"""Multi-threaded word2vec mini-batched skip-gram model. Trains the model described in: (Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space ICLR 2013. http://arxiv.org/abs/1301.3781 This model does traditional minibatching. The key ops used are: * placeholder for feeding in tensors for each example. * embedding_lookup for fetching rows from the embedding matrix. * sigmoid_cross_entropy_with_logits to calculate the loss. * GradientDescentOptimizer for optimizing the loss. * skipgram custom op that does input processing. """ import sys import threading import time import tensorflow.python.platform import numpy as np import tensorflow as tf from tensorflow.models.embedding import gen_word2vec as word2vec flags = tf.app.flags flags.DEFINE_string("save_path", None, "Directory to write the model and " "training summaries.") flags.DEFINE_string("train_data", None, "Training text file. " "E.g., unzipped file http://mattmahoney.net/dc/text8.zip.") flags.DEFINE_string( "eval_data", None, "File consisting of analogies of four tokens." "embedding 2 - embedding 1 + embedding 3 should be close " "to embedding 4." "E.g. https://word2vec.googlecode.com/svn/trunk/questions-words.txt.") flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.") flags.DEFINE_integer( "epochs_to_train", 15, "Number of epochs to train. Each epoch processes the training data once " "completely.") flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.") flags.DEFINE_integer("num_neg_samples", 100, "Negative samples per training example.") flags.DEFINE_integer("batch_size", 16, "Number of training examples processed per step " "(size of a minibatch).") flags.DEFINE_integer("concurrent_steps", 12, "The number of concurrent training steps.") flags.DEFINE_integer("window_size", 5, "The number of words to predict to the left and right " "of the target word.") flags.DEFINE_integer("min_count", 5, "The minimum number of word occurrences for it to be " "included in the vocabulary.") flags.DEFINE_float("subsample", 1e-3, "Subsample threshold for word occurrence. Words that appear " "with higher frequency will be randomly down-sampled. Set " "to 0 to disable.") flags.DEFINE_boolean( "interactive", False, "If true, enters an IPython interactive session to play with the trained " "model. E.g., try model.analogy('france', 'paris', 'russia') and " "model.nearby(['proton', 'elephant', 'maxwell']") flags.DEFINE_integer("statistics_interval", 5, "Print statistics every n seconds.") flags.DEFINE_integer("summary_interval", 5, "Save training summary to file every n seconds (rounded " "up to statistics interval.") flags.DEFINE_integer("checkpoint_interval", 600, "Checkpoint the model (i.e. save the parameters) every n " "seconds (rounded up to statistics interval.") FLAGS = flags.FLAGS class Options(object): """Options used by our word2vec model.""" def __init__(self): # Model options. # Embedding dimension. self.emb_dim = FLAGS.embedding_size # Training options. # The training text file. self.train_data = FLAGS.train_data # Number of negative samples per example. self.num_samples = FLAGS.num_neg_samples # The initial learning rate. self.learning_rate = FLAGS.learning_rate # Number of epochs to train. After these many epochs, the learning # rate decays linearly to zero and the training stops. self.epochs_to_train = FLAGS.epochs_to_train # Concurrent training steps. self.concurrent_steps = FLAGS.concurrent_steps # Number of examples for one training step. self.batch_size = FLAGS.batch_size # The number of words to predict to the left and right of the target word. self.window_size = FLAGS.window_size # The minimum number of word occurrences for it to be included in the # vocabulary. self.min_count = FLAGS.min_count # Subsampling threshold for word occurrence. self.subsample = FLAGS.subsample # How often to print statistics. self.statistics_interval = FLAGS.statistics_interval # How often to write to the summary file (rounds up to the nearest # statistics_interval). self.summary_interval = FLAGS.summary_interval # How often to write checkpoints (rounds up to the nearest statistics # interval). self.checkpoint_interval = FLAGS.checkpoint_interval # Where to write out summaries. self.save_path = FLAGS.save_path # Eval options. # The text file for eval. self.eval_data = FLAGS.eval_data class Word2Vec(object): """Word2Vec model (Skipgram).""" def __init__(self, options, session): self._options = options self._session = session self._word2id = {} self._id2word = [] self.build_graph() self.build_eval_graph() self.save_vocab() self._read_analogies() def _read_analogies(self): """Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(self._options.eval_data) as analogy_f: for line in analogy_f: if line.startswith(":"): # Skip comments. continue words = line.strip().lower().split(" ") ids = [self._word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) print "Eval analogy file: ", self._options.eval_data print "Questions: ", len(questions) print "Skipped: ", questions_skipped self._analogy_questions = np.array(questions, dtype=np.int32) def forward(self, examples, labels): """Build the graph for the forward pass.""" opts = self._options # Declare all variables we need. # Embedding: [vocab_size, emb_dim] init_width = 0.5 / opts.emb_dim emb = tf.Variable( tf.random_uniform( [opts.vocab_size, opts.emb_dim], -init_width, init_width), name="emb") self._emb = emb # Softmax weight: [vocab_size, emb_dim]. Transposed. sm_w_t = tf.Variable( tf.zeros([opts.vocab_size, opts.emb_dim]), name="sm_w_t") # Softmax bias: [emb_dim]. sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b") # Global step: scalar, i.e., shape []. self.global_step = tf.Variable(0, name="global_step") # Nodes to compute the nce loss w/ candidate sampling. labels_matrix = tf.reshape( tf.cast(labels, dtype=tf.int64), [opts.batch_size, 1]) # Negative sampling. sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler( true_classes=labels_matrix, num_true=1, num_sampled=opts.num_samples, unique=True, range_max=opts.vocab_size, distortion=0.75, unigrams=opts.vocab_counts.tolist())) # Embeddings for examples: [batch_size, emb_dim] example_emb = tf.nn.embedding_lookup(emb, examples) # Weights for labels: [batch_size, emb_dim] true_w = tf.nn.embedding_lookup(sm_w_t, labels) # Biases for labels: [batch_size, 1] true_b = tf.nn.embedding_lookup(sm_b, labels) # Weights for sampled ids: [num_sampled, emb_dim] sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids) # Biases for sampled ids: [num_sampled, 1] sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids) # True logits: [batch_size, 1] true_logits = tf.reduce_sum(tf.mul(example_emb, true_w), 1) + true_b # Sampled logits: [batch_size, num_sampled] # We replicate sampled noise lables for all examples in the batch # using the matmul. sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples]) sampled_logits = tf.matmul(example_emb, sampled_w, transpose_b=True) + sampled_b_vec return true_logits, sampled_logits def nce_loss(self, true_logits, sampled_logits): """Build the graph for the NCE loss.""" # cross-entropy(logits, labels) opts = self._options true_xent = tf.nn.sigmoid_cross_entropy_with_logits( true_logits, tf.ones_like(true_logits)) sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits( sampled_logits, tf.zeros_like(sampled_logits)) # NCE-loss is the sum of the true and noise (sampled words) # contributions, averaged over the batch. nce_loss_tensor = (tf.reduce_sum(true_xent) + tf.reduce_sum(sampled_xent)) / opts.batch_size return nce_loss_tensor def optimize(self, loss): """Build the graph to optimize the loss function.""" # Optimizer nodes. # Linear learning rate decay. opts = self._options words_to_train = float(opts.words_per_epoch * opts.epochs_to_train) lr = opts.learning_rate * tf.maximum( 0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train) self._lr = lr optimizer = tf.train.GradientDescentOptimizer(lr) train = optimizer.minimize(loss, global_step=self.global_step, gate_gradients=optimizer.GATE_NONE) self._train = train def build_eval_graph(self): """Build the eval graph.""" # Eval graph # Each analogy task is to predict the 4th word (d) given three # words: a, b, c. E.g., a=italy, b=rome, c=france, we should # predict d=paris. # The eval feeds three vectors of word ids for a, b, c, each of # which is of size N, where N is the number of analogies we want to # evaluate in one batch. analogy_a = tf.placeholder(dtype=tf.int32) # [N] analogy_b = tf.placeholder(dtype=tf.int32) # [N] analogy_c = tf.placeholder(dtype=tf.int32) # [N] # Normalized word embeddings of shape [vocab_size, emb_dim]. nemb = tf.nn.l2_normalize(self._emb, 1) # Each row of a_emb, b_emb, c_emb is a word's embedding vector. # They all have the shape [N, emb_dim] a_emb = tf.gather(nemb, analogy_a) # a's embs b_emb = tf.gather(nemb, analogy_b) # b's embs c_emb = tf.gather(nemb, analogy_c) # c's embs # We expect that d's embedding vectors on the unit hyper-sphere is # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim]. target = c_emb + (b_emb - a_emb) # Compute cosine distance between each pair of target and vocab. # dist has shape [N, vocab_size]. dist = tf.matmul(target, nemb, transpose_b=True) # For each question (row in dist), find the top 4 words. _, pred_idx = tf.nn.top_k(dist, 4) # Nodes for computing neighbors for a given word according to # their cosine distance. nearby_word = tf.placeholder(dtype=tf.int32) # word id nearby_emb = tf.gather(nemb, nearby_word) nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True) nearby_val, nearby_idx = tf.nn.top_k(nearby_dist, min(1000, self._options.vocab_size)) # Nodes in the construct graph which are used by training and # evaluation to run/feed/fetch. self._analogy_a = analogy_a self._analogy_b = analogy_b self._analogy_c = analogy_c self._analogy_pred_idx = pred_idx self._nearby_word = nearby_word self._nearby_val = nearby_val self._nearby_idx = nearby_idx def build_graph(self): """Build the graph for the full model.""" opts = self._options # The training data. A text file. (words, counts, words_per_epoch, self._epoch, self._words, examples, labels) = word2vec.skipgram(filename=opts.train_data, batch_size=opts.batch_size, window_size=opts.window_size, min_count=opts.min_count, subsample=opts.subsample) (opts.vocab_words, opts.vocab_counts, opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch]) opts.vocab_size = len(opts.vocab_words) print "Data file: ", opts.train_data print "Vocab size: ", opts.vocab_size - 1, " + UNK" print "Words per epoch: ", opts.words_per_epoch self._examples = examples self._labels = labels self._id2word = opts.vocab_words for i, w in enumerate(self._id2word): self._word2id[w] = i true_logits, sampled_logits = self.forward(examples, labels) loss = self.nce_loss(true_logits, sampled_logits) tf.scalar_summary("NCE loss", loss) self._loss = loss self.optimize(loss) # Properly initialize all variables. tf.initialize_all_variables().run() self.saver = tf.train.Saver() def save_vocab(self): """Save the vocabulary to a file so the model can be reloaded.""" opts = self._options with open(opts.save_path + "/vocab.txt", "w") as f: for i in xrange(opts.vocab_size): f.write(opts.vocab_words[i] + " " + str(opts.vocab_counts[i]) + "\n") def _train_thread_body(self): initial_epoch, = self._session.run([self._epoch]) while True: _, epoch = self._session.run([self._train, self._epoch]) if epoch != initial_epoch: break def train(self): """Train the model.""" opts = self._options initial_epoch, initial_words = self._session.run([self._epoch, self._words]) summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(opts.save_path, graph_def=self._session.graph_def) workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_body) t.start() workers.append(t) last_words, last_time, last_summary_time = initial_words, time.time(), 0 last_checkpoint_time = 0 while True: time.sleep(opts.statistics_interval) # Reports our progress once a while. (epoch, step, loss, words, lr) = self._session.run( [self._epoch, self.global_step, self._loss, self._words, self._lr]) now = time.time() last_words, last_time, rate = words, now, (words - last_words) / ( now - last_time) print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" % (epoch, step, lr, loss, rate)), sys.stdout.flush() if now - last_summary_time > opts.summary_interval: summary_str = self._session.run(summary_op) summary_writer.add_summary(summary_str, step) last_summary_time = now if now - last_checkpoint_time > opts.checkpoint_interval: self.saver.save(self._session, opts.save_path + "model", global_step=step) last_checkpoint_time = now if epoch != initial_epoch: break for t in workers: t.join() return epoch def _predict(self, analogy): """Predict the top 4 answers for analogy questions.""" idx, = self._session.run([self._analogy_pred_idx], { self._analogy_a: analogy[:, 0], self._analogy_b: analogy[:, 1], self._analogy_c: analogy[:, 2] }) return idx def eval(self): """Evaluate analogy questions and reports accuracy.""" # How many questions we get right at precision@1. correct = 0 total = self._analogy_questions.shape[0] start = 0 while start < total: limit = start + 2500 sub = self._analogy_questions[start:limit, :] idx = self._predict(sub) start = limit for question in xrange(sub.shape[0]): for j in xrange(4): if idx[question, j] == sub[question, 3]: # Bingo! We predicted correctly. E.g., [italy, rome, france, paris]. correct += 1 break elif idx[question, j] in sub[question, :3]: # We need to skip words already in the question. continue else: # The correct label is not the precision@1 break print print "Eval %4d/%d accuracy = %4.1f%%" % (correct, total, correct * 100.0 / total) def analogy(self, w0, w1, w2): """Predict word w3 as in w0:w1 vs w2:w3.""" wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]]) idx = self._predict(wid) for c in [self._id2word[i] for i in idx[0, :]]: if c not in [w0, w1, w2]: return c return "unknown" def nearby(self, words, num=20): """Prints out nearby words given a list of words.""" ids = np.array([self._word2id.get(x, 0) for x in words]) vals, idx = self._session.run( [self._nearby_val, self._nearby_idx], {self._nearby_word: ids}) for i in xrange(len(words)): print "\n%s\n=====================================" % (words[i]) for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]): print "%-20s %6.4f" % (self._id2word[neighbor], distance) def _start_shell(local_ns=None): # An interactive shell is useful for debugging/development. import IPython user_ns = {} if local_ns: user_ns.update(local_ns) user_ns.update(globals()) IPython.start_ipython(argv=[], user_ns=user_ns) def main(_): """Train a word2vec model.""" opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, session) for _ in xrange(opts.epochs_to_train): model.train() # Process one epoch model.eval() # Eval analogies. # Perform a final save. model.saver.save(session, opts.save_path + "model", global_step=model.global_step) if FLAGS.interactive: # E.g., # [0]: model.analogy('france', 'paris', 'russia') # [1]: model.nearby(['proton', 'elephant', 'maxwell']) _start_shell(locals()) if __name__ == "__main__": tf.app.run()