/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include #include #include #include #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/kernel_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/tensor_bundle/tensor_bundle.h" namespace tensorflow { namespace { // Returning a Status instead of using OP_REQUIRES directly since that doesn't // seem to work outside the main OpKernel functions. Status RemapVectorToMap(const TTypes::Vec& remapping, std::vector* id_present, std::unordered_map* old_id_to_new_id) { id_present->clear(); id_present->resize(remapping.size(), false); for (int i = 0; i < remapping.size(); ++i) { const int64 old_id = remapping(i); if (old_id < 0) continue; (*id_present)[i] = true; if (!gtl::InsertIfNotPresent(old_id_to_new_id, old_id, i)) { return errors::Unimplemented( strings::StrCat("Old ID ", old_id, " is mapped to both new ID ", old_id_to_new_id->at(old_id), " and ", i, ", which is not supported.")); } } return Status::OK(); } } // anonymous namespace // This op loads a rank-2 Tensor (matrix) from a TensorFlow checkpoint (V2) and // swaps around the rows/columns according to row_remapping/col_remapping. // "Missing" cells are initialized with values from initializing_values. class LoadAndRemapMatrixOp : public OpKernel { public: explicit LoadAndRemapMatrixOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("num_rows", &num_rows_)); OP_REQUIRES_OK(context, context->GetAttr("num_cols", &num_cols_)); OP_REQUIRES_OK( context, context->GetAttr("max_rows_in_memory", &max_rows_in_memory_)); } void Compute(OpKernelContext* context) override { // Checks what we're remapping and inverts the relevant remapping Tensors to // be maps with key = old ID, value = new ID. std::unordered_map old_row_to_new_row_map; std::vector row_id_present; const Tensor* row_remapping_t; OP_REQUIRES_OK(context, context->input("row_remapping", &row_remapping_t)); const auto row_remapping = row_remapping_t->vec(); OP_REQUIRES(context, row_remapping.size() == num_rows_, errors::InvalidArgument(strings::StrCat( "Size of row_remapping is ", row_remapping.size(), " instead of being equal to num_rows=", num_rows_))); OP_REQUIRES_OK(context, RemapVectorToMap(row_remapping, &row_id_present, &old_row_to_new_row_map)); // Calculates the min/max old row ID that we need to read, to save us from // reading some unnecessary slices of the old tensor. int64 min_old_row = -1; int64 max_old_row = -1; for (int i = 0; i < row_remapping.size(); ++i) { if (min_old_row < 0 || (row_remapping(i) >= 0 && row_remapping(i) < min_old_row)) { min_old_row = row_remapping(i); } if (max_old_row < 0 || (row_remapping(i) >= 0 && row_remapping(i) > max_old_row)) { max_old_row = row_remapping(i); } } // Processes the remapping for columns. std::unordered_map old_col_to_new_col_map; std::vector col_id_present; const Tensor* col_remapping_t; OP_REQUIRES_OK(context, context->input("col_remapping", &col_remapping_t)); const auto col_remapping = col_remapping_t->vec(); // Note that we always "remap rows", even when the row vocabulary does // not change, because partitioning requires a mapping from partitioned // Variables to the full checkpoints we load. const bool remap_cols = col_remapping.size() > 0; if (remap_cols) { OP_REQUIRES( context, col_remapping.size() == num_cols_, errors::InvalidArgument(strings::StrCat( "Provided col_remapping, but its size is ", col_remapping.size(), " instead of being equal to num_cols=", num_cols_))); OP_REQUIRES_OK(context, RemapVectorToMap(col_remapping, &col_id_present, &old_col_to_new_col_map)); } else { col_id_present.clear(); col_id_present.resize(num_cols_, true); } // Processes the checkpoint source and the provided Tensor name. const Tensor* ckpt_path_t; OP_REQUIRES_OK(context, context->input("ckpt_path", &ckpt_path_t)); const string ckpt_path = *(ckpt_path_t->scalar().data()); const Tensor* old_tensor_name_t; OP_REQUIRES_OK(context, context->input("old_tensor_name", &old_tensor_name_t)); const string old_tensor_name = *(old_tensor_name_t->scalar().data()); LOG(INFO) << "Processing checkpoint : " << ckpt_path; BundleReader reader(context->env(), ckpt_path); OP_REQUIRES_OK(context, reader.status()); DataType tensor_type; TensorShape tensor_shape; OP_REQUIRES_OK(context, reader.LookupDtypeAndShape( old_tensor_name, &tensor_type, &tensor_shape)); OP_REQUIRES(context, tensor_type == DT_FLOAT, errors::InvalidArgument(strings::StrCat( "Tensor ", old_tensor_name, " has invalid type ", DataTypeString(tensor_type), " instead of expected type ", DataTypeString(DT_FLOAT)))); // This op is limited to loading Tensors of rank 2 (matrices). OP_REQUIRES( context, tensor_shape.dims() == 2, errors::InvalidArgument(strings::StrCat( "Tensor ", old_tensor_name, " has shape ", tensor_shape.DebugString(), " of invalid rank ", tensor_shape.dims(), " instead of expected shape of rank 2."))); if (!remap_cols) { // TODO(weiho): Consider relaxing this restriction to allow partial column // loading (even when no column remapping is specified) if there turns out // to be a use case for it. OP_REQUIRES(context, num_cols_ == tensor_shape.dim_size(1), errors::InvalidArgument(strings::StrCat( "Tensor ", old_tensor_name, " has shape ", tensor_shape.DebugString(), ", where the size of its 2nd dimension is ", tensor_shape.dim_size(1), " instead of being equal to num_cols=", num_cols_))); } // Uses TensorSlice to potentially load the old tensor in chunks in case // memory usage is a concern. std::vector tensor_slices; TensorSlice slice(tensor_shape.dims()); if (min_old_row >= 0 && max_old_row >= 0) { int64 row_start = min_old_row; // TODO(weiho): Given the list of old row IDs of interest (the keys of // old_row_to_new_row_map), we could also try something smarter to // find some minimal set of covering ranges for the list of old row IDs // such that the size of each range is less than max_rows_in_memory_. while (row_start <= max_old_row) { const int64 slice_length = max_rows_in_memory_ <= 0 // If max_rows_in_memory_ <= 0, we just load the entire chunk. ? max_old_row - row_start + 1 : std::min(max_rows_in_memory_, max_old_row - row_start + 1); slice.set_start(0, row_start); slice.set_length(0, slice_length); tensor_slices.push_back(slice); row_start += slice_length; } } // Allocates the output matrix. Tensor* output_matrix_t = nullptr; OP_REQUIRES_OK(context, context->allocate_output("output_matrix", TensorShape({num_rows_, num_cols_}), &output_matrix_t)); auto output_matrix = output_matrix_t->matrix(); // Iterates through tensor slices and copies over values from the old tensor // to the output matrix. int64 row_index = min_old_row; int64 rows_copied = 0; Tensor loaded_tensor_t; for (const TensorSlice& tensor_slice : tensor_slices) { LOG(INFO) << "Loading slice " << tensor_slice.DebugString(); TensorShape slice_shape; OP_REQUIRES_OK(context, tensor_slice.SliceTensorShape(tensor_shape, &slice_shape)); // Potentially re-allocates the tensor buffer since the last slice may // have fewer rows than the other slices. if (loaded_tensor_t.shape() != slice_shape) { loaded_tensor_t = Tensor(DT_FLOAT, slice_shape); } OP_REQUIRES_OK(context, reader.LookupSlice(old_tensor_name, tensor_slice, &loaded_tensor_t)); // Iterates through the old loaded tensor slice row-by-row. for (int row = 0; row < loaded_tensor_t.dim_size(0); ++row, ++row_index) { if (row_index % 500000 == min_old_row) { LOG(INFO) << "Processing old row " << row_index; } // If the old row ID is not found in old_row_to_new_row_map, continue // to the next row; otherwise, copy it to the output matrix. const int64* new_row_ptr = gtl::FindOrNull(old_row_to_new_row_map, row_index); if (new_row_ptr == nullptr) { continue; } ++rows_copied; const int64 new_row = *new_row_ptr; // Copies over the row element-by-element, in case remapping is needed // along the column axis. const auto& loaded_tensor = loaded_tensor_t.matrix(); for (int old_col = 0; old_col < loaded_tensor_t.dim_size(1); ++old_col) { int64 new_col = old_col; if (remap_cols) { const int64* new_col_ptr = gtl::FindOrNull(old_col_to_new_col_map, old_col); if (new_col_ptr == nullptr) { // Column remapping is specified, but this column is not found in // old_col_to_new_col_map, so we leave it uninitialized, to be // filled in with initializing_values later. continue; } new_col = *new_col_ptr; } OP_REQUIRES(context, new_row < num_rows_ && new_col < num_cols_ && new_row >= 0 && new_col >= 0, errors::Internal(strings::StrCat( "new_row=", new_row, " and new_col=", new_col, " should have been less than num_rows_=", num_rows_, " and num_cols_=", num_cols_, " and non-negative. This should never have happened " "if the code were correct. Please file a bug."))); output_matrix(new_row, new_col) = loaded_tensor(row, old_col); } } } LOG(INFO) << "Copied " << rows_copied << " rows from old matrix (with " << tensor_shape.dim_size(0) << " rows) to new matrix (with " << num_rows_ << " rows)."; // At this point, there are potentially whole rows/columns uninitialized // (corresponding to the indices where row_id_present/col_id_present are // false). We fill this in cell-by-cell using row_id_present and // col_id_present while dequeuing from the initializing_values vector. const Tensor* initializing_values_t; OP_REQUIRES_OK( context, context->input("initializing_values", &initializing_values_t)); const auto initializing_values = initializing_values_t->flat(); int64 initializing_values_index = 0; for (int i = 0; i < num_rows_; ++i) { for (int j = 0; j < num_cols_; ++j) { if (row_id_present[i] && col_id_present[j]) continue; OP_REQUIRES( context, initializing_values_index < initializing_values.size(), errors::InvalidArgument( "initializing_values contained ", initializing_values.size(), " elements, but more missing values remain.")); output_matrix(i, j) = initializing_values(initializing_values_index); ++initializing_values_index; } } // Checks that we used all the given initializing values. OP_REQUIRES( context, initializing_values_index == initializing_values.size(), errors::InvalidArgument( "initializing_values contained ", initializing_values.size(), " elements, but only ", initializing_values_index, " elements were used to fill in missing values.")); } private: int64 num_rows_; int64 num_cols_; int64 max_rows_in_memory_; }; REGISTER_KERNEL_BUILDER(Name("LoadAndRemapMatrix").Device(DEVICE_CPU), LoadAndRemapMatrixOp); } // namespace tensorflow