#include "tensorflow/core/lib/strings/ordered_code.h" #include #include #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace strings { // We encode a string in different ways depending on whether the item // should be in lexicographically increasing or decreasing order. // // // Lexicographically increasing order // // We want a string-to-string mapping F(x) such that for any two strings // // x < y => F(x) < F(y) // // In addition to the normal characters '\x00' through '\xff', we want to // encode a few extra symbols in strings: // // Separator between items // Infinite string // // Therefore we need an alphabet with at least 258 symbols. Each // character '\1' through '\xfe' is mapped to itself. The other four are // encoded into two-letter sequences starting with '\0' and '\xff': // // encoded as => \0\1 // \0 encoded as => \0\xff // \xff encoded as => \xff\x00 // encoded as => \xff\xff // // The remaining two-letter sequences starting with '\0' and '\xff' are // currently unused. // // F() is defined above. For any finite string x, F(x) is the // the encodings of x's characters followed by the encoding for . The // ordering of two finite strings is the same as the ordering of the // respective characters at the first position where they differ, which in // turn is the same as the ordering of the encodings of those two // characters. Moreover, for every finite string x, F(x) < F(). // // // Lexicographically decreasing order // // We want a string-to-string mapping G(x) such that for any two strings, // whether finite or not, // // x < y => G(x) > G(y) // // To achieve this, define G(x) to be the inversion of F(x): I(F(x)). In // other words, invert every bit in F(x) to get G(x). For example, // // x = \x00\x13\xff // F(x) = \x00\xff\x13\xff\x00\x00\x01 escape \0, \xff, append F() // G(x) = \xff\x00\xec\x00\xff\xff\xfe invert every bit in F(x) // // x = // F(x) = \xff\xff // G(x) = \x00\x00 // // Another example is // // x F(x) G(x) = I(F(x)) // - ---- -------------- // \xff\xff \x00\x00 // "foo" foo\0\1 \x99\x90\x90\xff\xfe // "aaa" aaa\0\1 \x9e\x9e\x9e\xff\xfe // "aa" aa\0\1 \x9e\x9e\xff\xfe // "" \0\1 \xff\xfe // // More generally and rigorously, if for any two strings x and y // // F(x) < F(y) => I(F(x)) > I(F(y)) (1) // // it would follow that x < y => G(x) > G(y) because // // x < y => F(x) < F(y) => G(x) = I(F(x)) > I(F(y)) = G(y) // // We now show why (1) is true, in two parts. Notice that for any two // strings x < y, F(x) is *not* a proper prefix of F(y). Suppose x is a // proper prefix of y (say, x="abc" < y="abcd"). F(x) and F(y) diverge at // the F() in F(x) (v. F('d') in the example). Suppose x is not a // proper prefix of y (say, x="abce" < y="abd"), F(x) and F(y) diverge at // their respective encodings of the characters where x and y diverge // (F('c') v. F('d')). Finally, if y=, we can see that // F(y)=\xff\xff is not the prefix of F(x) for any finite string x, simply // by considering all the possible first characters of F(x). // // Given that F(x) is not a proper prefix F(y), the order of F(x) and F(y) // is determined by the byte where F(x) and F(y) diverge. For example, the // order of F(x)="eefh" and F(y)="eeg" is determined by their third // characters. I(p) inverts each byte in p, which effectively subtracts // each byte from 0xff. So, in this example, I('f') > I('g'), and thus // I(F(x)) > I(F(y)). // // // Implementation // // To implement G(x) efficiently, we use C++ template to instantiate two // versions of the code to produce F(x), one for normal encoding (giving us // F(x)) and one for inverted encoding (giving us G(x) = I(F(x))). static const char kEscape1 = '\000'; static const char kNullCharacter = '\xff'; // Combined with kEscape1 static const char kSeparator = '\001'; // Combined with kEscape1 static const char kEscape2 = '\xff'; static const char kInfinity = '\xff'; // Combined with kEscape2 static const char kFFCharacter = '\000'; // Combined with kEscape2 static const char kEscape1_Separator[2] = {kEscape1, kSeparator}; // Append to "*dest" the "len" bytes starting from "*src". inline static void AppendBytes(string* dest, const char* src, int len) { dest->append(src, len); } inline bool IsSpecialByte(char c) { return ((unsigned char)(c + 1)) < 2; } // Return a pointer to the first byte in the range "[start..limit)" // whose value is 0 or 255 (kEscape1 or kEscape2). If no such byte // exists in the range, returns "limit". inline const char* SkipToNextSpecialByte(const char* start, const char* limit) { // If these constants were ever changed, this routine needs to change DCHECK_EQ(kEscape1, 0); DCHECK_EQ(kEscape2 & 0xffu, 255u); const char* p = start; while (p < limit && !IsSpecialByte(*p)) { p++; } return p; } // Expose SkipToNextSpecialByte for testing purposes const char* OrderedCode::TEST_SkipToNextSpecialByte(const char* start, const char* limit) { return SkipToNextSpecialByte(start, limit); } // Helper routine to encode "s" and append to "*dest", escaping special // characters. inline static void EncodeStringFragment(string* dest, StringPiece s) { const char* p = s.data(); const char* limit = p + s.size(); const char* copy_start = p; while (true) { p = SkipToNextSpecialByte(p, limit); if (p >= limit) break; // No more special characters that need escaping char c = *(p++); DCHECK(IsSpecialByte(c)); if (c == kEscape1) { AppendBytes(dest, copy_start, p - copy_start - 1); dest->push_back(kEscape1); dest->push_back(kNullCharacter); copy_start = p; } else { assert(c == kEscape2); AppendBytes(dest, copy_start, p - copy_start - 1); dest->push_back(kEscape2); dest->push_back(kFFCharacter); copy_start = p; } } if (p > copy_start) { AppendBytes(dest, copy_start, p - copy_start); } } void OrderedCode::WriteString(string* dest, StringPiece s) { EncodeStringFragment(dest, s); AppendBytes(dest, kEscape1_Separator, 2); } void OrderedCode::WriteNumIncreasing(string* dest, uint64 val) { // Values are encoded with a single byte length prefix, followed // by the actual value in big-endian format with leading 0 bytes // dropped. unsigned char buf[9]; // 8 bytes for value plus one byte for length int len = 0; while (val > 0) { len++; buf[9 - len] = (val & 0xff); val >>= 8; } buf[9 - len - 1] = (unsigned char)len; len++; AppendBytes(dest, reinterpret_cast(buf + 9 - len), len); } // Parse the encoding of a previously encoded string. // If parse succeeds, return true, consume encoding from // "*src", and if result != NULL append the decoded string to "*result". // Otherwise, return false and leave both undefined. inline static bool ReadStringInternal(StringPiece* src, string* result) { const char* start = src->data(); const char* string_limit = src->data() + src->size(); // We only scan up to "limit-2" since a valid string must end with // a two character terminator: 'kEscape1 kSeparator' const char* limit = string_limit - 1; const char* copy_start = start; while (true) { start = SkipToNextSpecialByte(start, limit); if (start >= limit) break; // No terminator sequence found const char c = *(start++); // If inversion is required, instead of inverting 'c', we invert the // character constants to which 'c' is compared. We get the same // behavior but save the runtime cost of inverting 'c'. DCHECK(IsSpecialByte(c)); if (c == kEscape1) { if (result) { AppendBytes(result, copy_start, start - copy_start - 1); } // kEscape1 kSeparator ends component // kEscape1 kNullCharacter represents '\0' const char next = *(start++); if (next == kSeparator) { src->remove_prefix(start - src->data()); return true; } else if (next == kNullCharacter) { if (result) { *result += '\0'; } } else { return false; } copy_start = start; } else { assert(c == kEscape2); if (result) { AppendBytes(result, copy_start, start - copy_start - 1); } // kEscape2 kFFCharacter represents '\xff' // kEscape2 kInfinity is an error const char next = *(start++); if (next == kFFCharacter) { if (result) { *result += '\xff'; } } else { return false; } copy_start = start; } } return false; } bool OrderedCode::ReadString(StringPiece* src, string* result) { return ReadStringInternal(src, result); } bool OrderedCode::ReadNumIncreasing(StringPiece* src, uint64* result) { if (src->empty()) { return false; // Not enough bytes } // Decode length byte const size_t len = static_cast((*src)[0]); // If len > 0 and src is longer than 1, the first byte of "payload" // must be non-zero (otherwise the encoding is not minimal). // In opt mode, we don't enforce that encodings must be minimal. DCHECK(0 == len || src->size() == 1 || (*src)[1] != '\0') << "invalid encoding"; if (len + 1 > src->size() || len > 8) { return false; // Not enough bytes or too many bytes } if (result) { uint64 tmp = 0; for (size_t i = 0; i < len; i++) { tmp <<= 8; tmp |= static_cast((*src)[1 + i]); } *result = tmp; } src->remove_prefix(len + 1); return true; } void OrderedCode::TEST_Corrupt(string* str, int k) { int seen_seps = 0; for (size_t i = 0; i + 1 < str->size(); i++) { if ((*str)[i] == kEscape1 && (*str)[i + 1] == kSeparator) { seen_seps++; if (seen_seps == k) { (*str)[i + 1] = kSeparator + 1; return; } } } } // Signed number encoding/decoding ///////////////////////////////////// // // The format is as follows: // // The first bit (the most significant bit of the first byte) // represents the sign, 0 if the number is negative and // 1 if the number is >= 0. // // Any unbroken sequence of successive bits with the same value as the sign // bit, up to 9 (the 8th and 9th are the most significant bits of the next // byte), are size bits that count the number of bytes after the first byte. // That is, the total length is between 1 and 10 bytes. // // The value occupies the bits after the sign bit and the "size bits" // till the end of the string, in network byte order. If the number // is negative, the bits are in 2-complement. // // // Example 1: number 0x424242 -> 4 byte big-endian hex string 0xf0424242: // // +---------------+---------------+---------------+---------------+ // 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 // +---------------+---------------+---------------+---------------+ // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ // | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | // | | | | payload: the remaining bits after the sign and size bits // | | | | and the delimiter bit, the value is 0x424242 // | | | | // | size bits: 3 successive bits with the same value as the sign bit // | (followed by a delimiter bit with the opposite value) // | mean that there are 3 bytes after the first byte, 4 total // | // sign bit: 1 means that the number is non-negative // // Example 2: negative number -0x800 -> 2 byte big-endian hex string 0x3800: // // +---------------+---------------+ // 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 // +---------------+---------------+ // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ // | | | | | | | | | | | | | | | | | | | | | | | | | | | | | // | | payload: the remaining bits after the sign and size bits and the // | | delimiter bit, 2-complement because of the negative sign, // | | value is ~0x7ff, represents the value -0x800 // | | // | size bits: 1 bit with the same value as the sign bit // | (followed by a delimiter bit with the opposite value) // | means that there is 1 byte after the first byte, 2 total // | // sign bit: 0 means that the number is negative // // // Compared with the simpler unsigned format used for uint64 numbers, // this format is more compact for small numbers, namely one byte encodes // numbers in the range [-64,64), two bytes cover the range [-2^13,2^13), etc. // In general, n bytes encode numbers in the range [-2^(n*7-1),2^(n*7-1)). // (The cross-over point for compactness of representation is 8 bytes, // where this format only covers the range [-2^55,2^55), // whereas an encoding with sign bit and length in the first byte and // payload in all following bytes would cover [-2^56,2^56).) static const int kMaxSigned64Length = 10; // This array maps encoding length to header bits in the first two bytes. static const char kLengthToHeaderBits[1 + kMaxSigned64Length][2] = { {0, 0}, {'\x80', 0}, {'\xc0', 0}, {'\xe0', 0}, {'\xf0', 0}, {'\xf8', 0}, {'\xfc', 0}, {'\xfe', 0}, {'\xff', 0}, {'\xff', '\x80'}, {'\xff', '\xc0'}}; // This array maps encoding lengths to the header bits that overlap with // the payload and need fixing when reading. static const uint64 kLengthToMask[1 + kMaxSigned64Length] = { 0ULL, 0x80ULL, 0xc000ULL, 0xe00000ULL, 0xf0000000ULL, 0xf800000000ULL, 0xfc0000000000ULL, 0xfe000000000000ULL, 0xff00000000000000ULL, 0x8000000000000000ULL, 0ULL}; // This array maps the number of bits in a number to the encoding // length produced by WriteSignedNumIncreasing. // For positive numbers, the number of bits is 1 plus the most significant // bit position (the highest bit position in a positive int64 is 63). // For a negative number n, we count the bits in ~n. // That is, length = kBitsToLength[Bits::Log2Floor64(n < 0 ? ~n : n) + 1]. static const int8 kBitsToLength[1 + 63] = { 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10}; #if defined(__GNUC__) // Returns floor(lg(n)). Returns -1 if n == 0. static int Log2Floor64(uint64 n) { return n == 0 ? -1 : 63 ^ __builtin_clzll(n); } #else // Portable slow version static int Log2Floor32_Portable(uint32 n) { if (n == 0) return -1; int log = 0; uint32 value = n; for (int i = 4; i >= 0; --i) { int shift = (1 << i); uint32 x = value >> shift; if (x != 0) { value = x; log += shift; } } assert(value == 1); return log; } // Returns floor(lg(n)). Returns -1 if n == 0. static int Log2Floor64(uint64 n) { const uint32 topbits = static_cast(n >> 32); if (topbits == 0) { // Top bits are zero, so scan in bottom bits return Log2Floor32_Portable(static_cast(n)); } else { return 32 + Log2Floor32_Portable(topbits); } } #endif // Calculates the encoding length in bytes of the signed number n. static inline int SignedEncodingLength(int64 n) { return kBitsToLength[Log2Floor64(n < 0 ? ~n : n) + 1]; } static void StoreBigEndian64(char* dst, uint64 v) { for (int i = 0; i < 8; i++) { dst[i] = (v >> (56 - 8 * i)) & 0xff; } } static uint64 LoadBigEndian64(const char* src) { uint64 result = 0; for (int i = 0; i < 8; i++) { unsigned char c = static_cast(src[i]); result |= static_cast(c) << (56 - 8 * i); } return result; } void OrderedCode::WriteSignedNumIncreasing(string* dest, int64 val) { const uint64 x = val < 0 ? ~val : val; if (x < 64) { // fast path for encoding length == 1 *dest += kLengthToHeaderBits[1][0] ^ val; return; } // buf = val in network byte order, sign extended to 10 bytes const char sign_byte = val < 0 ? '\xff' : '\0'; char buf[10] = { sign_byte, sign_byte, }; StoreBigEndian64(buf + 2, val); static_assert(sizeof(buf) == kMaxSigned64Length, "max length size mismatch"); const int len = SignedEncodingLength(x); DCHECK_GE(len, 2); char* const begin = buf + sizeof(buf) - len; begin[0] ^= kLengthToHeaderBits[len][0]; begin[1] ^= kLengthToHeaderBits[len][1]; // ok because len >= 2 dest->append(begin, len); } bool OrderedCode::ReadSignedNumIncreasing(StringPiece* src, int64* result) { if (src->empty()) return false; const uint64 xor_mask = (!((*src)[0] & 0x80)) ? ~0ULL : 0ULL; const unsigned char first_byte = (*src)[0] ^ (xor_mask & 0xff); // now calculate and test length, and set x to raw (unmasked) result int len; uint64 x; if (first_byte != 0xff) { len = 7 - Log2Floor64(first_byte ^ 0xff); if (src->size() < static_cast(len)) return false; x = xor_mask; // sign extend using xor_mask for (int i = 0; i < len; ++i) x = (x << 8) | static_cast((*src)[i]); } else { len = 8; if (src->size() < static_cast(len)) return false; const unsigned char second_byte = (*src)[1] ^ (xor_mask & 0xff); if (second_byte >= 0x80) { if (second_byte < 0xc0) { len = 9; } else { const unsigned char third_byte = (*src)[2] ^ (xor_mask & 0xff); if (second_byte == 0xc0 && third_byte < 0x80) { len = 10; } else { return false; // either len > 10 or len == 10 and #bits > 63 } } if (src->size() < static_cast(len)) return false; } x = LoadBigEndian64(src->data() + len - 8); } x ^= kLengthToMask[len]; // remove spurious header bits DCHECK_EQ(len, SignedEncodingLength(x)) << "invalid encoding"; if (result) *result = x; src->remove_prefix(len); return true; } } // namespace strings } // namespace tensorflow