/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifdef INTEL_MKL #include "tensorflow/core/kernels/mkl_pooling_ops_common.h" #include #include #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/kernels/bounds_check.h" namespace tensorflow { #ifndef INTEL_MKL_ML_ONLY using mkldnn::pooling_avg; using mkldnn::pooling_avg_exclude_padding; using mkldnn::pooling_avg_include_padding; using mkldnn::pooling_max; using mkldnn::prop_kind; template void MklPoolingFwdPrimitive::Setup(const MklPoolingParams& fwdParams) { DCHECK(fwdParams.alg_kind == pooling_max || fwdParams.alg_kind == pooling_avg || fwdParams.alg_kind == pooling_avg_include_padding || fwdParams.alg_kind == pooling_avg_exclude_padding) << "Pooling algorithm kind is not supported"; context_.alg_kind = fwdParams.alg_kind; // create memory desc // FIXME: Pooling doesn't expose to get the src_primitive_desc, // so src format is currently hard-coded. // A utility function is used to do this, // which may be broken with future CPU architectures bool is_2d = (fwdParams.src_dims.size() == 4); context_.src_md.reset( new memory::desc({fwdParams.src_dims}, MklDnnType(), get_desired_format(fwdParams.src_dims[1], is_2d))); context_.dst_md.reset(new memory::desc({fwdParams.dst_dims}, MklDnnType(), memory::format::any)); // create a pooling descriptor context_.fwd_desc.reset(new pooling_forward::desc( prop_kind::forward_training, fwdParams.alg_kind, *context_.src_md, *context_.dst_md, fwdParams.strides, fwdParams.filter_dims, fwdParams.padding_left, fwdParams.padding_right, padding_kind::zero)); context_.fwd_pd.reset( new pooling_forward::primitive_desc(*context_.fwd_desc, cpu_engine_)); // store expected primitive format context_.src_fmt = get_desired_format(fwdParams.src_dims[1], is_2d); context_.dst_fmt = static_cast( context_.fwd_pd.get()->dst_primitive_desc().desc().data.format); // create MKL-DNN internal memory object with dummy data context_.src_mem.reset(new memory( {{{fwdParams.src_dims}, MklDnnType(), context_.src_fmt}, cpu_engine_}, DummyData)); context_.dst_mem.reset( new memory(context_.fwd_pd.get()->dst_primitive_desc(), DummyData)); // for max pooling, need to return workspace(ws) for backward computing if (fwdParams.alg_kind == pooling_max) { auto ws_pd = context_.fwd_pd.get()->workspace_primitive_desc().desc().data; // store workspace's dims and format to create workspace tensor context_.ws_fmt = static_cast(ws_pd.format); context_.ws_dims.assign(ws_pd.dims, ws_pd.dims + ws_pd.ndims); context_.ws_dt = static_cast(ws_pd.data_type); context_.ws_size = context_.fwd_pd.get()->workspace_primitive_desc().get_size(); context_.ws_mem.reset(new memory( context_.fwd_pd.get()->workspace_primitive_desc(), DummyData)); context_.fwd.reset(new pooling_forward(*context_.fwd_pd, *context_.src_mem, *context_.dst_mem, *context_.ws_mem)); } else { context_.fwd.reset(new pooling_forward(*context_.fwd_pd, *context_.src_mem, *context_.dst_mem)); } context_.fwd_primitives.push_back(*context_.fwd); } template void MklPoolingFwdPrimitive::Execute(const T* src_data, T* dst_data, void* ws_data) { context_.src_mem->set_data_handle( static_cast(const_cast(src_data))); context_.dst_mem->set_data_handle(static_cast(dst_data)); if (context_.alg_kind == pooling_max) { // max pooling must have ws DCHECK(ws_data != nullptr); context_.ws_mem->set_data_handle(ws_data); } context_.fwd_stream->submit(context_.fwd_primitives); // set back data handle context_.src_mem->set_data_handle(DummyData); context_.dst_mem->set_data_handle(DummyData); if (context_.alg_kind == pooling_max) { // max pooling must have ws DCHECK(ws_data != nullptr); context_.ws_mem->set_data_handle(DummyData); } } template class MklPoolingFwdPrimitive; template void MklPoolingBwdPrimitive::Setup(const MklPoolingParams& bwdParams) { DCHECK(bwdParams.alg_kind == pooling_max || bwdParams.alg_kind == pooling_avg || bwdParams.alg_kind == pooling_avg_include_padding || bwdParams.alg_kind == pooling_avg_exclude_padding) << "Pooling algorithm kind is not supported"; context_.alg_kind = bwdParams.alg_kind; // check whether it is 2d or 3d bool is_2d = (bwdParams.dst_dims.size() == 4); // Create memory desc context_.diff_src_md.reset(new memory::desc( {bwdParams.src_dims}, MklDnnType(), memory::format::any)); context_.diff_dst_md.reset( new memory::desc({bwdParams.dst_dims}, MklDnnType(), get_desired_format(bwdParams.dst_dims[1], is_2d))); context_.bwd_desc.reset(new pooling_backward::desc( bwdParams.alg_kind, *context_.diff_src_md, *context_.diff_dst_md, bwdParams.strides, bwdParams.filter_dims, bwdParams.padding_left, bwdParams.padding_right, padding_kind::zero)); // create a forward primitive, // which will be used as a hint for creating backward primitive context_.fwd_desc.reset(new pooling_forward::desc( prop_kind::forward_training, bwdParams.alg_kind, *context_.diff_src_md, *context_.diff_dst_md, bwdParams.strides, bwdParams.filter_dims, bwdParams.padding_left, bwdParams.padding_right, padding_kind::zero)); context_.fwd_pd.reset( new pooling_forward::primitive_desc(*context_.fwd_desc, cpu_engine)); context_.bwd_pd.reset(new pooling_backward::primitive_desc( *context_.bwd_desc, cpu_engine, *context_.fwd_pd)); // store expected primitive format context_.diff_src_fmt = static_cast( context_.bwd_pd.get()->diff_src_primitive_desc().desc().data.format); context_.diff_dst_fmt = get_desired_format(bwdParams.dst_dims[1], is_2d); // create MKL-DNN internal memory object with dummy data context_.diff_src_mem.reset( new memory(context_.bwd_pd.get()->diff_src_primitive_desc(), DummyData)); context_.diff_dst_mem.reset(new memory( {{{bwdParams.dst_dims}, MklDnnType(), context_.diff_dst_fmt}, cpu_engine}, DummyData)); // for max pooling, need to return workspace for backward if (bwdParams.alg_kind == pooling_max) { auto ws_pd = context_.fwd_pd.get()->workspace_primitive_desc().desc().data; context_.ws_dims.assign(ws_pd.dims, ws_pd.dims + ws_pd.ndims); context_.ws_fmt = get_desired_format(context_.ws_dims[1], is_2d); context_.ws_dt = static_cast(ws_pd.data_type); context_.ws_mem.reset(new memory( {{{context_.ws_dims}, context_.ws_dt, context_.ws_fmt}, cpu_engine}, DummyData)); context_.bwd.reset( new pooling_backward(*context_.bwd_pd, *context_.diff_dst_mem, *context_.ws_mem, *context_.diff_src_mem)); } else { context_.bwd.reset(new pooling_backward( *context_.bwd_pd, *context_.diff_dst_mem, *context_.diff_src_mem)); } context_.bwd_primitives.push_back(*context_.bwd); } template void MklPoolingBwdPrimitive::Execute(const T* diff_dst_data, T* diff_src_data, const void* ws_data) { context_.diff_dst_mem->set_data_handle( static_cast(const_cast(diff_dst_data))); context_.diff_src_mem->set_data_handle(static_cast(diff_src_data)); if (context_.alg_kind == pooling_max) { DCHECK(ws_data != nullptr); context_.ws_mem->set_data_handle(const_cast(ws_data)); } context_.bwd_stream->submit(context_.bwd_primitives); // set back data handle context_.diff_dst_mem->set_data_handle(DummyData); context_.diff_src_mem->set_data_handle(DummyData); if (context_.alg_kind == pooling_max) { DCHECK(ws_data != nullptr); context_.ws_mem->set_data_handle(DummyData); } } template class MklPoolingBwdPrimitive; #endif // Initialization for TensorFlow format void MklPoolParameters::Init(OpKernelContext* context, const std::vector& ksize, const std::vector& stride, Padding padding, TensorFormat data_format, const TensorShape& tensor_in_shape) { // For maxpooling, tensor_in should have 4 or 5 dimensions. OP_REQUIRES(context, tensor_in_shape.dims() == 4 || tensor_in_shape.dims() == 5, errors::InvalidArgument("tensor_in must be 4 or 5-dimensional")); depth = GetTensorDim(tensor_in_shape, data_format, 'C'); if (tensor_in_shape.dims() == 4) { // Pool2D tensor_in_cols = GetTensorDim(tensor_in_shape, data_format, 'W'); tensor_in_rows = GetTensorDim(tensor_in_shape, data_format, 'H'); } else { // Pool3D tensor_in_planes = GetTensorDim(tensor_in_shape, data_format, '0'); tensor_in_rows = GetTensorDim(tensor_in_shape, data_format, '1'); tensor_in_cols = GetTensorDim(tensor_in_shape, data_format, '2'); } tensor_in_batch = GetTensorDim(tensor_in_shape, data_format, 'N'); Init(context, ksize, stride, padding, data_format); } #ifdef INTEL_MKL_ML_ONLY // Initialization for MKL format void MklPoolParameters::Init(OpKernelContext* context, const std::vector& ksize, const std::vector& stride, Padding padding, TensorFormat data_format, const MklShape* mklInputShape) { // Get the input sizes depth = mklInputShape->GetSizes()[2]; tensor_in_cols = mklInputShape->GetSizes()[0]; tensor_in_rows = mklInputShape->GetSizes()[1]; tensor_in_batch = mklInputShape->GetSizes()[3]; Init(context, ksize, stride, padding, data_format); } #else // Initialization for MKL format void MklPoolParameters::Init(OpKernelContext* context, const std::vector& ksize, const std::vector& stride, Padding padding, TensorFormat data_format, const MklDnnShape* mklInputShape) { // Get the input sizes if (ksize.size() == 4) { // Pool2D depth = mklInputShape->GetDimension('C'); tensor_in_cols = mklInputShape->GetDimension('W'); tensor_in_rows = mklInputShape->GetDimension('H'); tensor_in_batch = mklInputShape->GetDimension('N'); } else { // Pool3D depth = mklInputShape->GetDimension3D('C'); tensor_in_cols = mklInputShape->GetDimension3D('W'); tensor_in_rows = mklInputShape->GetDimension3D('H'); tensor_in_planes = mklInputShape->GetDimension3D('D'); tensor_in_batch = mklInputShape->GetDimension3D('N'); } Init(context, ksize, stride, padding, data_format); } #endif // INTEL_MKL_ML_ONLY // Common Initialization for TensorFlow and MKL formats void MklPoolParameters::Init(OpKernelContext* context, const std::vector& ksize, const std::vector& stride, Padding padding, TensorFormat data_format) { // Get the data format this->data_format = data_format; bool is_pool2d = (ksize.size() == 4); if (is_pool2d) { // Pool2D // Get the output sizes window_rows = GetTensorDim(ksize, data_format, 'H'); window_cols = GetTensorDim(ksize, data_format, 'W'); depth_window = GetTensorDim(ksize, data_format, 'C'); // Get the strides row_stride = GetTensorDim(stride, data_format, 'H'); col_stride = GetTensorDim(stride, data_format, 'W'); depth_stride = GetTensorDim(stride, data_format, 'C'); // We only support 2D pooling across width/height and depthwise // pooling, not a combination. OP_REQUIRES(context, (depth_window == 1 || (window_rows == 1 && window_cols == 1)), errors::Unimplemented( "MaxPooling supports exactly one of pooling across depth " "or pooling across width/height.")); } else { // Pool3D // Get the output sizes window_planes = GetTensorDim(ksize, data_format, '0'); window_rows = GetTensorDim(ksize, data_format, '1'); window_cols = GetTensorDim(ksize, data_format, '2'); depth_window = GetTensorDim(ksize, data_format, 'C'); // Get the strides planes_stride = GetTensorDim(stride, data_format, '0'); row_stride = GetTensorDim(stride, data_format, '1'); col_stride = GetTensorDim(stride, data_format, '2'); depth_stride = GetTensorDim(stride, data_format, 'C'); // We only support 3D pooling across depth/width/height and depthwise // pooling, not a combination. OP_REQUIRES(context, (depth_window == 1 || (window_rows == 1 && window_cols == 1 && window_planes == 1)), errors::Unimplemented( "AvgPooling3D supports exactly one of pooling across depth " "or pooling across depth/width/height.")); } if (depth_window == 1) { // we are pooling in the D (Pool3D only), H and W if (!is_pool2d) { OP_REQUIRES_OK( context, GetWindowedOutputSizeVerbose(tensor_in_planes, window_planes, planes_stride, padding, &out_planes, &pad_P1, &pad_P2)); } OP_REQUIRES_OK(context, GetWindowedOutputSizeVerbose( tensor_in_rows, window_rows, row_stride, padding, &out_height, &pad_top, &pad_bottom)); OP_REQUIRES_OK(context, GetWindowedOutputSizeVerbose( tensor_in_cols, window_cols, col_stride, padding, &out_width, &pad_left, &pad_right)); #ifndef INTEL_MKL_ML_ONLY // TF can work with int64, but mkldnn only supports int32 // Fail if the depth, height or width are greater than MAX_INT // We check depth only for 3D pooling case if (!is_pool2d) { OP_REQUIRES(context, FastBoundsCheck(out_planes, std::numeric_limits::max()), errors::InvalidArgument("output depth/planes is too large")); } OP_REQUIRES(context, FastBoundsCheck(out_height, std::numeric_limits::max()), errors::InvalidArgument("output height is too large")); OP_REQUIRES(context, FastBoundsCheck(out_width, std::numeric_limits::max()), errors::InvalidArgument("output width is too large")); #endif out_depth = depth; // output will have the same depth as the input } else { // we are pooling in the depth dimension // Our current version of depthwise max pooling does not support // any padding, and expects the depth_window to equal the depth // stride (no overlapping). OP_REQUIRES(context, depth % depth_window == 0, errors::Unimplemented("Depthwise max pooling requires the" " depth window to evenly divide the" " input depth")); OP_REQUIRES(context, depth_stride == depth_window, errors::Unimplemented("Depthwise max pooling requires the" " depth window to equal the depth" " stride")); // The current version of depthwise max is only implemented on CPU. OP_REQUIRES(context, (DeviceType(static_cast(context->device()) ->attributes() .device_type()) == DeviceType(DEVICE_CPU)), errors::Unimplemented("Depthwise max pooling is currently " "only implemented for CPU devices.")); out_depth = depth / depth_window; } } // Transfers the right parameters for pooling to the op parameters // Updates context->status if there is an invalid input. void ExtractMklOpParams(OpKernelContext* context, TensorFormat data_format, const MklPoolParameters& params, MklPoolingOpParams* mkl_params) { mkl_params->in_sizes[0] = params.tensor_in_cols; mkl_params->in_sizes[1] = params.tensor_in_rows; mkl_params->in_sizes[2] = params.depth; mkl_params->in_sizes[3] = params.tensor_in_batch; GetStridesFromSizes(data_format, mkl_params->in_strides, mkl_params->in_sizes); mkl_params->out_sizes[0] = params.out_width; mkl_params->out_sizes[1] = params.out_height; mkl_params->out_sizes[2] = params.depth; mkl_params->out_sizes[3] = params.tensor_in_batch; GetStridesFromSizes(data_format, mkl_params->out_strides, mkl_params->out_sizes); mkl_params->in_offset[0] = -params.pad_left; mkl_params->in_offset[1] = -params.pad_top; mkl_params->in_offset[2] = -params.pad_right; mkl_params->in_offset[3] = -params.pad_bottom; mkl_params->kernel_stride[0] = params.col_stride; mkl_params->kernel_stride[1] = params.row_stride; mkl_params->kernel_size[0] = params.window_cols; mkl_params->kernel_size[1] = params.window_rows; } } // namespace tensorflow #endif // INTEL_MKL