers specifies the shape of the `Tensor`. default_value: If a single value is provided, the same value will be applied as the default value for every item. If an iterable of values is provided, the shape of the `default_value` should be equal to the given `shape`. dtype: defines the type of values. Default value is `tf.float32`. Must be a non-quantized, real integer or floating point type. key: Column name, used only for error messages. Returns: A tuple which will be used as default value. Raises: TypeError: if `default_value` is an iterable but not compatible with `shape` TypeError: if `default_value` is not compatible with `dtype`. ValueError: if `dtype` is not convertible to `tf.float32`. """ if default_value is None: return None if isinstance(default_value, int): return _create_tuple(shape, default_value) if isinstance(default_value, float) and dtype.is_floating: return _create_tuple(shape, default_value) if callable(getattr(default_value, 'tolist', None)): # Handles numpy arrays default_value = default_value.tolist() if nest.is_sequence(default_value): if not _is_shape_and_default_value_compatible(default_value, shape): raise ValueError( 'The shape of default_value must be equal to given shape. ' 'default_value: {}, shape: {}, key: {}'.format( default_value, shape, key)) # Check if the values in the list are all integers or are convertible to # floats. is_list_all_int = all( isinstance(v, int) for v in nest.flatten(default_value)) is_list_has_float = any( isinstance(v, float) for v in nest.flatten(default_value)) if is_list_all_int: return _as_tuple(default_value) if is_list_has_float and dtype.is_floating: return _as_tuple(default_value) raise TypeError('default_value must be compatible with dtype. ' 'default_value: {}, dtype: {}, key: {}'.format( default_value, dtype, key)) class _HashedCategoricalColumn( _CategoricalColumn, collections.namedtuple('_HashedCategoricalColumn', ['key', 'hash_bucket_size', 'dtype'])): """see `categorical_column_with_hash_bucket`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input_and_drop_ignore_values(inputs.get(self.key)) if not isinstance(input_tensor, sparse_tensor_lib.SparseTensor): raise ValueError('SparseColumn input must be a SparseTensor.') _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) if self.dtype == dtypes.string: sparse_values = input_tensor.values else: sparse_values = string_ops.as_string(input_tensor.values) sparse_id_values = string_ops.string_to_hash_bucket_fast( sparse_values, self.hash_bucket_size, name='lookup') return sparse_tensor_lib.SparseTensor( input_tensor.indices, sparse_id_values, input_tensor.dense_shape) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.hash_bucket_size def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _VocabularyFileCategoricalColumn( _CategoricalColumn, collections.namedtuple('_VocabularyFileCategoricalColumn', ( 'key', 'vocabulary_file', 'vocabulary_size', 'num_oov_buckets', 'dtype', 'default_value' ))): """See `categorical_column_with_vocabulary_file`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input_and_drop_ignore_values(inputs.get(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) key_dtype = self.dtype if input_tensor.dtype.is_integer: # `index_table_from_file` requires 64-bit integer keys. key_dtype = dtypes.int64 input_tensor = math_ops.to_int64(input_tensor) return lookup_ops.index_table_from_file( vocabulary_file=self.vocabulary_file, num_oov_buckets=self.num_oov_buckets, vocab_size=self.vocabulary_size, default_value=self.default_value, key_dtype=key_dtype, name='{}_lookup'.format(self.key)).lookup(input_tensor) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.vocabulary_size + self.num_oov_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _VocabularyListCategoricalColumn( _CategoricalColumn, collections.namedtuple('_VocabularyListCategoricalColumn', ( 'key', 'vocabulary_list', 'dtype', 'default_value', 'num_oov_buckets' ))): """See `categorical_column_with_vocabulary_list`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(self.dtype)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input_and_drop_ignore_values(inputs.get(self.key)) if self.dtype.is_integer != input_tensor.dtype.is_integer: raise ValueError( 'Column dtype and SparseTensors dtype must be compatible. ' 'key: {}, column dtype: {}, tensor dtype: {}'.format( self.key, self.dtype, input_tensor.dtype)) _assert_string_or_int( input_tensor.dtype, prefix='column_name: {} input_tensor'.format(self.key)) key_dtype = self.dtype if input_tensor.dtype.is_integer: # `index_table_from_tensor` requires 64-bit integer keys. key_dtype = dtypes.int64 input_tensor = math_ops.to_int64(input_tensor) return lookup_ops.index_table_from_tensor( vocabulary_list=tuple(self.vocabulary_list), default_value=self.default_value, num_oov_buckets=self.num_oov_buckets, dtype=key_dtype, name='{}_lookup'.format(self.key)).lookup(input_tensor) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return len(self.vocabulary_list) + self.num_oov_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _IdentityCategoricalColumn( _CategoricalColumn, collections.namedtuple('_IdentityCategoricalColumn', ( 'key', 'num_buckets', 'default_value' ))): """See `categorical_column_with_identity`.""" @property def name(self): return self.key @property def _parse_example_spec(self): return {self.key: parsing_ops.VarLenFeature(dtypes.int64)} def _transform_feature(self, inputs): input_tensor = _to_sparse_input_and_drop_ignore_values(inputs.get(self.key)) if not input_tensor.dtype.is_integer: raise ValueError( 'Invalid input, not integer. key: {} dtype: {}'.format( self.key, input_tensor.dtype)) values = math_ops.to_int64(input_tensor.values, name='values') num_buckets = math_ops.to_int64(self.num_buckets, name='num_buckets') zero = math_ops.to_int64(0, name='zero') if self.default_value is None: # Fail if values are out-of-range. assert_less = check_ops.assert_less( values, num_buckets, data=(values, num_buckets), name='assert_less_than_num_buckets') assert_greater = check_ops.assert_greater_equal( values, zero, data=(values,), name='assert_greater_or_equal_0') with ops.control_dependencies((assert_less, assert_greater)): values = array_ops.identity(values) else: # Assign default for out-of-range values. values = array_ops.where( math_ops.logical_or( values < zero, values >= num_buckets, name='out_of_range'), array_ops.fill( dims=array_ops.shape(values), value=math_ops.to_int64(self.default_value), name='default_values'), values) return sparse_tensor_lib.SparseTensor( indices=input_tensor.indices, values=values, dense_shape=input_tensor.dense_shape) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.num_buckets def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) class _WeightedCategoricalColumn( _CategoricalColumn, collections.namedtuple('_WeightedCategoricalColumn', ( 'categorical_column', 'weight_feature_key', 'dtype' ))): """See `weighted_categorical_column`.""" @property def name(self): return '{}_weighted_by_{}'.format( self.categorical_column.name, self.weight_feature_key) @property def _parse_example_spec(self): config = self.categorical_column._parse_example_spec # pylint: disable=protected-access if self.weight_feature_key in config: raise ValueError('Parse config {} already exists for {}.'.format( config[self.weight_feature_key], self.weight_feature_key)) config[self.weight_feature_key] = parsing_ops.VarLenFeature(self.dtype) return config @property def _num_buckets(self): return self.categorical_column._num_buckets # pylint: disable=protected-access def _transform_feature(self, inputs): weight_tensor = inputs.get(self.weight_feature_key) if weight_tensor is None: raise ValueError('Missing weights {}.'.format(self.weight_feature_key)) weight_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor( weight_tensor) if self.dtype != weight_tensor.dtype.base_dtype: raise ValueError('Bad dtype, expected {}, but got {}.'.format( self.dtype, weight_tensor.dtype)) if not isinstance(weight_tensor, sparse_tensor_lib.SparseTensor): # The weight tensor can be a regular Tensor. In this case, sparsify it. weight_tensor = _to_sparse_input_and_drop_ignore_values( weight_tensor, ignore_value=0.0) if not weight_tensor.dtype.is_floating: weight_tensor = math_ops.to_float(weight_tensor) return (inputs.get(self.categorical_column), weight_tensor) def _get_sparse_tensors( self, inputs, weight_collections=None, trainable=None): del weight_collections del trainable tensors = inputs.get(self) return _CategoricalColumn.IdWeightPair(tensors[0], tensors[1]) class _CrossedColumn( _CategoricalColumn, collections.namedtuple('_CrossedColumn', ['keys', 'hash_bucket_size', 'hash_key'])): """See `crossed_column`.""" @property def name(self): feature_names = [] for key in _collect_leaf_level_keys(self): if isinstance(key, _FeatureColumn): feature_names.append(key.name) else: # key must be a string feature_names.append(key) return '_X_'.join(sorted(feature_names)) @property def _parse_example_spec(self): config = {} for key in self.keys: if isinstance(key, _FeatureColumn): config.update(key._parse_example_spec) # pylint: disable=protected-access else: # key must be a string config.update({key: parsing_ops.VarLenFeature(dtypes.string)}) return config def _transform_feature(self, inputs): feature_tensors = [] for key in _collect_leaf_level_keys(self): if isinstance(key, six.string_types): feature_tensors.append(inputs.get(key)) elif isinstance(key, _CategoricalColumn): ids_and_weights = key._get_sparse_tensors(inputs) # pylint: disable=protected-access if ids_and_weights.weight_tensor is not None: raise ValueError( 'crossed_column does not support weight_tensor, but the given ' 'column populates weight_tensor. ' 'Given column: {}'.format(key.name)) feature_tensors.append(ids_and_weights.id_tensor) else: raise ValueError('Unsupported column type. Given: {}'.format(key)) return sparse_ops.sparse_cross_hashed( inputs=feature_tensors, num_buckets=self.hash_bucket_size, hash_key=self.hash_key) @property def _num_buckets(self): """Returns number of buckets in this sparse feature.""" return self.hash_bucket_size def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): return _CategoricalColumn.IdWeightPair(inputs.get(self), None) def _collect_leaf_level_keys(cross): """Collects base keys by expanding all nested crosses. Args: cross: A `_CrossedColumn`. Returns: A list of strings or `_CategoricalColumn` instances. """ leaf_level_keys = [] for k in cross.keys: if isinstance(k, _CrossedColumn): leaf_level_keys.extend(_collect_leaf_level_keys(k)) else: leaf_level_keys.append(k) return leaf_level_keys class _IndicatorColumn(_DenseColumn, _SequenceDenseColumn, collections.namedtuple('_IndicatorColumn', ['categorical_column'])): """Represents a one-hot column for use in deep networks. Args: categorical_column: A `_CategoricalColumn` which is created by `categorical_column_with_*` function. """ @property def name(self): return '{}_indicator'.format(self.categorical_column.name) def _transform_feature(self, inputs): """Returns dense `Tensor` representing feature. Args: inputs: A `_LazyBuilder` object to access inputs. Returns: Transformed feature `Tensor`. Raises: ValueError: if input rank is not known at graph building time. """ id_weight_pair = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access id_tensor = id_weight_pair.id_tensor weight_tensor = id_weight_pair.weight_tensor # If the underlying column is weighted, return the input as a dense tensor. if weight_tensor is not None: weighted_column = sparse_ops.sparse_merge( sp_ids=id_tensor, sp_values=weight_tensor, vocab_size=int(self._variable_shape[-1])) # Remove (?, -1) index. weighted_column = sparse_ops.sparse_slice(weighted_column, [0, 0], weighted_column.dense_shape) # Use scatter_nd to merge duplicated indices if existed, # instead of sparse_tensor_to_dense. return array_ops.scatter_nd(weighted_column.indices, weighted_column.values, weighted_column.dense_shape) dense_id_tensor = sparse_ops.sparse_tensor_to_dense( id_tensor, default_value=-1) # One hot must be float for tf.concat reasons since all other inputs to # input_layer are float32. one_hot_id_tensor = array_ops.one_hot( dense_id_tensor, depth=self._variable_shape[-1], on_value=1.0, off_value=0.0) # Reduce to get a multi-hot per example. return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2]) @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access @property def _variable_shape(self): """Returns a `TensorShape` representing the shape of the dense `Tensor`.""" return tensor_shape.TensorShape([1, self.categorical_column._num_buckets]) # pylint: disable=protected-access def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): """Returns dense `Tensor` representing feature. Args: inputs: A `_LazyBuilder` object to access inputs. weight_collections: Unused `weight_collections` since no variables are created in this function. trainable: Unused `trainable` bool since no variables are created in this function. Returns: Dense `Tensor` created within `_transform_feature`. Raises: ValueError: If `categorical_column` is a `_SequenceCategoricalColumn`. """ # Do nothing with weight_collections and trainable since no variables are # created in this function. del weight_collections del trainable if isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In indicator_column: {}. ' 'categorical_column must not be of type _SequenceCategoricalColumn. ' 'Suggested fix A: If you wish to use input_layer, use a ' 'non-sequence categorical_column_with_*. ' 'Suggested fix B: If you wish to create sequence input, use ' 'sequence_input_layer instead of input_layer. ' 'Given (type {}): {}'.format( self.name, type(self.categorical_column), self.categorical_column)) # Feature has been already transformed. Return the intermediate # representation created by _transform_feature. return inputs.get(self) def _get_sequence_dense_tensor( self, inputs, weight_collections=None, trainable=None): # Do nothing with weight_collections and trainable since no variables are # created in this function. del weight_collections del trainable if not isinstance(self.categorical_column, _SequenceCategoricalColumn): raise ValueError( 'In indicator_column: {}. ' 'categorical_column must be of type _SequenceCategoricalColumn ' 'to use sequence_input_layer. ' 'Suggested fix: Use one of sequence_categorical_column_with_*. ' 'Given (type {}): {}'.format( self.name, type(self.categorical_column), self.categorical_column)) # Feature has been already transformed. Return the intermediate # representation created by _transform_feature. dense_tensor = inputs.get(self) sparse_tensors = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access sequence_length = _sequence_length_from_sparse_tensor( sparse_tensors.id_tensor) return _SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=dense_tensor, sequence_length=sequence_length) def _verify_static_batch_size_equality(tensors, columns): """Validates that the first dim (batch size) of all tensors are equal or None. Args: tensors: list of tensors to check. columns: list of feature columns matching tensors. Will be used for error messaging. Raises: ValueError: if one of the tensors has a variant batch size """ # bath_size is a tf.Dimension object. expected_batch_size = None for i in range(0, len(tensors)): if tensors[i].shape[0].value is not None: if expected_batch_size is None: bath_size_column_index = i expected_batch_size = tensors[i].shape[0] elif not expected_batch_size.is_compatible_with(tensors[i].shape[0]): raise ValueError( 'Batch size (first dimension) of each feature must be same. ' 'Batch size of columns ({}, {}): ({}, {})'.format( columns[bath_size_column_index].name, columns[i].name, expected_batch_size, tensors[i].shape[0])) def _sequence_length_from_sparse_tensor(sp_tensor, num_elements=1): """Returns a [batch_size] Tensor with per-example sequence length.""" with ops.name_scope(None, 'sequence_length') as name_scope: row_ids = sp_tensor.indices[:, 0] column_ids = sp_tensor.indices[:, 1] # Add one to convert column indices to element length column_ids += array_ops.ones_like(column_ids) # Get the number of elements we will have per example/row seq_length = math_ops.segment_max(column_ids, segment_ids=row_ids) # The raw values are grouped according to num_elements; # how many entities will we have after grouping? # Example: orig tensor [[1, 2], [3]], col_ids = (0, 1, 1), # row_ids = (0, 0, 1), seq_length = [2, 1]. If num_elements = 2, # these will get grouped, and the final seq_length is [1, 1] seq_length = math_ops.to_int64(math_ops.ceil(seq_length / num_elements)) # If the last n rows do not have ids, seq_length will have shape # [batch_size - n]. Pad the remaining values with zeros. n_pad = array_ops.shape(sp_tensor)[:1] - array_ops.shape(seq_length)[:1] padding = array_ops.zeros(n_pad, dtype=seq_length.dtype) return array_ops.concat([seq_length, padding], axis=0, name=name_scope) class _SequenceCategoricalColumn( _CategoricalColumn, collections.namedtuple( '_SequenceCategoricalColumn', ['categorical_column'])): """Represents sequences of categorical data.""" @property def name(self): return self.categorical_column.name @property def _parse_example_spec(self): return self.categorical_column._parse_example_spec # pylint: disable=protected-access def _transform_feature(self, inputs): return self.categorical_column._transform_feature(inputs) # pylint: disable=protected-access @property def _num_buckets(self): return self.categorical_column._num_buckets # pylint: disable=protected-access def _get_sparse_tensors(self, inputs, weight_collections=None, trainable=None): sparse_tensors = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access id_tensor = sparse_tensors.id_tensor weight_tensor = sparse_tensors.weight_tensor # Expands third dimension, if necessary so that embeddings are not # combined during embedding lookup. If the tensor is already 3D, leave # as-is. shape = array_ops.shape(id_tensor) target_shape = [shape[0], shape[1], -1] id_tensor = sparse_ops.sparse_reshape(id_tensor, target_shape) if weight_tensor is not None: weight_tensor = sparse_ops.sparse_reshape(weight_tensor, target_shape) return _CategoricalColumn.IdWeightPair(id_tensor, weight_tensor)