"""Builds the CIFAR-10 network. Summary of available functions: # Compute input images and labels for training. If you would like to run # evaluations, use input() instead. inputs, labels = distorted_inputs() # Compute inference on the model inputs to make a prediction. predictions = inference(inputs) # Compute the total loss of the prediction with respect to the labels. loss = loss(predictions, labels) # Create a graph to run one step of training with respect to the loss. train_op = train(loss, global_step) """ # pylint: disable=missing-docstring import gzip import os import re import sys import tarfile import urllib import tensorflow.python.platform import tensorflow as tf from tensorflow.models.image.cifar10 import cifar10_input from tensorflow.python.platform import gfile FLAGS = tf.app.flags.FLAGS # Basic model parameters. tf.app.flags.DEFINE_integer('batch_size', 128, """Number of images to process in a batch.""") tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar10_data', """Path to the CIFAR-10 data directory.""") # Process images of this size. Note that this differs from the original CIFAR # image size of 32 x 32. If one alters this number, then the entire model # architecture will change and any model would need to be retrained. IMAGE_SIZE = 24 # Global constants describing the CIFAR-10 data set. NUM_CLASSES = 10 NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000 NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000 # Constants describing the training process. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average. NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor. INITIAL_LEARNING_RATE = 0.1 # Initial learning rate. # If a model is trained with multiple GPU's prefix all Op names with tower_name # to differentiate the operations. Note that this prefix is removed from the # names of the summaries when visualizing a model. TOWER_NAME = 'tower' DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' def _activation_summary(x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name) tf.histogram_summary(tensor_name + '/activations', x) tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x)) def _variable_on_cpu(name, shape, initializer): """Helper to create a Variable stored on CPU memory. Args: name: name of the variable shape: list of ints initializer: initializer for Variable Returns: Variable Tensor """ with tf.device('/cpu:0'): var = tf.get_variable(name, shape, initializer=initializer) return var def _variable_with_weight_decay(name, shape, stddev, wd): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. Returns: Variable Tensor """ var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev)) if wd: weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var def _generate_image_and_label_batch(image, label, min_queue_examples): """Construct a queued batch of images and labels. Args: image: 3-D Tensor of [IMAGE_SIZE, IMAGE_SIZE, 3] of type.float32. label: 1-D Tensor of type.int32 min_queue_examples: int32, minimum number of samples to retain in the queue that provides of batches of examples. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ # Create a queue that shuffles the examples, and then # read 'FLAGS.batch_size' images + labels from the example queue. num_preprocess_threads = 16 images, label_batch = tf.train.shuffle_batch( [image, label], batch_size=FLAGS.batch_size, num_threads=num_preprocess_threads, capacity=min_queue_examples + 3 * FLAGS.batch_size, min_after_dequeue=min_queue_examples) # Display the training images in the visualizer. tf.image_summary('images', images) return images, tf.reshape(label_batch, [FLAGS.batch_size]) def distorted_inputs(): """Construct distorted input for CIFAR training using the Reader ops. Raises: ValueError: if no data_dir Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin', 'data_batch_%d.bin' % i) for i in xrange(1, 5)] for f in filenames: if not gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = cifar10_input.read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for training the network. Note the many random # distortions applied to the image. # Randomly crop a [height, width] section of the image. distorted_image = tf.image.random_crop(reshaped_image, [height, width]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # randomize the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_whitening(distorted_image) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue) print ('Filling queue with %d CIFAR images before starting to train. ' 'This will take a few minutes.' % min_queue_examples) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples) def inputs(eval_data): """Construct input for CIFAR evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. Raises: ValueError: if no data_dir Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not FLAGS.data_dir: raise ValueError('Please supply a data_dir') if not eval_data: filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin', 'data_batch_%d.bin' % i) for i in xrange(1, 5)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: filenames = [os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin', 'test_batch.bin')] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL for f in filenames: if not gfile.Exists(f): raise ValueError('Failed to find file: ' + f) # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = cifar10_input.read_cifar10(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_whitening(resized_image) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.4 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples) def inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ # We instantiate all variables using tf.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.get_variable() with tf.Variable(). # # conv1 with tf.variable_scope('conv1') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0)) bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list()) conv1 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv1) # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # norm1 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') # conv2 with tf.variable_scope('conv2') as scope: kernel = _variable_with_weight_decay('weights', shape=[5, 5, 64, 64], stddev=1e-4, wd=0.0) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1)) bias = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape().as_list()) conv2 = tf.nn.relu(bias, name=scope.name) _activation_summary(conv2) # norm2 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') # pool2 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # local3 with tf.variable_scope('local3') as scope: # Move everything into depth so we can perform a single matrix multiply. dim = 1 for d in pool2.get_shape()[1:].as_list(): dim *= d reshape = tf.reshape(pool2, [FLAGS.batch_size, dim]) weights = _variable_with_weight_decay('weights', shape=[dim, 384], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1)) local3 = tf.nn.relu_layer(reshape, weights, biases, name=scope.name) _activation_summary(local3) # local4 with tf.variable_scope('local4') as scope: weights = _variable_with_weight_decay('weights', shape=[384, 192], stddev=0.04, wd=0.004) biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1)) local4 = tf.nn.relu_layer(local3, weights, biases, name=scope.name) _activation_summary(local4) # softmax, i.e. softmax(WX + b) with tf.variable_scope('softmax_linear') as scope: weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES], stddev=1/192.0, wd=0.0) biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0)) softmax_linear = tf.nn.xw_plus_b(local4, weights, biases, name=scope.name) _activation_summary(softmax_linear) return softmax_linear def loss(logits, labels): """Add L2Loss to all the trainable variables. Add summary for for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Reshape the labels into a dense Tensor of # shape [batch_size, NUM_CLASSES]. sparse_labels = tf.reshape(labels, [FLAGS.batch_size, 1]) indices = tf.reshape(tf.range(0, FLAGS.batch_size, 1), [FLAGS.batch_size, 1]) concated = tf.concat(1, [indices, sparse_labels]) dense_labels = tf.sparse_to_dense(concated, [FLAGS.batch_size, NUM_CLASSES], 1.0, 0.0) # Calculate the average cross entropy loss across the batch. cross_entropy = tf.nn.softmax_cross_entropy_with_logits( logits, dense_labels, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss') def _add_loss_summaries(total_loss): """Add summaries for losses in CIFAR-10 model. Generates moving average for all losses and associated summaries for visualizing the performance of the network. Args: total_loss: Total loss from loss(). Returns: loss_averages_op: op for generating moving averages of losses. """ # Compute the moving average of all individual losses and the total loss. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg') losses = tf.get_collection('losses') loss_averages_op = loss_averages.apply(losses + [total_loss]) # Attach a scalar summmary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Name each loss as '(raw)' and name the moving average version of the loss # as the original loss name. tf.scalar_summary(l.op.name +' (raw)', l) tf.scalar_summary(l.op.name, loss_averages.average(l)) return loss_averages_op def train(total_loss, global_step): """Train CIFAR-10 model. Create an optimizer and apply to all trainable variables. Add moving average for all trainable variables. Args: total_loss: Total loss from loss(). global_step: Integer Variable counting the number of training steps processed. Returns: train_op: op for training. """ # Variables that affect learning rate. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY) # Decay the learning rate exponentially based on the number of steps. lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE, global_step, decay_steps, LEARNING_RATE_DECAY_FACTOR, staircase=True) tf.scalar_summary('learning_rate', lr) # Generate moving averages of all losses and associated summaries. loss_averages_op = _add_loss_summaries(total_loss) # Compute gradients. with tf.control_dependencies([loss_averages_op]): opt = tf.train.GradientDescentOptimizer(lr) grads = opt.compute_gradients(total_loss) # Apply gradients. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) # Add histograms for trainable variables. for var in tf.trainable_variables(): tf.histogram_summary(var.op.name, var) # Add histograms for gradients. for grad, var in grads: if grad: tf.histogram_summary(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([apply_gradient_op, variables_averages_op]): train_op = tf.no_op(name='train') return train_op def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = FLAGS.data_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.urlretrieve(DATA_URL, filepath, reporthook=_progress) print statinfo = os.stat(filepath) print 'Succesfully downloaded', filename, statinfo.st_size, 'bytes.' tarfile.open(filepath, 'r:gz').extractall(dest_directory)