# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from sklearn import metrics import pandas import tensorflow as tf from tensorflow.contrib import learn ### Training data # Downloads, unpacks and reads DBpedia dataset. dbpedia = learn.datasets.load_dataset('dbpedia') X_train, y_train = pandas.DataFrame(dbpedia.train.data)[1], pandas.Series(dbpedia.train.target) X_test, y_test = pandas.DataFrame(dbpedia.test.data)[1], pandas.Series(dbpedia.test.target) ### Process vocabulary MAX_DOCUMENT_LENGTH = 10 vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) X_train = np.array(list(vocab_processor.fit_transform(X_train))) X_test = np.array(list(vocab_processor.transform(X_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) ### Models EMBEDDING_SIZE = 50 def average_model(X, y): word_vectors = learn.ops.categorical_variable(X, n_classes=n_words, embedding_size=EMBEDDING_SIZE, name='words') features = tf.reduce_max(word_vectors, reduction_indices=1) return learn.models.logistic_regression(features, y) def rnn_model(X, y): """Recurrent neural network model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = learn.ops.categorical_variable(X, n_classes=n_words, embedding_size=EMBEDDING_SIZE, name='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unpack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.nn.rnn_cell.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.nn.rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for logistic # regression over output classes. return learn.models.logistic_regression(encoding, y) model_path = '/tmp/skflow_examples/text_classification' if os.path.exists(model_path): classifier = learn.TensorFlowEstimator.restore(model_path) else: classifier = learn.TensorFlowEstimator(model_fn=rnn_model, n_classes=15, steps=100, optimizer='Adam', learning_rate=0.01, continue_training=True) # Continuously train for 1000 steps while True: try: classifier.fit(X_train, y_train) except KeyboardInterrupt: classifier.save(model_path) break # Predict on test set score = metrics.accuracy_score(y_test, classifier.predict(X_test)) print('Accuracy: {0:f}'.format(score))