/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #define EIGEN_USE_THREADS #include #include #include #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/kernels/quantization_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { class QuantizedConv2DTest : public OpsTestBase { protected: }; TEST_F(QuantizedConv2DTest, Small) { const int stride = 1; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; // The image data should always be able to represent zero, to allow a fast // implementation of border padding, so we set the min value to 0. const float image_min = 0.0f; const float image_max = 12.0f; // The image matrix is: // | 1 | 2 | 3 | 4 | // | 5 | 6 | 7 | 8 | // | 9 | 10 | 11 | 12 | Tensor image_float(DT_FLOAT, {image_batch_count, image_height, image_width, depth}); test::FillValues(&image_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); Tensor image_quantized = FloatTensorToQuantized(image_float, image_min, image_max); // The filter matrix is: // | 1 | 4 | 7 | // | 2 | 5 | 8 | // | 3 | 6 | 9 | const int filter_size = 3; const int filter_count = 1; const float filter_min = 1.0f; const float filter_max = 9.0f; Tensor filter_float(DT_FLOAT, {filter_size, filter_size, depth, filter_count}); test::FillValues(&filter_float, {1, 4, 7, 2, 5, 8, 3, 6, 9}); Tensor filter_quantized = FloatTensorToQuantized(filter_float, filter_min, filter_max); AddInputFromArray(image_quantized.shape(), image_quantized.flat()); AddInputFromArray(filter_quantized.shape(), filter_quantized.flat()); AddInputFromArray(TensorShape({1}), {image_min}); AddInputFromArray(TensorShape({1}), {image_max}); AddInputFromArray(TensorShape({1}), {filter_min}); AddInputFromArray(TensorShape({1}), {filter_max}); TF_ASSERT_OK(RunOpKernel()); // We're sliding the 3x3 filter across the 3x4 image, with accesses outside // the input set to zero because we're using the 'SAME' padding mode. // The calculations behind the expected output are: // (1*0)+(4*0)+(7*0)+(2*0)+(5*1)+(8*2)+(3*0)+(6*5)+(9*6)=105 // (1*0)+(4*0)+(7*0)+(2*1)+(5*2)+(8*3)+(3*5)+(6*6)+(9*7)=150 // (1*0)+(4*0)+(7*0)+(2*2)+(5*3)+(8*4)+(3*6)+(6*7)+(9*8)=183 // (1*0)+(4*0)+(7*0)+(2*3)+(5*4)+(8*0)+(3*7)+(6*8)+(9*0)=95 // (1*0)+(4*1)+(7*2)+(2*0)+(5*5)+(8*6)+(3*0)+(6*9)+(9*10)=235 // (1*1)+(4*2)+(7*3)+(2*5)+(5*6)+(8*7)+(3*9)+(6*10)+(9*11)=312 // (1*2)+(4*3)+(7*4)+(2*6)+(5*7)+(8*8)+(3*10)+(6*11)+(9*12)=357 // (1*3)+(4*4)+(7*0)+(2*7)+(5*8)+(8*0)+(3*11)+(6*12)+(9*0)=178 // (1*0)+(4*5)+(7*6)+(2*0)+(5*9)+(8*10)+(3*0)+(6*0)+(9*0)=187 // (1*5)+(4*6)+(7*7)+(2*9)+(5*10)+(8*11)+(3*0)+(6*0)+(9*0)=234 // (1*6)+(4*7)+(7*8)+(2*10)+(5*11)+(8*12)+(3*0)+(6*0)+(9*0)=261 // (1*7)+(4*11)+(7*0)+(2*8)+(5*12)+(8*0)+(3*0)+(6*0)+(9*0)=121 // This means we should end up with this matrix: // | 105 | 150 | 183 | 95 | // | 235 | 312 | 357 | 178 | // | 187 | 234 | 261 | 121 | const int expected_width = image_width; const int expected_height = image_height * filter_count; Tensor expected_float( DT_FLOAT, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues(&expected_float, {105, 150, 183, 95, 235, 312, 357, 178, 187, 234, 261, 121}); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat()(0); const float output_max = GetOutput(2)->flat()(0); Tensor output_float = QuantizedTensorToFloat(output_quantized, output_min, output_max); test::ExpectTensorNear(expected_float, output_float, 1.0); } TEST_F(QuantizedConv2DTest, Small32Bit) { const int stride = 1; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; AddInputFromArray( TensorShape({image_batch_count, image_height, image_width, depth}), {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray( TensorShape({filter_size, filter_size, depth, filter_count}), {10, 40, 70, 20, 50, 80, 30, 60, 90}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width; const int expected_height = image_height * filter_count; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues( &expected, {10500, 15000, 18300, 9500, 23500, 31200, 35700, 17800, 18700, 23400, 26100, 12100}); test::ExpectTensorEqual(expected, *GetOutput(0)); } TEST_F(QuantizedConv2DTest, OddPadding) { const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 1; AddInputFromArray( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = (image_height * filter_count) / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues(&expected, {348, 252, 274, 175}); test::ExpectTensorEqual(expected, *GetOutput(0)); } TEST_F(QuantizedConv2DTest, OddPaddingBatch) { const int stride = 2; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 4; const int image_batch_count = 3; AddInputFromArray( TensorShape({image_batch_count, image_height, image_width, depth}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); const int filter_size = 3; const int filter_count = 1; AddInputFromArray( TensorShape({filter_size, filter_size, depth, filter_count}), {1, 2, 3, 4, 5, 6, 7, 8, 9}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); AddInputFromArray(TensorShape({1}), {0}); AddInputFromArray(TensorShape({1}), {255.0f}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width / stride; const int expected_height = (image_height * filter_count) / stride; Tensor expected(DT_QINT32, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues(&expected, {348, 252, 274, 175, // 348, 252, 274, 175, // 348, 252, 274, 175}); test::ExpectTensorEqual(expected, *GetOutput(0)); } TEST_F(QuantizedConv2DTest, SmallWithNoZero) { const int stride = 1; TF_ASSERT_OK(NodeDefBuilder("quantized_conv_op", "QuantizedConv2D") .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_QUINT8)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Input(FakeInput(DT_FLOAT)) .Attr("out_type", DataTypeToEnum::v()) .Attr("strides", {1, stride, stride, 1}) .Attr("padding", "SAME") .Finalize(node_def())); TF_ASSERT_OK(InitOp()); const int depth = 1; const int image_width = 4; const int image_height = 3; const int image_batch_count = 1; // Here we're testing a slow implementation path, where zero is not // representable in the image data and so simple border padding is not // possible, so we have a min value greater than 0. const float image_min = 1.0f; const float image_max = 12.0f; Tensor image_float(DT_FLOAT, {image_batch_count, image_height, image_width, depth}); test::FillValues(&image_float, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); Tensor image_quantized = FloatTensorToQuantized(image_float, image_min, image_max); const int filter_size = 3; const int filter_count = 1; const float filter_min = 1.0f; const float filter_max = 9.0f; Tensor filter_float(DT_FLOAT, {filter_size, filter_size, depth, filter_count}); test::FillValues(&filter_float, {1, 4, 7, 2, 5, 8, 3, 6, 9}); Tensor filter_quantized = FloatTensorToQuantized(filter_float, filter_min, filter_max); AddInputFromArray(image_quantized.shape(), image_quantized.flat()); AddInputFromArray(filter_quantized.shape(), filter_quantized.flat()); AddInputFromArray(TensorShape({1}), {image_min}); AddInputFromArray(TensorShape({1}), {image_max}); AddInputFromArray(TensorShape({1}), {filter_min}); AddInputFromArray(TensorShape({1}), {filter_max}); TF_ASSERT_OK(RunOpKernel()); const int expected_width = image_width; const int expected_height = image_height * filter_count; Tensor expected_float( DT_FLOAT, TensorShape({image_batch_count, expected_height, expected_width, filter_count})); test::FillValues(&expected_float, {105, 150, 183, 95, 235, 312, 357, 178, 187, 234, 261, 121}); const Tensor& output_quantized = *GetOutput(0); const float output_min = GetOutput(1)->flat()(0); const float output_max = GetOutput(2)->flat()(0); Tensor output_float = QuantizedTensorToFloat(output_quantized, output_min, output_max); test::ExpectTensorNear(expected_float, output_float, 1.0); } } // namespace tensorflow