/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_ #define TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_ #include #include #include "tensorflow/core/platform/byte_order.h" #ifdef __CUDACC__ // All functions callable from CUDA code must be qualified with __device__ #define B16_DEVICE_FUNC __host__ __device__ #else #define B16_DEVICE_FUNC #endif namespace Eigen { struct half; } namespace tensorflow { // Single precision complex. typedef std::complex complex64; // Double precision complex. typedef std::complex complex128; // see framework/bfloat16.h for description. struct bfloat16 { B16_DEVICE_FUNC bfloat16() {} B16_DEVICE_FUNC explicit bfloat16(const float v) { if (float_isnan(v)) { value = NAN_VALUE; return; } const uint16_t* p = reinterpret_cast(&v); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ value = p[0]; #else value = p[1]; #endif } B16_DEVICE_FUNC explicit bfloat16(const double val) : bfloat16(static_cast(val)) {} // Following the convention of numpy, converting between complex and // float will lead to loss of imag value. B16_DEVICE_FUNC explicit bfloat16(const complex64& val) : bfloat16(val.real()) {} B16_DEVICE_FUNC explicit bfloat16(const complex128& val) : bfloat16(static_cast(val.real())) {} B16_DEVICE_FUNC explicit bfloat16(const unsigned short val) : bfloat16(static_cast(val)) {} B16_DEVICE_FUNC explicit bfloat16(const unsigned int val) : bfloat16(static_cast(val)) {} B16_DEVICE_FUNC explicit bfloat16(const int val) : bfloat16(static_cast(val)) {} B16_DEVICE_FUNC explicit bfloat16(const long val) : bfloat16(static_cast(val)) {} B16_DEVICE_FUNC explicit bfloat16(const long long val) : bfloat16(static_cast(val)) {} template B16_DEVICE_FUNC explicit bfloat16(const T& val) : bfloat16(static_cast(val)) {} B16_DEVICE_FUNC explicit operator float() const { float result = 0; uint16_t* q = reinterpret_cast(&result); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ q[0] = value; #else q[1] = value; #endif return result; } B16_DEVICE_FUNC explicit operator bool() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator Eigen::half() const; B16_DEVICE_FUNC explicit operator short() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator int() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator long() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator char() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator signed char() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator unsigned char() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator unsigned short() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator unsigned int() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator unsigned long() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator unsigned long long() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator long long() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator double() const { return static_cast(float(*this)); } B16_DEVICE_FUNC explicit operator complex64() const { return complex64(float(*this), float(0.0)); } B16_DEVICE_FUNC explicit operator complex128() const { return complex128(double(*this), double(0.0)); } union FP32 { unsigned int u; float f; }; // Converts a float point to bfloat16, with round-nearest-to-even as rounding // method. // TODO(b/69266521): Add a truncate_to_bfloat16 function and make this // function as default behavior. // TODO: There is a slightly faster implementation (8% faster on CPU) // than this (documented in cl/175987786), that is exponentially harder to // understand and document. Switch to the faster version when converting to // BF16 becomes compute-bound. B16_DEVICE_FUNC static bfloat16 round_to_bfloat16(float v) { uint32_t input; FP32 f; f.f = v; input = f.u; bfloat16 output; if (float_isnan(v)) { // If the value is a NaN, squash it to a qNaN with msb of fraction set, // this makes sure after truncation we don't end up with an inf. // // qNaN magic: All exponent bits set + most significant bit of fraction // set. output.value = 0x7fc0; } else { // Fast rounding algorithm that rounds a half value to nearest even. This // reduces expected error when we convert a large number of floats. Here // is how it works: // // Definitions: // To convert a float 32 to bfloat16, a float 32 can be viewed as 32 bits // with the following tags: // // Sign | Exp (8 bits) | Frac (23 bits) // S EEEEEEEE FFFFFFLRTTTTTTTTTTTTTTT // // S: Sign bit. // E: Exponent bits. // F: First 6 bits of fraction. // L: Least significant bit of resulting bfloat16 if we truncate away the // rest of the float32. This is also the 7th bit of fraction // R: Rounding bit, 8th bit of fraction. // T: Sticky bits, rest of fraction, 15 bits. // // To round half to nearest even, there are 3 cases where we want to round // down (simply truncate the result of the bits away, which consists of // rounding bit and sticky bits) and two cases where we want to round up // (truncate then add one to the result). // // The fast converting algorithm simply adds lsb (L) to 0x7fff (15 bits of // 1s) as the rounding bias, adds the rounding bias to the input, then // truncates the last 16 bits away. // // To understand how it works, we can analyze this algorithm case by case: // // 1. L = 0, R = 0: // Expect: round down, this is less than half value. // // Algorithm: // - Rounding bias: 0x7fff + 0 = 0x7fff // - Adding rounding bias to input may create any carry, depending on // whether there is any value set to 1 in T bits. // - R may be set to 1 if there is a carry. // - L remains 0. // - Note that this case also handles Inf and -Inf, where all fraction // bits, including L, R and Ts are all 0. The output remains Inf after // this algorithm. // // 2. L = 1, R = 0: // Expect: round down, this is less than half value. // // Algorithm: // - Rounding bias: 0x7fff + 1 = 0x8000 // - Adding rounding bias to input doesn't change sticky bits but // adds 1 to rounding bit. // - L remains 1. // // 3. L = 0, R = 1, all of T are 0: // Expect: round down, this is exactly at half, the result is already // even (L=0). // // Algorithm: // - Rounding bias: 0x7fff + 0 = 0x7fff // - Adding rounding bias to input sets all sticky bits to 1, but // doesn't create a carry. // - R remains 1. // - L remains 0. // // 4. L = 1, R = 1: // Expect: round up, this is exactly at half, the result needs to be // round to the next even number. // // Algorithm: // - Rounding bias: 0x7fff + 1 = 0x8000 // - Adding rounding bias to input doesn't change sticky bits, but // creates a carry from rounding bit. // - The carry sets L to 0, creates another carry bit and propagate // forward to F bits. // - If all the F bits are 1, a carry then propagates to the exponent // bits, which then creates the minimum value with the next exponent // value. Note that we won't have the case where exponents are all 1, // since that's either a NaN (handled in the other if condition) or inf // (handled in case 1). // // 5. L = 0, R = 1, any of T is 1: // Expect: round up, this is greater than half. // // Algorithm: // - Rounding bias: 0x7fff + 0 = 0x7fff // - Adding rounding bias to input creates a carry from sticky bits, // sets rounding bit to 0, then create another carry. // - The second carry sets L to 1. // // Examples: // // Exact half value that is already even: // Input: // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1000000000000000 // // This falls into case 3. We truncate the rest of 16 bits and no // carry is created into F and L: // // Output: // Sign | Exp (8 bit) | Frac (first 7 bit) // S E E E E E E E E F F F F F F L // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 // // Exact half value, round to next even number: // Input: // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1000000000000000 // // This falls into case 4. We create a carry from R and T, // which then propagates into L and F: // // Output: // Sign | Exp (8 bit) | Frac (first 7 bit) // S E E E E E E E E F F F F F F L // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 // // // Max denormal value round to min normal value: // Input: // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT // 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1111111111111111 // // This falls into case 4. We create a carry from R and T, // propagate into L and F, which then propagates into exponent // bits: // // Output: // Sign | Exp (8 bit) | Frac (first 7 bit) // S E E E E E E E E F F F F F F L // 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 // // Max normal value round to Inf: // Input: // Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit) // S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT // 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1111111111111111 // // This falls into case 4. We create a carry from R and T, // propagate into L and F, which then propagates into exponent // bits: // // Sign | Exp (8 bit) | Frac (first 7 bit) // S E E E E E E E E F F F F F F L // 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 // // // Least significant bit of resulting bfloat. uint32_t lsb = (input >> 16) & 1; uint32_t rounding_bias = 0x7fff + lsb; input += rounding_bias; output.value = static_cast(input >> 16); } return output; } static bfloat16 epsilon() { bfloat16 x; x.value = 0x3c00; // 0x1.0p-7 return x; } uint16_t value; // A value that represents "not a number". static const uint16_t NAN_VALUE = 0x7FC0; private: B16_DEVICE_FUNC static bool float_isnan(const float& x) { #ifdef __CUDA_ARCH__ return ::isnan(x); #else return std::isnan(x); #endif } }; B16_DEVICE_FUNC inline std::ostream& operator<<(std::ostream& os, const bfloat16& dt) { os << static_cast(dt); return os; } B16_DEVICE_FUNC inline bfloat16 operator+(bfloat16 a, bfloat16 b) { return bfloat16(static_cast(a) + static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator+(bfloat16 a, int b) { return bfloat16(static_cast(a) + static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator+(int a, bfloat16 b) { return bfloat16(static_cast(a) + static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator-(bfloat16 a, bfloat16 b) { return bfloat16(static_cast(a) - static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator*(bfloat16 a, bfloat16 b) { return bfloat16(static_cast(a) * static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator/(bfloat16 a, bfloat16 b) { return bfloat16(static_cast(a) / static_cast(b)); } B16_DEVICE_FUNC inline bfloat16 operator-(bfloat16 a) { a.value ^= 0x8000; return a; } B16_DEVICE_FUNC inline bool operator<(bfloat16 a, bfloat16 b) { return static_cast(a) < static_cast(b); } B16_DEVICE_FUNC inline bool operator<=(bfloat16 a, bfloat16 b) { return static_cast(a) <= static_cast(b); } B16_DEVICE_FUNC inline bool operator==(bfloat16 a, bfloat16 b) { return static_cast(a) == static_cast(b); } B16_DEVICE_FUNC inline bool operator!=(bfloat16 a, bfloat16 b) { return static_cast(a) != static_cast(b); } B16_DEVICE_FUNC inline bool operator>(bfloat16 a, bfloat16 b) { return static_cast(a) > static_cast(b); } B16_DEVICE_FUNC inline bool operator>=(bfloat16 a, bfloat16 b) { return static_cast(a) >= static_cast(b); } B16_DEVICE_FUNC inline bfloat16& operator+=(bfloat16& a, bfloat16 b) { a = a + b; return a; } B16_DEVICE_FUNC inline bfloat16& operator-=(bfloat16& a, bfloat16 b) { a = a - b; return a; } B16_DEVICE_FUNC inline bfloat16 operator++(bfloat16& a) { a += bfloat16(1); return a; } B16_DEVICE_FUNC inline bfloat16 operator--(bfloat16& a) { a -= bfloat16(1); return a; } B16_DEVICE_FUNC inline bfloat16 operator++(bfloat16& a, int) { bfloat16 original_value = a; ++a; return original_value; } B16_DEVICE_FUNC inline bfloat16 operator--(bfloat16& a, int) { bfloat16 original_value = a; --a; return original_value; } B16_DEVICE_FUNC inline bfloat16& operator*=(bfloat16& a, bfloat16 b) { a = a * b; return a; } B16_DEVICE_FUNC inline bfloat16& operator/=(bfloat16& a, bfloat16 b) { a = a / b; return a; } } // end namespace tensorflow namespace std { template <> struct hash { size_t operator()(const tensorflow::bfloat16& v) const { return hash()(static_cast(v)); } }; using tensorflow::bfloat16; inline bool isinf(const bfloat16& a) { return std::isinf(float(a)); } inline bool isnan(const bfloat16& a) { return std::isnan(float(a)); } inline bool isfinite(const bfloat16& a) { return std::isfinite(float(a)); } inline bfloat16 abs(const bfloat16& a) { return bfloat16(std::abs(float(a))); } inline bfloat16 exp(const bfloat16& a) { return bfloat16(std::exp(float(a))); } inline bfloat16 log(const bfloat16& a) { return bfloat16(std::log(float(a))); } inline bfloat16 log10(const bfloat16& a) { return bfloat16(std::log10(float(a))); } inline bfloat16 sqrt(const bfloat16& a) { return bfloat16(std::sqrt(float(a))); } inline bfloat16 pow(const bfloat16& a, const bfloat16& b) { return bfloat16(std::pow(float(a), float(b))); } inline bfloat16 sin(const bfloat16& a) { return bfloat16(std::sin(float(a))); } inline bfloat16 cos(const bfloat16& a) { return bfloat16(std::cos(float(a))); } inline bfloat16 tan(const bfloat16& a) { return bfloat16(std::tan(float(a))); } inline bfloat16 tanh(const bfloat16& a) { return bfloat16(std::tanh(float(a))); } inline bfloat16 floor(const bfloat16& a) { return bfloat16(std::floor(float(a))); } inline bfloat16 ceil(const bfloat16& a) { return bfloat16(std::ceil(float(a))); } } // namespace std #endif // TENSORFLOW_CORE_LIB_BFLOAT16_BFLOAT16_H_