/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/core/lib/jpeg/jpeg_mem.h" #include #include #include #include #include #include "tensorflow/core/lib/jpeg/jpeg_handle.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/lib/core/casts.h" namespace tensorflow { namespace jpeg { namespace { const char kTestData[] = "tensorflow/core/lib/jpeg/testdata/"; int ComputeSumAbsoluteDifference(const uint8* a, const uint8* b, int width, int height, int a_stride, int b_stride) { int totalerr = 0; for (int i = 0; i < height; i++) { const uint8* const pa = a + i * a_stride; const uint8* const pb = b + i * b_stride; for (int j = 0; j < 3 * width; j++) { totalerr += abs(static_cast(pa[j]) - static_cast(pb[j])); } } return totalerr; } // Reads the contents of the file into output void ReadFileToStringOrDie(Env* env, const string& filename, string* output) { TF_CHECK_OK(ReadFileToString(env, filename, output)); } void TestJPEG(Env* env, const string& jpegfile) { // Read the data from the jpeg file into memory string jpeg; ReadFileToStringOrDie(env, jpegfile, &jpeg); const int fsize = jpeg.size(); const uint8* const temp = bit_cast(jpeg.data()); // Try partial decoding (half of the data) int w, h, c; std::unique_ptr imgdata; UncompressFlags flags; flags.components = 3; // Set min_acceptable_fraction to something insufficient flags.min_acceptable_fraction = 0.8; imgdata.reset(Uncompress(temp, fsize / 2, flags, &w, &h, &c, nullptr)); CHECK(imgdata == nullptr); // Now, use a value that makes fsize/2 be enough for a black-filling flags.min_acceptable_fraction = 0.01; imgdata.reset(Uncompress(temp, fsize / 2, flags, &w, &h, &c, nullptr)); CHECK(imgdata != nullptr); // Finally, uncompress the whole data flags.min_acceptable_fraction = 1.0; imgdata.reset(Uncompress(temp, fsize, flags, &w, &h, &c, nullptr)); CHECK(imgdata != nullptr); } TEST(JpegMemTest, Jpeg) { Env* env = Env::Default(); const string data_path = kTestData; // Name of a valid jpeg file on the disk TestJPEG(env, data_path + "jpeg_merge_test1.jpg"); // Exercise CMYK machinery as well TestJPEG(env, data_path + "jpeg_merge_test1_cmyk.jpg"); } void TestCropAndDecodeJpeg(Env* env, const string& jpegfile, const UncompressFlags& default_flags) { // Read the data from the jpeg file into memory string jpeg; ReadFileToStringOrDie(env, jpegfile, &jpeg); const int fsize = jpeg.size(); auto temp = bit_cast(jpeg.data()); // Decode the whole image. std::unique_ptr imgdata1; int w1, h1, c1; { UncompressFlags flags = default_flags; if (flags.stride == 0) { imgdata1.reset(Uncompress(temp, fsize, flags, &w1, &h1, &c1, nullptr)); } else { // If stride is not zero, the default allocator would fail because it // allocate w*h*c bytes, but the actual required bytes should be stride*h. // Therefore, we provide a specialized allocator here. uint8* buffer = nullptr; imgdata1.reset(Uncompress(temp, fsize, flags, nullptr, [&](int width, int height, int components) { w1 = width; h1 = height; c1 = components; buffer = new uint8[flags.stride * height]; return buffer; })); } ASSERT_NE(imgdata1, nullptr); } auto check_crop_and_decode_func = [&](int crop_x, int crop_y, int crop_width, int crop_height) { std::unique_ptr imgdata2; int w, h, c; UncompressFlags flags = default_flags; flags.crop = true; flags.crop_x = crop_x; flags.crop_y = crop_y; flags.crop_width = crop_width; flags.crop_height = crop_height; if (flags.stride == 0) { imgdata2.reset(Uncompress(temp, fsize, flags, &w, &h, &c, nullptr)); } else { uint8* buffer = nullptr; imgdata2.reset(Uncompress(temp, fsize, flags, nullptr, [&](int width, int height, int components) { w = width; h = height; c = components; buffer = new uint8[flags.stride * height]; return buffer; })); } ASSERT_NE(imgdata2, nullptr); ASSERT_EQ(w, crop_width); ASSERT_EQ(h, crop_height); ASSERT_EQ(c, c1); const int stride1 = (flags.stride != 0) ? flags.stride : w1 * c; const int stride2 = (flags.stride != 0) ? flags.stride : w * c; for (int i = 0; i < crop_height; i++) { const uint8* p1 = &imgdata1[(i + crop_y) * stride1 + crop_x * c]; const uint8* p2 = &imgdata2[i * stride2]; for (int j = 0; j < c * w; j++) { ASSERT_EQ(p1[j], p2[j]) << "p1 != p2 in [" << i << "][" << j / 3 << "][" << j % 3 << "]"; } } }; // Check different crop windows. check_crop_and_decode_func(0, 0, 5, 5); check_crop_and_decode_func(0, 0, w1, 5); check_crop_and_decode_func(0, 0, 5, h1); check_crop_and_decode_func(0, 0, w1, h1); check_crop_and_decode_func(w1 - 5, h1 - 6, 5, 6); check_crop_and_decode_func(5, 6, 10, 15); } TEST(JpegMemTest, CropAndDecodeJpeg) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; // Test basic flags for jpeg and cmyk jpeg. TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1_cmyk.jpg", flags); } TEST(JpegMemTest, CropAndDecodeJpegWithRatio) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; for (int ratio : {1, 2, 4, 8}) { flags.ratio = ratio; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } } TEST(JpegMemTest, CropAndDecodeJpegWithComponents) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; for (const int components : {0, 1, 3}) { flags.components = components; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } } TEST(JpegMemTest, CropAndDecodeJpegWithUpScaling) { Env* env = Env::Default(); const string data_path = kTestData; UncompressFlags flags; flags.fancy_upscaling = true; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } TEST(JpegMemTest, CropAndDecodeJpegWithStride) { Env* env = Env::Default(); const string data_path = kTestData; // Read the data from the jpeg file into memory string jpeg; ReadFileToStringOrDie(env, data_path + "jpeg_merge_test1.jpg", &jpeg); const int fsize = jpeg.size(); auto temp = bit_cast(jpeg.data()); int w, h, c; ASSERT_TRUE(GetImageInfo(temp, fsize, &w, &h, &c)); // stride must be either 0 or > w*c; otherwise, uncompress would fail. UncompressFlags flags; flags.stride = w * c; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); flags.stride = w * c * 3; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); flags.stride = w * c + 100; TestCropAndDecodeJpeg(env, data_path + "jpeg_merge_test1.jpg", flags); } void CheckInvalidCropWindowFailed(const uint8* const temp, int fsize, int x, int y, int w, int h) { std::unique_ptr imgdata; int ww, hh, cc; UncompressFlags flags; flags.components = 3; flags.crop = true; flags.crop_x = x; flags.crop_y = y; flags.crop_width = w; flags.crop_height = h; imgdata.reset(Uncompress(temp, fsize, flags, &ww, &hh, &cc, nullptr)); CHECK(imgdata == nullptr); } TEST(JpegMemTest, CropAndDecodeJpegWithInvalidCropWindow) { Env* env = Env::Default(); const string data_path = kTestData; // Read the data from the jpeg file into memory string jpeg; ReadFileToStringOrDie(env, data_path + "jpeg_merge_test1.jpg", &jpeg); const int fsize = jpeg.size(); auto temp = bit_cast(jpeg.data()); int w, h, c; ASSERT_TRUE(GetImageInfo(temp, fsize, &w, &h, &c)); // Width and height for the crop window must be non zero. CheckInvalidCropWindowFailed(temp, fsize, 11, 11, /*w=*/0, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, 11, /*h=*/0); // Crop window must be non negative. CheckInvalidCropWindowFailed(temp, fsize, /*x=*/-1, 11, 11, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, /*y=*/-1, 11, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, /*w=*/-1, 11); CheckInvalidCropWindowFailed(temp, fsize, 11, 11, 11, /*h=*/-1); // Invalid crop window width: x + crop_width = w + 1 > w CheckInvalidCropWindowFailed(temp, fsize, /*x=*/w - 10, 11, 11, 11); // Invalid crop window height: y + crop_height= h + 1 > h CheckInvalidCropWindowFailed(temp, fsize, 11, /*y=*/h - 10, 11, 11); } TEST(JpegMemTest, Jpeg2) { // create known data, for size in_w x in_h const int in_w = 256; const int in_h = 256; const int stride1 = 3 * in_w; const std::unique_ptr refdata1(new uint8[stride1 * in_h]); for (int i = 0; i < in_h; i++) { for (int j = 0; j < in_w; j++) { const int offset = i * stride1 + 3 * j; refdata1[offset + 0] = i; refdata1[offset + 1] = j; refdata1[offset + 2] = static_cast((i + j) >> 1); } } // duplicate with weird input stride const int stride2 = 3 * 357; const std::unique_ptr refdata2(new uint8[stride2 * in_h]); for (int i = 0; i < in_h; i++) { memcpy(&refdata2[i * stride2], &refdata1[i * stride1], 3 * in_w); } // Test compression string cpdata1, cpdata2; { const string kXMP = "XMP_TEST_123"; // Compress it to JPEG CompressFlags flags; flags.format = FORMAT_RGB; flags.quality = 97; flags.xmp_metadata = kXMP; cpdata1 = Compress(refdata1.get(), in_w, in_h, flags); flags.stride = stride2; cpdata2 = Compress(refdata2.get(), in_w, in_h, flags); // Different input stride shouldn't change the output CHECK_EQ(cpdata1, cpdata2); // Verify valid XMP. CHECK_NE(string::npos, cpdata1.find(kXMP)); // Test the other API, where a storage string is supplied string cptest; flags.stride = 0; Compress(refdata1.get(), in_w, in_h, flags, &cptest); CHECK_EQ(cptest, cpdata1); flags.stride = stride2; Compress(refdata2.get(), in_w, in_h, flags, &cptest); CHECK_EQ(cptest, cpdata2); } // Uncompress twice: once with 3 components and once with autodetect. std::unique_ptr imgdata1; for (const int components : {0, 3}) { // Uncompress it UncompressFlags flags; flags.components = components; int w, h, c; imgdata1.reset(Uncompress(cpdata1.c_str(), cpdata1.length(), flags, &w, &h, &c, nullptr)); // Check obvious formatting stuff CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); CHECK(imgdata1.get()); // Compare the two images const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), refdata1.get(), in_w, in_h, stride1, stride1); CHECK_LE(totalerr, 85000); } // check the second image too. Should be bitwise identical to the first. // uncompress using a weird stride { UncompressFlags flags; flags.stride = 3 * 411; const std::unique_ptr imgdata2(new uint8[flags.stride * in_h]); CHECK(imgdata2.get() == Uncompress(cpdata2.c_str(), cpdata2.length(), flags, nullptr /* nwarn */, [&imgdata2](int w, int h, int c) { CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); return imgdata2.get(); })); const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), imgdata2.get(), in_w, in_h, stride1, flags.stride); CHECK_EQ(totalerr, 0); } { // Uncompress it with a faster, lossier algorithm. UncompressFlags flags; flags.components = 3; flags.dct_method = JDCT_IFAST; int w, h, c; imgdata1.reset(Uncompress(cpdata1.c_str(), cpdata1.length(), flags, &w, &h, &c, nullptr)); // Check obvious formatting stuff CHECK_EQ(w, in_w); CHECK_EQ(h, in_h); CHECK_EQ(c, 3); CHECK(imgdata1.get()); // Compare the two images const int totalerr = ComputeSumAbsoluteDifference( imgdata1.get(), refdata1.get(), in_w, in_h, stride1, stride1); ASSERT_LE(totalerr, 200000); } } // Takes JPEG data and reads its headers to determine whether or not the JPEG // was chroma downsampled. bool IsChromaDownsampled(const string& jpegdata) { // Initialize libjpeg structures to have a memory source // Modify the usual jpeg error manager to catch fatal errors. struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; jmp_buf jpeg_jmpbuf; cinfo.err = jpeg_std_error(&jerr); cinfo.client_data = &jpeg_jmpbuf; jerr.error_exit = CatchError; if (setjmp(jpeg_jmpbuf)) return false; // set up, read header, set image parameters, save size jpeg_create_decompress(&cinfo); SetSrc(&cinfo, jpegdata.c_str(), jpegdata.size(), false); jpeg_read_header(&cinfo, TRUE); jpeg_start_decompress(&cinfo); // required to transfer image size to cinfo const int components = cinfo.output_components; if (components == 1) return false; // Check validity CHECK_EQ(3, components); CHECK_EQ(cinfo.comp_info[1].h_samp_factor, cinfo.comp_info[2].h_samp_factor) << "The h sampling factors should be the same."; CHECK_EQ(cinfo.comp_info[1].v_samp_factor, cinfo.comp_info[2].v_samp_factor) << "The v sampling factors should be the same."; for (int i = 0; i < components; ++i) { CHECK_GT(cinfo.comp_info[i].h_samp_factor, 0) << "Invalid sampling factor."; CHECK_EQ(cinfo.comp_info[i].h_samp_factor, cinfo.comp_info[i].v_samp_factor) << "The sampling factor should be the same in both directions."; } // We're downsampled if we use fewer samples for color than for brightness. // Do this before deallocating cinfo. const bool downsampled = cinfo.comp_info[1].h_samp_factor < cinfo.comp_info[0].h_samp_factor; jpeg_destroy_decompress(&cinfo); return downsampled; } TEST(JpegMemTest, ChromaDownsampling) { // Read the data from a test jpeg file into memory const string jpegfile = string(kTestData) + "jpeg_merge_test1.jpg"; string jpeg; ReadFileToStringOrDie(Env::Default(), jpegfile, &jpeg); // Verify that compressing the JPEG with chroma downsampling works. // // First, uncompress the JPEG. UncompressFlags unflags; unflags.components = 3; int w, h, c; int64 num_warnings; std::unique_ptr uncompressed(Uncompress( jpeg.c_str(), jpeg.size(), unflags, &w, &h, &c, &num_warnings)); CHECK(uncompressed != nullptr); CHECK_EQ(num_warnings, 0); // Recompress the JPEG with and without chroma downsampling for (const bool downsample : {false, true}) { CompressFlags flags; flags.format = FORMAT_RGB; flags.quality = 85; flags.chroma_downsampling = downsample; string recompressed; Compress(uncompressed.get(), w, h, flags, &recompressed); CHECK(!recompressed.empty()); CHECK_EQ(IsChromaDownsampled(recompressed), downsample); } } void TestBadJPEG(Env* env, const string& bad_jpeg_file, int expected_width, int expected_height, const string& reference_RGB_file, const bool try_recover_truncated_jpeg) { string jpeg; ReadFileToStringOrDie(env, bad_jpeg_file, &jpeg); UncompressFlags flags; flags.components = 3; flags.try_recover_truncated_jpeg = try_recover_truncated_jpeg; int width, height, components; std::unique_ptr imgdata; imgdata.reset(Uncompress(jpeg.c_str(), jpeg.size(), flags, &width, &height, &components, nullptr)); if (expected_width > 0) { // we expect the file to decode into 'something' CHECK_EQ(width, expected_width); CHECK_EQ(height, expected_height); CHECK_EQ(components, 3); CHECK(imgdata.get()); if (!reference_RGB_file.empty()) { string ref; ReadFileToStringOrDie(env, reference_RGB_file, &ref); CHECK(!memcmp(ref.data(), imgdata.get(), ref.size())); } } else { // no decodable CHECK(!imgdata.get()) << "file:" << bad_jpeg_file; } } TEST(JpegMemTest, BadJpeg) { Env* env = Env::Default(); const string data_path = kTestData; // Test corrupt file TestBadJPEG(env, data_path + "bad_huffman.jpg", 1024, 768, "", false); TestBadJPEG(env, data_path + "corrupt.jpg", 0 /*120*/, 90, "", false); // Truncated files, undecodable because of missing lines: TestBadJPEG(env, data_path + "corrupt34_2.jpg", 0, 3300, "", false); TestBadJPEG(env, data_path + "corrupt34_3.jpg", 0, 3300, "", false); TestBadJPEG(env, data_path + "corrupt34_4.jpg", 0, 3300, "", false); // Try in 'recover' mode now: TestBadJPEG(env, data_path + "corrupt34_2.jpg", 2544, 3300, "", true); TestBadJPEG(env, data_path + "corrupt34_3.jpg", 2544, 3300, "", true); TestBadJPEG(env, data_path + "corrupt34_4.jpg", 2544, 3300, "", true); } } // namespace } // namespace jpeg } // namespace tensorflow