/* Copyright 2016 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include #include #include #include #include #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { // Make an input tensor with filled results. template Tensor MakeInput(const TensorShape& shape, std::function input_mapping) { Tensor input(DataTypeToEnum::v(), shape); test::FillFn(&input, input_mapping); return input; } class RestoreV2OpTest : public OpsTestBase { protected: // Makes an operation to restore two tensors void MakeRestoreOp(DataType dt) { TF_ASSERT_OK(NodeDefBuilder("myop", "RestoreV2") .Input(FakeInput()) // prefix .Input(FakeInput()) // tensor_names .Input(FakeInput()) // shape_and_slices .Attr("dtypes", {dt}) // dtypes .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } void RunTest(StringPiece save_op_to_use) { const string filename = io::JoinPath(testing::TmpDir(), "tensor_simple-", save_op_to_use); const std::vector tensor_names = { "tensor_bool", "tensor_int", "tensor_float", "tensor_double", "tensor_qint8", "tensor_qint32", "tensor_uint8", "tensor_int8", "tensor_int16", "tensor_int64", "tensor_complex64", "tensor_half"}; // We first need to write using the desired save op. { // Initialize an operation. NodeDef save; if (save_op_to_use != "Save") { TF_ASSERT_OK( NodeDefBuilder("myop", save_op_to_use) .Input(FakeInput()) // prefix .Input(FakeInput()) // tensor_names .Input(FakeInput()) // shape_and_slices .Input(FakeInput({DT_BOOL, DT_INT32, DT_FLOAT, DT_DOUBLE, DT_QINT8, DT_QINT32, DT_UINT8, DT_INT8, DT_INT16, DT_COMPLEX64, DT_HALF})) // tensors .Finalize(&save)); } else { TF_ASSERT_OK( NodeDefBuilder("myop", save_op_to_use) .Input(FakeInput()) // file .Input(FakeInput()) // tensor_names .Input(FakeInput({DT_BOOL, DT_INT32, DT_FLOAT, DT_DOUBLE, DT_QINT8, DT_QINT32, DT_UINT8, DT_INT8, DT_INT16, DT_COMPLEX64, DT_HALF})) // tensors .Finalize(&save)); } std::unique_ptr device( DeviceFactory::NewDevice("CPU", {}, "/job:a/replica:0/task:0")); gtl::InlinedVector inputs; Status status; std::unique_ptr op( CreateOpKernel(DEVICE_CPU, device.get(), cpu_allocator(), save, TF_GRAPH_DEF_VERSION, &status)); TF_EXPECT_OK(status); // Run it // Input #0 is the file name Tensor input_0(DT_STRING, TensorShape({})); input_0.scalar()() = filename; inputs.push_back({nullptr, &input_0}); // Input #1 is the tensor names Tensor input_1 = MakeInput( TensorShape({static_cast(tensor_names.size())}), [&tensor_names](int x) -> string { return tensor_names[x]; }); inputs.push_back({nullptr, &input_1}); Tensor shape_and_slices = MakeInput( TensorShape({static_cast(tensor_names.size())}), [](int x) -> string { return "" /* saves in full */; }); if (save_op_to_use != "Save") { inputs.push_back({nullptr, &shape_and_slices}); } // Input #2 is a 1-d bool tensor Tensor input_2 = MakeInput(TensorShape({2}), [](int x) -> bool { return x != 0; }); inputs.push_back({nullptr, &input_2}); // Input #3 is a 1-d integer tensor Tensor input_3 = MakeInput(TensorShape({10}), [](int x) -> int32 { return x + 1; }); inputs.push_back({nullptr, &input_3}); // Input #4 is a 2-d float tensor Tensor input_4 = MakeInput( TensorShape({2, 4}), [](int x) -> float { return static_cast(x) / 10; }); inputs.push_back({nullptr, &input_4}); // Input #5 is a 2-d double tensor Tensor input_5 = MakeInput( TensorShape({2, 4}), [](int x) -> double { return static_cast(x) / 20; }); inputs.push_back({nullptr, &input_5}); // Input #6 is a 2-d qint8 tensor Tensor input_6 = MakeInput( TensorShape({3, 2}), [](int x) -> qint8 { return *reinterpret_cast(&x); }); inputs.push_back({nullptr, &input_6}); // Input #7 is a 2-d qint32 tensor Tensor input_7 = MakeInput(TensorShape({2, 3}), [](int x) -> qint32 { return *reinterpret_cast(&x) * qint8(2); }); inputs.push_back({nullptr, &input_7}); // Input #8 is a 1-d uint8 tensor Tensor input_8 = MakeInput(TensorShape({11}), [](int x) -> uint8 { return x + 1; }); inputs.push_back({nullptr, &input_8}); // Input #9 is a 1-d int8 tensor Tensor input_9 = MakeInput(TensorShape({7}), [](int x) -> int8 { return x - 7; }); inputs.push_back({nullptr, &input_9}); // Input #10 is a 1-d int16 tensor Tensor input_10 = MakeInput(TensorShape({7}), [](int x) -> int16 { return x - 8; }); inputs.push_back({nullptr, &input_10}); // Input #11 is a 1-d int64 tensor Tensor input_11 = MakeInput(TensorShape({9}), [](int x) -> int64 { return x - 9; }); inputs.push_back({nullptr, &input_11}); // Input #12 is a 1-d complex64 tensor Tensor input_13 = MakeInput( TensorShape({2, 3}), [](int x) -> complex64 { return complex64(100 + x, 200 + x); }); inputs.push_back({nullptr, &input_13}); // Input #13 is a 2-d half tensor Tensor input_14 = MakeInput(TensorShape({2, 4}), [](int x) -> Eigen::half { return static_cast(x) / Eigen::half(5); }); inputs.push_back({nullptr, &input_14}); OpKernelContext::Params params; params.device = device.get(); params.frame_iter = FrameAndIter(0, 0); params.inputs = &inputs; params.op_kernel = op.get(); std::vector attrs; test::SetOutputAttrs(¶ms, &attrs); OpKernelContext ctx(¶ms); op->Compute(&ctx); TF_EXPECT_OK(ctx.status()); } // Now we restore // The 1-d bool tensor { MakeRestoreOp(DT_BOOL); AddInput(TensorShape({}), [&filename](int x) -> string { return filename; }); AddInput(TensorShape({1}), [&](int x) -> string { return tensor_names[0]; }); AddInput(TensorShape({1}), [&](int x) -> string { return ""; }); // Restores in full. TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 2; ++i) { EXPECT_EQ(i != 0, output->flat()(i)); } } // The 1-d integer tensor { MakeRestoreOp(DT_INT32); (*mutable_input(1).tensor).flat()(0) = tensor_names[1]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({10}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i + 1, output->flat()(i)); } } // The 2-d float tensor { MakeRestoreOp(DT_FLOAT); (*mutable_input(1).tensor).flat()(0) = tensor_names[2]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2, 4}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast(i) / 10, output->flat()(i)); } } // The 2-d double tensor { MakeRestoreOp(DT_DOUBLE); (*mutable_input(1).tensor).flat()(0) = tensor_names[3]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2, 4}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast(i) / 20, output->flat()(i)); } } // The 2-d qint8 tensor { MakeRestoreOp(DT_QINT8); (*mutable_input(1).tensor).flat()(0) = tensor_names[4]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({3, 2}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(*reinterpret_cast(&i), output->flat()(i)); } } // The 2-d qint32 tensor { MakeRestoreOp(DT_QINT32); (*mutable_input(1).tensor).flat()(0) = tensor_names[5]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2, 3}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(*reinterpret_cast(&i) * qint8(2), output->flat()(i)); } } // The 1-d uint8 tensor { MakeRestoreOp(DT_UINT8); (*mutable_input(1).tensor).flat()(0) = tensor_names[6]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({11}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 11; ++i) { EXPECT_EQ(i + 1, output->flat()(i)); } } // The 1-d int8 tensor { MakeRestoreOp(DT_INT8); (*mutable_input(1).tensor).flat()(0) = tensor_names[7]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({7}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 7; ++i) { EXPECT_EQ(i - 7, output->flat()(i)); } } // The 1-d int16 tensor { MakeRestoreOp(DT_INT16); (*mutable_input(1).tensor).flat()(0) = tensor_names[8]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({7}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 7; ++i) { EXPECT_EQ(i - 8, output->flat()(i)); } } // The 1-d int64 tensor { MakeRestoreOp(DT_INT64); (*mutable_input(1).tensor).flat()(0) = tensor_names[9]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({9}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 9; ++i) { EXPECT_EQ(i - 9, output->flat()(i)); } } // The 2-d complex64 tensor { MakeRestoreOp(DT_COMPLEX64); (*mutable_input(1).tensor).flat()(0) = tensor_names[10]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2, 3}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(complex64(100 + i, 200 + i), output->flat()(i)); } } // The 2-d half tensor { MakeRestoreOp(DT_HALF); (*mutable_input(1).tensor).flat()(0) = tensor_names[11]; TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); TensorShape expected({2, 4}); EXPECT_TRUE(output->shape().IsSameSize(expected)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast(i) / Eigen::half(5), output->flat()(i)); } } } }; // The intended use case (write in V2, read in V2). TEST_F(RestoreV2OpTest, RestoreAfterSaveV2) { RunTest("SaveV2"); } // For backward compatibility. TEST_F(RestoreV2OpTest, RestoreAfterSaveSlicesV1) { RunTest("SaveSlices"); } TEST_F(RestoreV2OpTest, RestoreAfterSaveV1) { RunTest("Save"); } } // namespace } // namespace tensorflow